
CONFIRM is the Science Foundation Ireland Research Centre
for Smart Manufacturing
Transforming Irish industry to become
world-leaders in smart manufacturing

Accelerating Application Development in the Internet
of Things using Model-driven Development

Pankesh Patel

Outline…

2

} Research projects
} IoTSuite – A Toolkit for Prototyping Internet of Things

Applications
} To enable IoT application development with minimal development

effort
} Funded by: INRIA Paris – Rocquencourt, France (2010 – 2014)

} SMEWB – Subject Matter Expert Workbench
} To create, reuse and deploy analytic algorithms in ABB products and

solutions with little or no additional coding
} Subject Matter Experts (SMEs) – domain expertise but very little

programming experience
} Funded by: ABB Corporate Research (2014 – 2017)

Basic building blocks of “Internet of Things”

3

Things have sensors attached,
Things have actuators attached
Things have storage attached,
Things may have computational capabilities

The produced information is
communicated over network using
various protocols

These networked inputs can then be combined into a
system that integrate data, people (i.e., user
interactions), processes to achieve a specific
objectives.

1

2

3

People & Process

Communication

Physical & virtual
devices (or “things”)

Programming in IoT

4

Programming
Languages

Rapid prototyping tools

Cloud

- Full control on AL (app logic)
- More development effort

- Reduce development effort
- Platform-specific design (Language, Runtime)

- Reduce development effort, ease of
deployment & evolution (due to centralized
system)

- Cloud-dependent design

MDD
- PIM, PSM

IoTSuite: A Toolkit for Prototyping IoT
Applications

6

Entity	of	
Interest

Storage Sensor

Observes

Actuator

StoresAffects

Tag

Identifies

§ Temperature sensor observes the temperature value of a room

§ Heater controls the temperature of a room

§ Profile Database stores user’s various preferences

§ Badge identifies a person.

Things (or Entity of Interest) is an object, including attributes that describe it, and its state
that is relevant from a user or an application perspective.

Heart rate Temperature value
of a Room

Battery level
of a Smartphone

Model

7

ResourceDevice Hosts

Entity	of	
Interest

Storage Sensor

Observes

Actuator

StoresAffects

Tag

Identifies

Extends
Extends

Extends
Extends

§ A device is an entity that provides resources the ability of interacting
with other devices.

§ A resource is an abstract representation of a sensor, an actuator, a storage

Cloud serverSunSPOTSmart Phones

Model

8

ResourceDevice Hosts

Actuator	
Driver

Storage	
Driver

Sensor	
Driver

AccessesActuates

Entity	of	
Interest

Storage Sensor

Observes

Actuator

StoresAffects

Tag

Identifies

Tag	
Reader

ReadsProvide
Access	to

Extends
Extends

Extends
Extends

§ A platform-specific component that act
as a translator between a hardware device
and an application

Android
device driver

MySQL
device driver

Model

9

ResourceDevice Hosts

Actuator	
Driver

Storage	
Driver

Sensor	
Driver

AccessesActuates

End-user
Application

Interacts
with

Entity	of	
Interest

Storage Sensor

Observes

Actuator

StoresAffects

Tag

Identifies

Tag	
Reader

ReadsProvide
Access	to

Extends
Extends

Extends
Extends

§ A platform-specific component
Through which user interacts
with resources.

• Command
• Notification
• Request

Model

10

ResourceDevice Hosts

Actuator	
Driver

Storage	
Driver

Sensor	
Driver

AccessesActuates

Computational	
Component End-user

Application

Interacts
with

Entity	of	
Interest

Storage Sensor

Observes

Actuator

StoresAffects

Tag

Identifies

Tag	
Reader

ReadsProvide
Access	to

Extends
Extends

Extends
Extends

It encapsulates a subset of the system’s
functionality.

• Calculate Avg. Temp
• Regulating Temperature

Model

11

ResourceDevice Hosts

Software
Component

Runs-On

Actuator	
Driver

Storage	
Driver

Sensor	
Driver

AccessesActuates

Extends

Extends

Extends

Computational	
Component

Extends

Communicates-With

End-user
Application

Interacts
with

Extends

Entity	of	
Interest

Storage Sensor

Observes

Actuator

StoresAffects

Tag

Identifies

Tag	
Reader

ReadsProvide
Access	to

Extends

Extends
Extends

Extends
Extends

Functionality-specific
Concepts

Platform-specific
Concepts

Domain-specific
Concepts

Deployment-specific
Concepts

Model

Separation of Concerns

12

Functionality
(e.g., home

fire detection

Domain

(e.g., building
HVAC)

Deployment

Room
temperature

(e.g. building
automation)

Building fire
state

“Reusability
across concerns”

FraunhoferABB

IoTSuite: Overview

13

Domain Spec. Functional
Spec.

