
[bookmark: A_modelling_approach_for_system_life_cyc]A modelling approach for system life cycles assurance
Shuji Kinoshita, Yoshiki Kinoshita, and Makoto Takeyama
Kanagawa University
Overview
Background
System assurance	=	assurance of the target system
	&	assurance of the system life cycle
Example of required outcome [IEC 62853 Open systems dependability]
“6.2.3 h) When a breach of an agreement occurs, the stakeholders accountable for it provide in a timely manner the remedies for the non-accountable stakeholders and society in general.”
“6.3.3 d) The system life cycle is improved based on the experience from the actual failures after the failure response by the Change Accommodation process view.”
Problem
? What it is to assure a system life cycle?
? What is a system life cycle model?
? What do the usual figures mean? (interlinked stages & decision gates)
confusing caveats: … stages are interdependent and overlapping,
stages do not necessarily occur one after another,
iteration and recursion are possible on all paths, …
[image:]
[ISO/IEC/IEEE 24748-1:2018 Systems and software engineering – Life cycle management – Part 1: Guidelines for life cycle management]
not a state machine with ‘a state = a stage’
? How can a life cycle model be used for assurance of a real life cycle?
? How does a life cycle model relate with the real life cycle?
? How does it relate with generation of evidence for assurance?
Proposed solution?
Life cycle model = Controller of a real life cycle (workflow engine)
distinguishing a model (specified, implemented, verified) and the real life cycle
System = Collection of ‘issues’ at various stages
making concurrency explicit — to disentangle the confusing caveats	
[bookmark: _Hlk18941821]Dependent Petri Net (DPN) life cycle model
a variant of Coloured Petri net with I/O
token = (model of) bundled artefacts together with assurance
representing issues progressing through stages independently or in a defined coordination
split and merged as necessary
place ~ conditions on artefacts
that must be assured before / after transitions
dependent transition = (model of) stage & decision gate
I/O with the real life cycle
target places depend on consumed tokens and input from the real LC
checks and controls progressions of issues
specification is provided by source and target places
Assurance of a system life cycle
~ assurance of the ability to generate ‘current’ assurance case
	from assurance data in tokens, at any time, during the run of life cycle

[bookmark: _bookmark0]Related Work. Modelling of system life cycles, or more generally that of busi- ness processes, has been intensely studied particularly in the context of com- pliance checking [6]. The Regorous approach [7,8] models business processes using the BPMN notation with its Petri net-like semantics, and checks the mod- els’ compliance against regulatory requirements that are formalized in Formal Contract Logic. It is applied to compliance checking of safety processes against requirements of ISO 26262 in the automotive sector [9]. The main difference be- tween our approach and the Regorous apporach is that our model incorporates evidence(proofs) of requirements satisfaction as concrete data. Another differ- ence is that in our approach those pieces of evidence are about actual life cycle activities and gathered throughout the run of a life cycle, whereas the Regorous approach seems to focus on veryifing its business process models at the design time of those models.
Simon and Stoffel [10] employs Petri nets to formulate software life cycle processes in the sense of ISO/IEC 12207:1995 Software life cycle processes, to estabish a mathematical methodology for software development. Hull et al. [11] introduces the Guard-Stage-Milestone (GSM) meta-model that is intended to be a basis for formal verification and reasoning on business entity life cycles.
Background: DEOS Life Cycle Model
DEOS Life Cycle Model
It is the intended target of DPN formulation.
[IEC 62853 Open systems dependability] suggests DEOS LCM could achieve the outcomes IEC 62853 requires, but only informally.
DPN formulation aims to enable a precise statement and its assurance.
Typical depiction of DEOS LCM is:

Interlinked “double cycles” consisting of life cycle stages:
Failure Response Cycle: short term, emergency responses to failures
Change Accommodation Cycle: longer term activities to adopt the system to accommodate changes in environment, requirements, etc.,
including changes necessary for preventing failure recurrence
Picture Is Not a State Machine.
The picture is too informal to base assurance argument on it.
It cannot be taken as a state machine with “current state = active stage”
After Failure Response Stage, the intention is that
both of the following are active concurrently.
Accountability Achievement Stage (and then Ordinary Operation Stage)
for timely provision of remedies (and then prompt resumption of service)
Consensus Building Stage
for planning the next version of service to prevent failure recurrence
A life cycle model needs to address concurrent activities
[bookmark: _bookmark2]Dependent Petri Nets (DPN)
Dependent Petri Net extends Coloured Petri net
with transitions that do
input / output with external environment
crucial for modelling a controller
selection of target places depending on consumed tokens and input
a convenience for natural modelling of decision gates
A DPN consists of the following sets / functions:
	set of places
	set of transitions
	set of tokens that can be placed at
	= data type of tokens at
 = {[] |
		= set of possible lists of tokens selected from places
	set of possible inputs
	set of possible outputs
	list of source places for transition .
	proposition “transition may fire given
		input and
		consumable tokens ”
proposition = type of data that counts as evidence (propositions as types)
	list of target places for transition depending on
		input and tokens
			for which is true

	result of firing with input and consuming tokens
	= pair of
		output and
		list of tokens produced at
A DPN defines a labelled transition system:
state = marking = assignment of token list to each place
[bookmark: _bookmark3]DPN Life Cycle Model
Running Example
DEOSLCM: a DPN formulation of the DEOS life cycle model

circle = place, box = transition
small dots on transition = possible choices for target places
eg:DV:check may produce one token
at (CAAA:ready), or at (DV:ready), or at (CB:ready)
depending on input and token consumed when it fires.
other details are there, but not depicted.
Structure of DEOSLCM provides a framework of “issue driven development”.

