
Matthias Tichy, Jakob Pietron, David Mödinger, Katharina Juhnke, Franz Hauck

Experiences with an Internal DSL in the IoT Domain

122.06.20 4th International Workshop on MDE4IoT

Motivation

2

Context
§ Development of resilient IoT systems
§ Support for automatic orchestration, active replication, degradation

Use Case
§ Smart parking garage

22.06.20 4th International Workshop on MDE4IoT

History: Fujaba (Own Framework & DSL, 1996-2005)

3

Sven Burmester, Holger Giese, Jörg Niere, Matthias Tichy, Jörg P. Wadsack, Robert Wagner, Lothar Wendehals, Albert Zündorf:
Tool integration at the meta-model level: the Fujaba approach. Int. J. Softw. Tools Technol. Transf. 6(3): 203-218 (2004)

22.06.20 4th International Workshop on MDE4IoT

History: MechatronicUML (Eclipse-DSL, 2005-2014)

4

Steffen Becker, Stefan Dziwok, Thomas Gewering, Christian Heinzemann, Uwe Pohlmann, Claudia Priesterjahn, Wilhelm Schäfer, Oliver Sudmann, and Matthias Tichy. MechatronicUML - Syntax and Semantics. Technical
report, Software Engineering Group, Heinz Nixdorf Institute, University of Paderborn, 2014.

Self-Optimization / Planning / Learning

Discrete Real-Time Software

Feedback Controllers

Physical System

Sensors Actuators

Message-Based
Communication

hard real-time

soft real-time
Goal 1

Goal 2

memberMemberControl

waitUpd sendAck

22.06.20 4th International Workshop on MDE4IoT

Related Work

522.06.20 4th International Workshop on MDE4IoT

Survey by Nguyen et al.
§ Many DSLs in the domain
§ Many approaches follow a component-based, data-flow-oriented paradigm
Graphical DSLs, e.g., Node-RED, DSL-4-IoT
Textual DSLs, e.g., ThingML, DoS-IL, SALT
§ Extensive development effort required for complete tool chain

Our focus
§ Resiliency (need to have control of state)
§ Experienced developers and the existing programming language ecosystem
§ But restricted by the ecosystem and the programming language

Goal of DSL Development

6

Explore the Sweet Spot of
§ Supporting MDE and reaping its benefits

§ Without the huge effort to build a usable (Eclipse-based) External DSL
§ Without extensive training for users

§ by tightly integrating with Programming Language Ecosystem:
§ Test-Frameworks, Logging-Frameworks
§ Libraries, Libraries, Libraries
§ IDEs and their features (Debugger, Recommenders, …)

§ Target Group: Experienced Software Developers

22.06.20 4th International Workshop on MDE4IoT

Our TypeScript Internal DSL: What do we support?

7

Component model
§ Components. Ports
§ 1:1, 1:n, m:1, n:m connections
§ Architectural Configuration
§ Mux-/DeMux for Active Repl.
§ Integration with MQTT, REST

Behavior
§ Interpreter
§ Side-Effect Free / Pure
§ State Space Exploration

State machines
§ Discrete States / Events
§ Abstract State
§ Events with parameters
§ Internal communication
§ External communication
§ Actions, conditions via functions
§ Type Safety via Generics
§ Functional interface
§ Visualization to DOT, TGF
§ Web GUI via React

22.06.20 4th International Workshop on MDE4IoT

Running Example: Simplified Parking Garage

8

barrier: Component parkingManagement: Component

barrierController: Component

MQTT

internal

Connections

signalController: Component

22.06.20 4th International Workshop on MDE4IoT

Running Example: Simplified Parking Garage

9

parkingManagement: Component

FROM_BARRIER.CAR_IN
[freeParkingSapces - 1 == 0]
/ freeParkingSpaces -= 1;
 TO_SIGNAL_CONTROLLER.LED_RED(true);
 TO_SIGNAL_CONTROLLER.LED_GREEN(false);
 TO_SIGNAL_CONTROLLER.DISPLAY(freeParkingSpaces);

AVAILABLE

FROM_BARRIER.CAR_OUT
/ freeParkingSpaces += 1;

 TO_SIGNAL_CONTROLLER.LED_RED(false);
 TO_SIGNAL_CONTROLLER.LED_GREEN(true);

 TO_SIGNAL_CONTROLLER.DISPLAY(freeParkingSpaces);