Deployment Spec.

Compiler Deployment Module

Generated Programming
Framework (GPL)

Android
Packages

Node.js
Packages

Java
Packages

Developer

Developer

Application
Logic (GPL)

Sensing/Actuating

Framework

Code editor

14

Syntax Coloring

IoTSuite Project

Outline / Structure View

Code Folding

Auto Completion

Error Checking

IoTSuite deployment packages

15

Deployment Packages
for Android Platform

Deployment Packages
for Java Platform

Deployment Packages
for Node.js Platform

PackageName = [Implementation Platform] [DeviceName][“Device”]

Example: [NodeJS][TemperatureMgmt][“Device”]

16

IoTSuite code is available at
https://github.com/pankeshlinux/IoTSuite

https://github.com/pankeshlinux/IoTSuite

SMEWB: Subject Matter Expert
Workbench

Context

18

} ABB - industrial sensors, industrial robots, process control systems, etc.
} Blending business solutions with industrial analytics that incorporate deep

knowledge of ABB’s technical SMEs on equipment and verticals

SMEWB - Key goals

19

} Accelerate creation, reuse, evolution
and delivery of analytic module plugins
} Minimize SME (Subject Matter Expert)

effort to share, evolve and reuse
knowledge

} Accelerate integration of analytics
into ABB systems and solutions
} Minimize business value of knowledge for

ABB customers

The old lifecycle: solution development

20

Installation
and

Configuration
of Integrated

Solution

Run Time!

Customer/User

Solution Development

(Application Engineering)

Full Software Development
Lifecycle

Solution
Solution

Development Team

• Typical solution development scenario:

Solution Development Team work across the
full development life cycle

The old lifecycle: solution & analytic
development

21

Installation
and

Configuration
of Integrated

Solution

Run Time!

Customer/User

Solution Development

(Application Engineering)

Full Software Development
Lifecycle

Solution
Solution

Development Team

Subject Matter
Experts (SMEs) Analytic Module

Development

Blending business solutions and analytics, SMEs write application logic in a flowchart diagram and hire a
developer. The developer iterate with SMEs to get the logic right.

The old lifecycle: integrating analytics into
solutions

22

Installation
and

Configuration
of Integrated

Solution

Run Time!

Customer/User

Solution Development

(Application Engineering)

Full Software Development
Lifecycle

Solution
Solution

Development Team

Subject Matter
Experts (SMEs) Analytic Module

Development
Analytic Module

integration & validation

Validation of integrated
solution

To integrate the analytic module into a solution, the developer iterate with the solution team until they
get it working

The old lifecycle: integrating analytics into
solutions

23

Installation
and

Configuration
of Integrated

Solution

Run Time!

Customer/User

Solution Development

(Application Engineering)

Full Software Development
Lifecycle

Solution
Solution

Development Team

Subject Matter
Experts (SMEs) Analytic Module

Development
Analytic Module

integration & validation

Validation of integrated
solution

Months Later

The old lifecycle: integrating analytics into
solutions

24

Installation
and

Configuration
of Integrated

Solution

Run Time!

Customer/User

Solution Development

(Application Engineering)

Full Software Development
Lifecycle

Solution
Solution

Development Team

Analytic Module
Development

Analytic Module
integration & validation

Validation of integrated
solution

Decouple Solutions & Analytics

Empower SMEs as end-user developer

Creating an analytic model using SMEWB

25

} Drag & Drop to develop analytic modules,
} Reuse existing models from a catalog / MATLAB

Deploying an analytic model

26

Analytic module integration is supported via

solution-specific SME Workbench extensions

Contact: Pankesh Patel
Email: pankesh.patel@insight-centre.org

www.confirm.ie

28

Backup Slides

29

Entity	of	
Interest

Storage Sensor

Observes

Actuator

StoresAffects

Tag

Identifies

§ Temperature sensor observes the temperature value of a room

§ Heater controls the temperature of a room

§ Profile Database stores user’s various preferences

§ Badge identifies a person.

Things (or Entity of Interest) is an object, including attributes that describe it, and its state
that is relevant from a user or an application perspective.

Heart rate Temperature value
of a Room

Battery level
of a Smartphone

Conceptual
Model

30

ResourceDevice Hosts

Entity	of	
Interest

Storage Sensor

Observes

Actuator

StoresAffects

Tag

Identifies

Extends
Extends

Extends
Extends

§ A device is an entity that provides resources the ability of interacting
with other devices.

§ A resource is an abstract representation of a sensor, an actuator, a storage

Cloud serverSunSPOTSmart Phones

Conceptual
Model

31

ResourceDevice Hosts

Actuator	
Driver

Storage	
Driver

Sensor	
Driver

AccessesActuates

Entity	of	
Interest

Storage Sensor

Observes

Actuator

StoresAffects

Tag

Identifies

Tag	
Reader

ReadsProvide
Access	to

Extends
Extends

Extends
Extends

§ A platform-specific component that act
as a translator between a hardware device
and an application

Android
device driver

MySQL
device driver

Conceptual
Model

32

ResourceDevice Hosts

Actuator	
Driver

Storage	
Driver

Sensor	
Driver

AccessesActuates

End-user
Application

Interacts
with

Entity	of	
Interest

Storage Sensor

Observes

Actuator

StoresAffects

Tag

Identifies

Tag	
Reader

ReadsProvide
Access	to

Extends
Extends

Extends
Extends

§ A platform-specific component
Through which user interacts
with resources.

• Command
• Notification
• Request

Conceptual
Model

33

ResourceDevice Hosts

Actuator	
Driver

Storage	
Driver

Sensor	
Driver

AccessesActuates

Computational	
Component End-user

Application

Interacts
with

Entity	of	
Interest

Storage Sensor

Observes

Actuator

StoresAffects

Tag

Identifies

Tag	
Reader

ReadsProvide
Access	to

Extends
Extends

Extends
Extends

It encapsulates a subset of the system’s
functionality.

• Calculate Avg. Temp
• Regulating Temperature

Conceptual
Model

34

ResourceDevice Hosts

Software
Component

Runs-On

Actuator	
Driver

Storage	
Driver

Sensor	
Driver

AccessesActuates

Extends

Extends

Extends

Computational	
Component

Extends

Communicates-With

End-user
Application

Interacts
with

Extends

Entity	of	
Interest

Storage Sensor

Observes

Actuator

StoresAffects

Tag

Identifies

Tag	
Reader

ReadsProvide
Access	to

Extends

Extends
Extends

Extends
Extends

Functionality-specific
Concepts

Platform-specific
Concepts

Domain-specific
Concepts

Deployment-specific
Concepts

Conceptual
Model

IoTSuite: MDE Approach

35

} Separation of Concerns
(reusability)

} Integration of existing
DSL (reduce complexity &
effort)

} Automation wherever
possible (reduce effort) Code generators

PIM

PSM

Node

PSM…

C1 C2 Cn…

Horizontal Separation of
Concerns

Vertical Separation of
Concerns

PIM – Platform Independent Model
PSM – Platform Specific Model

36

Example

Notify me temperature value of
my room periodically on my monitor

Temperature
Sensor

Temperature
Measurement

Calculate
AvgTemp

Display
Temp

Controller

Monitor

Display()

send temperature data

Send Average Temperature

Display temperature

Android
Sensor

Android-
UI

Application
Logic

Application
Logic

IoTSuite Code editor

37

Syntax Coloring

IoTSuite Project

Outline / Structure View

Code Folding

Auto Completion

Error Checking

IoTSuite architecture framework

38

Generated Architecture
Framework

Framework to write
application logic

Developer implements
interfaces in GPL to write

application logic

Commonality at various levels

39

Functionality
(e.g., home

fire detection

Domain

(e.g., building
HVAC)

Deployment

Room
temperature

(e.g. building
automation)

Building fire
state

“Reusability
across concerns”

Fraunhofer
CMI

Fraunhofer
CESE

40

IoTSuite code is available at
https://github.com/pankeshlinux/IoTSuite

The current version of IoTSuite supports several IoT
technologies such as Android, Raspberry PI, Arduino, and

JavaSE-enabled devices, Messaging protocols such as MQTT,
CoAP, websocket, Server technologies such as node.js,

Relational database such as MySQL, and Microsoft Azure
Cloud services.

https://github.com/pankeshlinux/IoTSuite

© ABB Group
June 22, 2020 | Slide 41

Calculate
AvgTemp

Fire
Notifier

IoTSP
HelloWorld example: Architecture

Temperature
Regulator

Proximity

Data
Visualizer

DataBase
Server Temp.

Sensor
Smoke
Sensor

Humidity
Sensor

Yahoo
Service

Badge
Reader

Heater Alarm
EndUser

App.
Dash
Board

Device

Device

Device

Device

Device

42

Domain
expert

domain
spec.

Compilation
of vocabulary

image credit to organizations, who own copyrights of used images

Our approach:
Domain concern

• Sensors (Sense the EoI)
• Actuators (Affect the EoI)

• Tags (Identify the EoI)

• Storage (Store information about the EoI)

This step involves the specification of concepts that
are responsible for interacting with Entities of Interests (EoI).