FULL

FROM_BARRIER: Port

TO_SIGNAL_CONTROLLER: Port

FROM_BARRIER.CAR_IN
[freeParkingSapces - 1 > 0]
/ freeParkingSpaces -= 1;
 TO_SIGNAL_CONTROLLER.LED_RED(false);
 TO_SIGNAL_CONTROLLER.LED_GREEN(true);
 TO_SIGNAL_CONTROLLER.DISPLAY(freeParkingSpaces);

FROM_BARRIER.CAR_OUT
/ freeParkingSpaces += 1;

TO_SIGNAL_CONTROLLER.LED_RED(false);
TO_SIGNAL_CONTROLLER.LED_GREEN(true);

TO_SIGNAL_CONTROLLER.DISPLAY(freeParkingSpaces);
/ freeParkingSpaces = 5

22.06.20 4th International Workshop on MDE4IoT

Our TypeScript Internal DSL: „Meta Model“ Excerpt

10

interface Component<F, M, E, P> {
name: string,
ports: Port<E, P>[],
step: (current: State<F, M, E, P>) => State<F, M, E, P>,
allSteps: (current: State<F, M, E, P>) => State<F, M, E, P>[],

}
interface Transition<F, M, E, P> {

sourceState: F,
event?: [E,P?],
condition?: (myState: M, event?:Event<E, P>) => Boolean,
action?: (myState: M, raiseEvent:RaiseEventCallBack<E, P>, event?: Event<E, P>) => M,
targetState: F,

}
interface StateMachine<F, M, E, P> {

transitions: Transition<F, M, E, P>[],
}

22.06.20 4th International Workshop on MDE4IoT

Our TypeScript Internal DSL: „Model“ Excerpt

11

enum ParkingManagementStates { AVAILABLE, FULL}
type ParkingManagementAbstractState = { readonly freeParkingSpaces : number;}
const sm: StateMachine<ParkingManagementStates, ParkingManagementAbstractState, EventTypes, PMPorts> = {

transitions: [
{

sourceState: ParkingManagementStates.AVAILABLE,
targetState: ParkingManagementStates.AVAILABLE,
event: [EventTypes.CAR_IN, ParkingManagementPorts.FROM_BARRIER],
condition: myState => myState.freeParkingSpaces - 1 > 0,
action: (myState, raiseEvent) => {

const newState = {… freeParkingSpaces: myState.freeParkingSpaces-1;
raiseEvent({type: EventTypes.LED_RED, port: PMPorts.TO_SIGNAL_CONTROLLER, payload: {status: false}});
raiseEvent({type: EventTypes.LED_GREEN, port: PMPorts. TO_SIGNAL_CONTROLLER, payload: {status: true}});
raiseEvent({type: EventTypes.DISPLAY, port: PMPorts.TO_SIGNAL_CONTROLLER,

payload: {fs: newState. freeParkingSpaces}});
return newState;

}
},

…

22.06.20 4th International Workshop on MDE4IoT

Our Experiences

12

§ Development is super productive and super smooth (no battling with Eclipse
and EMF peculiarities)

§ Super quick turn-around from code change to see effect
§ Programming language ecosystem super helpful
§ TypeScript Compiler automatically does a lot of well-formedness checks, e.g.,

only connections can only be created between ports with compatible event
definitions

§ Side-effect free function design enable easy test-driven development and state
space exploration

§ Modern functional programming APIs are a good replacement for OCL

22.06.20 4th International Workshop on MDE4IoT

Conclusion and Future Work

13

§ Our own experiences are fairly positive (maybe, we are at the 20%/80%
spot)

§ Framework is available via NPM
§ Our colleagues from the distributed systems and security groups can read

and change our code J

§ Future Work
§ Monitoring of events based on state machines specification
§ Supporting Degradation in response to failures
§ Automatic Orchestration: Failure à Restart somewhere else
§ Application of Fault Tolerance Patterns to component structures

22.06.20 4th International Workshop on MDE4IoT

Our Code is Available Online

§ Framework
https://www.npmjs.com/package/sorrir-framework

§ Web Demo
https://sorrir.github.io/web-demo/

§ Hardware Testbed
https://github.com/sorrir/hardware-testbed

1422.06.20 4th International Workshop on MDE4IoT

https://www.npmjs.com/package/sorrir-framework
https://sorrir.github.io/web-demo/
https://github.com/sorrir/hardware-testbed