© ABB Group
June 22, 2020 | Slide 43

IoTSP
Domain language: code snippet

Temperature
Regulator

Proximity

DataBase
Server

Badge
Reader

Heater

structs:
BadgeStruct

badgeID: String;
badgeEvent:String;

TempStruct
tempValue: double;
unitOfMeasurement: String;

resources:
Sensors:

BadgeReader
generate badgeDetected: BadgeStruct;

actuators:
Heater

action Off();
action SetTemp(setTemp: TempStruct);

storages:
ProfileDB
generate profile: tempStruct accessed-by

badgeID: String;
• Abstractions to specify heterogeneous entities
• One entity description for many instances

© ABB Group
June 22, 2020 | Slide 44

IoTSP
IoTSuite Code Editor

Syntax Coloring

IoTSuite Project

Outline / Structure View

Code Folding

Auto Completion

Error Checking

45

Domain
expert

Vocabulary
spec.

Compilation
of vocabulary

Architecture
spec.

Software designer
image credit to organizations, who own copyrights of used

images

Our approach:
functional concern

This step involves the specification of concepts that
are responsible for computation or processing.

• Computational Service

© ABB Group
June 22, 2020 | Slide 46

IoTSP
Architecture language: code snippet

Temperature
Regulator

Proximity

DataBase
Server

Badge
Reader

HeatercomputationalService:
AvgTemp
consume tempMeasurement from TemperatureSensor;
COMPUTE (AVG_BY_SAMPLE,5);
generate roomAvgTempMeasurement:TempStruct;
Proximity
consume badgeDetected from BadgeReader;
request profile to ProfileDB;
generate tempPref: TempStruct;
TempController
consume roomAvgTempMeasurement from AvgTemp;
consume tempPref from Proximity;
command SetTemp(setTemp) to Heater;

Calculate
AvgTemp

Temp.
Sensor

• Programming constructs to hide heterogeneous
interactions

• Programming constructs to perform common
operations.

47

Domain
expert

Vocabulary
spec.

Compilation
of vocabulary

Architecture
spec. Compilation

of architecture
Application
developer

Architecture
framework

Software designer

App.
Logic

image credit to organizations, who own copyrights of used images

In-Built
FrWrk

Our approach:
functional concern

Architecture framework (in object-oriented GPL)
- Contains abstract classes

- Concrete methods
- Abstract methods

48

Proximity
consume badgeDetected from BadgeReader;

Compiler

public void subscribeBadgeDetected() {
PubSubMiddleware.subscribe(this, “badgeDetected",

subscriptionCondition);
}
public void notifiedReceived (String event Name, Object
arg, Device deviceInfo) {

if (eventName.equals(“badgeDetected”) {
onBadgeDetectedEvent((BadgeStruct) arg) ;

}
}

public abstract void onBadgeDetectedEvent(BadgeStruct arg);

Concrete
method for

Subscription
request

Concrete
method for
Receiving

notification
s

Application
developer

Structured code, Application Developer
has to only implement abstract methods.

image credit to organizations, who own copyrights of used images

IoTSP
Architecture framework: code snippet

© ABB Group
June 22, 2020 | Slide 49

IoTSP
IoTSuite architecture framework

Generated
Architecture Framework

Framework to write
application logic

Developer implements
interfaces in GPL to write

application logic

Deployment
concern

50

Vocabulary
spec.

Compilation
of vocabulary

Deployment
spec.

Mapper
Network
manager

Mapping
files

Compilation
of architecture

Application
developer

Application
logic

Architecture
framework

Software designer

Domain
expert

Architecture
spec.

image credit to organizations, who
own copyrights of used images

© ABB Group
June 22, 2020 | Slide 51

IoTSP
Deployment language: code snippet

Temperature
Regulator

Proximity

DataBase
Server

Badge
Reader

Heater
TemperatureMgmtDevice:

location:
Room:1;

platform: NodeJS;
resources: TemperatureSensor, Heater;
protocol: mqtt;

Property of each device is specified individually –
Not Scalable

DatabaseServer:
location:

Room:1;
platform: JavaSE;
resources: ProfileDB;
protocol: mqtt;
database: MySQL;

…
Device

Device

Device

TemperatureMgmt
Device

Database
Server

Deployment
concern

52

Vocabulary
spec.

Compilation
of vocabulary

Deployment
spec.

Mapper
Network
manager

Mapper – decides device where each computational
service will be executing

Mapping
files

Compilation
of architecture

Application
developer

Application
logic

Architecture
framework

Software designer

Domain
expert

Architecture
spec.

image credit to organizations, who
own copyrights of used images

Deployment
concern : Mapping

53

computationalService:
Proximity
…

TemperatureController
…

Architecture specification

devices:
Device1:
…
Device2:
…

DeviceN:
…

Deployment Specification

Mapper

Device1:
Proximity

Device2:
TemperatureController

Mapping decision
(output in GPL)

Mapping decision
(output in GPL)

Mapping considering device properties is a part of
our future work.

Platform
concern

54

Vocabulary
spec.

Compilation
of vocabulary

Deployment
spec.

Mapper
Network
manager

Mapping
files

Compilation
of architecture

Application
developer

Application
logic

Architecture
framework

Software designer

Sensing/actuating
framework

Domain framework
Domain
expert

Architecture
spec.

image credit to organizations, who
own copyrights of used images

Concrete methods to interact with other
software components & platform-specific
device driver

• Sensing framework for Android
• Sensing & actuating framework

for RPi in NodeJS.
• Storage Framework for

MongoDB, AzureDB, MySQL

Platform
concern

55

Vocabulary
spec.

Compilation
of vocabulary

Deployment
spec.

Mapper
Network
manager

Mapping
files

Compilation
of architecture

Application
developer

Application
logic

Architecture
framework

Software designer

Sensing/actuating
framework

Domain framework
Domain
expert

Architecture
spec.

image credit to organizations, who
own copyrights of used images

User Interface
Spec

Compilation of
User interface

© ABB Group
June 22, 2020 | Slide 56

Calculate
AvgTemp

Fire
Notifier

IoTSP
User interaction lang.: Code snippet

Data
Visualizer

Temp.
Sensor

Smoke
Sensor

Humidity
Sensor

Yahoo
Service

EndUser
App.

Dash
Board

EndUserApp
notify FireNotify(fn:FireStruct)

from FireNotifier;

DashBoard
notify Display(sm:VisualizeStruct)

from DataVisualizer;

structs:
VisualizeStruct
tempValue: double;
humidityValue: double;
yahooTempValue: double;

FireStruct
fireValue: String;
timeStamp: String;

resources:
userInteractions:

Alarm

Platform
concern

57

Vocabulary
spec.

Compilation
of vocabulary

Deployment
spec.

Mapper
Network
manager

Mapping
files

Compilation
of architecture

Application
developer

Application
logic

Architecture
framework

Software designer

Sensing/actuating
framework

Domain framework
Domain
expert

Architecture
spec.

image credit to organizations, who
own copyrights of used images

User Interface
Spec

Compilation of
User interface

User
Interface code

User Interface
Designer

User interaction
framework

58

Compiler

generates

User
Interface
Designer

image credit to organizations, who own copyrights of used images

IoTSP
User interaction framework: code snippet
EndUserApp

notify FireNotify(fireNotify:FireStruct)from FireNotifier;

@Override
public void onDataReceived(String eventName, Object data) {
if (eventName.equals("fireNotify")) {

}
}

TextView tv = (TextView)AndroidSmartHomeApp.appActivity
.findViewById(R.id.textView1);

tv.setText("Fire has been occured");

User interface designer implements OnDataReceived() method and connect
them with UI widgets (e.g., Here is Text View)

© ABB Group
June 22, 2020 | Slide 59

IoTSP
IoTSuite User interaction framework

Generated User
Interaction Framework

Developer implements
interfaces in GPL to write

user interface logic

© ABB Group
June 22, 2020 | Slide 60

IoTSP
IoTSuite User interaction framework

Developer implements widgets
for User interface

Android Widgets

Linking

61

Vocabulary
spec.

Compilation
of vocabulary

Deployment
spec.

Mapper
Network
manager

Mapping
files

Compilation
of architecture

Application
developer

Application
logic

Architecture
framework

Software designer

Sensing/actuating
framework

Domain framework
Domain
expert

Architecture
spec.

image credit to organizations, who
own copyrights of used images

User Interface
Spec

Compilation of
User interface

User
Interface code

User Interface
Designer

User interaction
framework

Linker

Android
devices

PC

PC

© ABB Group
June 22, 2020 | Slide 62

IoTSP
IoTSuite Deployment packages

Deployment Packages
for Android Platform

Deployment Packages
for Java Platform

Deployment Packages
for Node.js Platform

PackageName = [Implementation Platform] [DeviceName][“Device”]

Example: [NodeJS][TemperatureMgmt][“Device”]

State of the art:
Programming IoT

63

Approach Examples Description Benefits Limitation

General-purpose
Programming

Node.js,
Python, C,
C++,
Android

Developers think in terms of
activities of individual devices &
explicitly encode interactions with
others in programming language.

Development of
efficient systems
based on
complete control
over device.

More development
effort, Difficult to
reuse & platform-
dependent design.

Reading data
from Sensors

64

var sensorLib = require('node-dht-sensor');
var mqtt=require('mqtt');
var client=mqtt.connect('mqtt://test.mosquitto.org:1883');
var sensor = {

initialize: function () {
// here GPIO4 means pin7 and DHT22 type of sensor
return sensorLib.initialize(22, 4);

},
read: function () {

var readout = sensorLib.read();
var value={"tempValue":readout.temperature.toFixed(2),
, "humidityValue":readout.humidity.toFixed(2)};

client.publish('sensorMeasurement',JSON.stringify(value));
setTimeout(function () {

sensor.read();
}, 5000);

} };
if (sensor.initialize()) {

sensor.read(); } else { console.warn('Failed to initialize
sensor');
}

APIs to read temperature values

Publishing sensed value

Connecting to MQTT Protocol

State of the art:
Programming IoT

65

Approach Examples Description Benefits Limitation

General-purpose
Programming

Node.js,
Python, C,
C++,
Android

Developers think in terms of
activities of individual devices &
explicitly encode interactions with
others in programming language.

Development of
efficient systems
based on
complete control
over device.

More development
effort, Difficult to
reuse & platform-
dependent design.

Macro
programming

Node-RED
Regiment,
MacroLab,

Abstractions to specify high-level
collaborative behaviors while hiding
low-level details such as message
passing

Reduce
development
Effort compared
to GPL,

Platform-specific
design, Less flexible to
write Customized
application logic.

Rapid prototyping tool - NodeRED

66

} Open source tools (https://github.com/node-red)
} Flow-based programming
} Browser-based flow editor
} Invented by IBM for wiring hardware devices, APIs and online

services
} Light-weight runtime such as Node.js
} Ideal to run on edge devices
} Over 2500+ ready-to-use nodes/flows

https://flows.nodered.org/

https://github.com/node-red
https://flows.nodered.org/

Example

67

It extracts data from response
and convert it to JSON format

It displays the converted
data format on Console.

It requests data to UK national
grid service periodically.

State of the art:
Programming IoT

68

Approach Examples Description Benefits Limitation

General-purpose
Programming

Node.js,
Python, C,
C++,
Android

Developers think in terms of
activities of individual devices &
explicitly encode interactions with
others in programming language.

Development of
efficient systems
based on
complete control
over device.

More development
effort, Difficult to
reuse & platform-
dependent design.

Macro
programming

Node-RED
Regiment,
MacroLab,

Abstractions to specify high-level
collaborative behaviors while hiding
low-level details such as message
passing

Reduce
development
Effort compared
to GPL,

Platform-specific
design, Less flexible to
write Customized
application logic.

Cloud Platform IBM
BlueMix,
Xively,
WoTKit

Devices are connected to cloud
platforms through APIs or high-
level (e.g., drag-and-drop)
constructs, Expose common
services (e.g., data visualization,)
through APIs

Reduce
development
effort - GPL,
Offer ease of
deployment &
evolution

Cloud-dependent
design, restrict in-
terms of functionality
(in-network
aggregation, node-to-
node comm.), depend
on cloud availability

Cloud
platform

69

Web API
Cloud Service Web API

Data
Visualization

Data
Storage Data

Analysis Security

Mobile
App

Client
Browser Smart

Plug

command
send

command
receive

Periodic
data send

Notification
receives

State of the art:
Programming IoT

70

Approach Examples Description Benefits Limitation

General-purpose
Programming

Node.js,
Python, C,
C++,
Android

Developers think in terms of
activities of individual devices &
explicitly encode interactions with
others in programming language.

Development of
efficient systems
based on
complete control
over device.

More development
effort, Difficult to
reuse & platform-
dependent design.

Macro
programming

Node-RED
Regiment,
MacroLab,

Abstractions to specify high-level
collaborative behaviors while hiding
low-level details such as message
passing

Reduce
development
Effort compared
to GPL,

Platform-specific
design, Less flexible to
write Customized
application logic.

Cloud Platform IBM
BlueMix,
Xively,
WoTKit

Devices are connected to cloud
platforms through APIs or high-
level (e.g., drag-and-drop)
constructs, Expose common
services (e.g., data visualization,)
through APIs

Reduce
development
effort - GPL,
Offer ease of
deployment &
evolution

Cloud-dependent
design, restrict in-
terms of functionality
(in-network
aggregation, node-to-
node comm.), depend
on cloud availability

Model-driven
Development

DiaSuite,
PervML

Vertical and horizontal separation of
concerns

Reusable,
Extensible and
Platform-
independent
design

Long development
time to build a MDD
system

Model-driven Development

71

} Reusability and platform-independent

} Vertical SoC
} Reduce application development

complexity separating PIM and PSM

} Horizontal SoC
} Separate different aspects of system

Transformation and
code generators

PIM

PSM

E.g., J2SE E.g., .Net

PSM…

C1 C2 Cn…

Horizontal
Separation of

Concerns (SoC)

Vertical
separation of

concerns

SoC – Separation of Concerns

IoTSuite: A Toolkit for Prototyping IoT
Applications

Background

73

} Objectives:
} Enable IoT application development with minimal development effort

} 2010 – INRIA Paris – Rocquencourt /University of Paris VI ,
France
} European Project – Large Scale Choreographies for the Future

Internet (ChOReOS)
} 2014 – PhD thesis, Très honorable

} 2014 – 2017
} Acquire funding for new projects at ABB Corporate Research
} Publications/Tutorials at top tire conférences (ICSE, WWW, ISWC),

Mentoring B.Tech & Master thesis (at Ahmedabad University), post
doc (at Insight Centre, Ireland)

} Teaching IoT course (GCL – University of Tokyo , link)

http://www.choreos.eu/bin/view/Main/WebHome
https://www.gcl.i.u-tokyo.ac.jp/en/events/20161024-25-global-design-bbs/

Motivation

74

Different types of devices,
Platforms, Runtime systems

Heterogeneity

Node-centric programming
- Large number of devices

Our approach

75

} Separation of Concerns
(reusability)

} Integration of existing
DSL (reduce complexity &
effort)

} Automation wherever
possible (reduce effort) Code generators

PIM

PSM

Node

PSM…

C1 C2 Cn…

Horizontal Separation of
Concerns

Vertical Separation of
Concerns

PIM – Platform Independent Model
PSM – Platform Specific Model

Model

76

ResourceDevice Hosts

Software
Component

Runs-On

Actuator	
Driver

Storage	
Driver

Sensor	
Driver

AccessesActuates

Extends

Extends

Extends

Computational	
Component

Extends

Communicates-With

End-user
Application

Interacts
with

Extends

Entity	of	
Interest

Storage Sensor

Observes

Actuator

StoresAffects

Provide
Access	to

Extends

Extends
Extends

Extends

Functionality-specific
Concepts

Platform-specific
Concepts

Domain-specific
Concepts

Deployment-specific
Concepts

IoTSuite: Overview

77

Domain Spec. Functional
Spec.

Deployment Spec.

Compiler Deployment Module

Generated Programming
Framework (GPL)

Android
Packages

Node.js
Packages

Java
Packages

Developer

Developer

Application
Logic (GPL)

Sensing/Actuating

Framework

Domain language: code snippet

78

structs:
BadgeStruct

badgeID: String;
badgeEvent:String;

TempStruct
tempValue: double;
unitOfMeasurement: String;

resources:
Sensors:

BadgeReader
generate badgeDetected: BadgeStruct;

actuators:
Heater

action Off();
action SetTemp(setTemp: TempStruct);

storages:
ProfileDB
generate profile: tempStruct accessed-by

badgeID: String;

Temperature
Regulator

Proximity

DataBase
Server

Badge
Reader

Heater

Code editor

79

Syntax Coloring

IoTSuite Project

Outline / Structure View

Code Folding

Auto Completion

Error Checking

© ABB Group
June 22, 2020 | Slide 80

IoTSP
Architecture language: code snippet

Temperature
Regulator

Proximity

DataBase
Server

Badge
Reader

HeatercomputationalService:
AvgTemp
consume tempMeasurement from TemperatureSensor;
COMPUTE (AVG_BY_SAMPLE,5);
generate roomAvgTempMeasurement:TempStruct;
Proximity
consume badgeDetected from BadgeReader;
request profile to ProfileDB;
generate tempPref: TempStruct;
TempController
consume roomAvgTempMeasurement from AvgTemp;
consume tempPref from Proximity;
command SetTemp(setTemp) to Heater;

Calculate
AvgTemp

Temp.
Sensor

• Programming constructs to hide heterogeneous
interactions

• Programming constructs to perform common
operations.

81

Proximity
consume badgeDetected from BadgeReader;

Compiler

public void subscribeBadgeDetected() {
PubSubMiddleware.subscribe(this, “badgeDetected",

subscriptionCondition);
}
public void notifiedReceived (String event Name, Object
arg, Device deviceInfo) {

if (eventName.equals(“badgeDetected”) {
onBadgeDetectedEvent((BadgeStruct) arg) ;

}
}

public abstract void onBadgeDetectedEvent(BadgeStruct arg);

Concrete
method for

Subscription
request

Concrete
method for
Receiving

notification
s

Application
developer

Structured code, Application Developer
has to only implement abstract methods.

image credit to organizations, who own copyrights of used images

Generated framework: code snippet

IoTSuite deployment packages

82

Deployment Packages
for Android Platform

Deployment Packages
for Java Platform

Deployment Packages
for Node.js Platform

PackageName = [Implementation Platform] [DeviceName][“Device”]

Example: [NodeJS][TemperatureMgmt][“Device”]

IoTSuite: platform independent

83

Parser

Code generator

IoTSuite

Domain Spec. Architecture Spec. Deployment Spec.

JavaSE Android Node Python Other

System specification
(Platform independent)

Adding a new platform
as a plugin

Code generation of a
framework in a target
platform

ANTLR, a parser
generator from a
grammar

StringTemplate, a
template engine for
generating source
code

IoTSuite: platform independent

84

Runtime System

Device

Middleware wrapper

Generated code
For Device X

It runs on each individual device & provide
support for executing distributed tasks.

IoTSuite generates code for a device

It plugs “generated code for a device” & runtime
system. It implements interface specified in a
support library, specific to a runtime system.

Support for MQTT & iBICOOP

Open source

85

IoTSuite code is available at
https://github.com/pankeshlinux/IoTSuite

The current version of IoTSuite supports several IoT
technologies such as Android, Raspberry PI, Arduino, and

JavaSE-enabled devices, Messaging protocols such as MQTT,
CoAP, websocket, Server technologies such as node.js,

Relational database such as MySQL, and Microsoft Azure
Cloud services.

https://github.com/pankeshlinux/IoTSuite

CONFIRM is the Science Foundation Ireland Research Centre
for Smart Manufacturing
Transforming Irish industry to become
world-leaders in smart manufacturing

Building a Data Anaytics Platform Using
Open Source Tools

Ali Intizar, Pankesh Patel, John Breslin (NUI Galway)

State of the art: IoT in Cloud

https://bit.ly/2KLKbs9 https://amzn.to/2DMqgLm https://bit.ly/2xTcwZQ https://bit.ly/2QoFl7v

https://www.predix.io https://bit.ly/2DMc0CBhttps://bit.ly/2NfjLAh

} Rapid innovation and prototyping

} Reduce time to market
} New features and offering
} Use of cutting edge technologies
} Lower upfront IT costs

https://bit.ly/2KLKbs9
https://amzn.to/2DMqgLm
https://bit.ly/2xTcwZQ
https://bit.ly/2QoFl7v
https://www.predix.io/
https://bit.ly/2DMc0CB
https://bit.ly/2NfjLAh

Motivation – cloud provider limitations

88

} Not open source!
} Freedom of choice

} On-premise or in the cloud
} Platform-specific development design

} Migrating from one (e.g., Microsoft Azure IoT hub) to the
other cloud (e.g., AWS IoT) could be complex

} Different application APIs to be used for different clouds
} Vendor lock-in

} If a cloud provider increase its pricing model, it could kill the
overall business revenue.

} Innovation

Open source tools

89

• Eclipse Hono: A set of docker based micro services

• Eclipse Unide: Production Performance Measurement Protocol

• Eclipse Kura: Analytics on Edge devices

• Eclipse Kapua: IoT Platform for sensors data managed

• InfluxDB/Prometheus: A database to store Industrial IoT data

• Grafana: Visual interface and Dashboard for Smart Factory

Early result: technology stack

90

Device

Edge/IoT

Data Lake

Analytic

Application

Industrial motors, pumps Production machines, PLCs Smart devices & tools

Icon source: https://thenounproject.com

AI tools and techniques, stream analytics On-premise /cloud IIoT algorithms

DashboardMobile appDigital twins Simulation

Smart Factory

https://thenounproject.com/

Summary

91

Programming
Languages

Rapid prototyping tools

Cloud

- Full control on AL (app logic)
- More development effort

- Reduce development effort
- Platform-specific design (Language, Runtime)

- Reduce development effort, ease of
deployment & evolution (due to centralized
system)

- Cloud-dependent design

MDD
- PIM, PSM
- Longer development time due to complex

and very domain specific

IoTSuite: platform independent

92

Parser

Code generator

IoTSuite

Domain Spec. Architecture Spec. Deployment Spec.

JavaSE Android Node Python Other

System specification
(Platform independent)

Adding a new platform
as a plugin

Code generation of a
framework in a target
platform

ANTLR, a parser
generator from a
grammar

StringTemplate, a
template engine for
generating source
code

IoTSuite: platform independent

93

Runtime System

Device

Middleware wrapper

Generated code
For Device X

It runs on each individual device & provide
support for executing distributed tasks.

IoTSuite generates code for a device

It plugs “generated code for a device” & runtime
system. It implements interface specified in a
support library, specific to a runtime system.

Support for MQTT & iBICOOP

Open source

94

IoTSuite code is available at
https://github.com/pankeshlinux/IoTSuite

The current version of IoTSuite supports several IoT
technologies such as Android, Raspberry PI, Arduino, and

JavaSE-enabled devices, Messaging protocols such as MQTT,
CoAP, websocket, Server technologies such as node.js,

Relational database such as MySQL, and Microsoft Azure
Cloud services.

https://github.com/pankeshlinux/IoTSuite

Thank you for your attention

95

Questions