A possible progression of an issue on a service s
through a simplified DEOSLCM is like this.
Generally, multitudes of issues are worked on at the same time and are represented by that many tokens placed at various places.
[bookmark: _bookmark5]Issue = Token = Bundle of Artefacts with Assurance
Roughly,
a token ~ an issue on a service to be worked on in the life cycle.
the place where the token is ~ the status of the issue
the next work (transition) to be done on the issue,
the condition the issue must satisfy for the next work to begin, …
Token at a place = (model of)
	a bundle of artefacts associated with the issue at the place
	together with assurance that the artefacts satisfies the condition.
For formulation, define for each service and place
	data type of ‘artefacts bundles’ associated with when is at
	predicate representing requirements on
	= proposition “ shows that outcomes expected of at is achieved”
	= type of data that count as evidence of that
A token at is formulated as a triple
i.e., { | }
a generic example token at place
 may include
specification of
stakeholder agreement on accountability for operation of
monitoring reports and operation logs on .
 may include evidence of
operation logs appropriately confirm that is operating as specified.
monitoring reports appropriately confirm that breach of agreement is being monitored.
Distinction between and is by convention but is made to force explicit formulation of the conditions for artefacts to have proper contents.
[bookmark: _bookmark6]Transitions Modelling Life Cycle Stages
 models how a life cycle stage consumes and produces tokens (= artefacts with assurance).
Intended meaning of arguments and results are:
 = data taken from the real life cycle when fires.
e.g, new/modified artefacts, stakeholders’ signature for approval, test results
 = tokens consumed by firing .
 = a proof that is enabled for and
guarantees that computing does not fail.
to be constructed by a decision algorithm.
 = output to control the real life cycle
e.g., work-requests, error-reports about
 = tokens produced by firing .
the places where the tokens are produced depends on and .
Do-Check Loops: Interactions between the Model and the Real life cycle.
Most stages in DEOSLCM have the pattern of (ready)-[do]-(done)-[check].
The pattern expresses interactions between
computing in the model and
performing a real life cycle stage.
Example of interaction in Development Stage

1. token at (DV:ready) may include
data for system specification (of various maturity)
unsatisfactory system validation results	from previous iterations, and
estimation on required development resources.
2. taken by DV:do may include
information on development resources available,
review results on the artefacts developed in the last iteration, and
authorization to start development.
3. a decision algorithm on Guard(DV:do)()([]) transforms
information on estimated and required resources
priority given in review result, etc.
into either
a proof of that can be computed meaningfully, or
a proof that it cannot.
Here we assume the case where is produced.
4. is [DV:done] (the singleton list of DV:done.)
Let us write (, []) for the value of
5. may include
revised system specifications reflecting the review results in ,
work requests to developers that triggers actual development processes,
information on resources to be used.
6. token may include
success criteria for artefacts to be produced by the actual development processes that is invoked by out,
record of the work being done together with rationale for it.
7. taken by DV:check may include
artefacts produced by the actual development processes
signatures from stakeholders accountable for the processes
reports on problems encountered during the processes.
8. Guard (DV:check)()([]) typically amounts to trivially true proposition with proof triv.
9. target(DV:check)()([])(triv) computes to one of the following,
depending on and :
(a) [CAAA:ready] if artefacts in pass the success criteria given in and if no problem is reported in
(b) [DV:ready] if the artefacts do not pass the criteria and if the problem reports indicate that stakeholder requirements need not be revised
(c) [CB:ready] otherwise, i.e., if agreements on stakeholder requirements and other arrangements need to be revised.
Let us write (, [z]) for the value of action(DV:check)()([])(triv).
10. Its intended meaning differs depending on the value of

If = [CAAA:ready],
i. typically contains little significant information and
ii. token z at CAAA:ready may include information necessary to account for the development, such as
rationale for the development
reasoning why artefacts produced is judged acceptable.
If = [DV:ready],
 i. may include
work-requests to review system specifications etc.
work-requests to produce recommended actions for the next iteration
ii. token z at DV:ready is as explained for x, including reasons why the artefacts did not pass the success criteria.
If = [CB:ready],
i. may include
work-requests to review agreements on stakeholder requirements etc.,
work-requests to produce recommended actions for rebuilding consensus
ii. token z at CB:ready may include the reasons
why the artefacts did not pass the success criteria
why rebuilding consensus is deemed necessary.
 is to be automatically computed in the model.
Not expected: sophisticated automation of processing / decision making
Expected:
Sufficiently precise identification and characterisation of artefacts and other information on the real life cycle
including expert judgements and approvals of accountable stakeholders
that enables
Explicit, formal rules for processing and decision making
agreed upon by all relevant stakeholders.
Transitions can be subdivided as necessary to refine the timing when the model takes in such information from the real world.
Issue Splitting and Merging
Life cycle models must address related, concurrent activities in the real life cyle.
Example:
After activities to achieve accountability for a failure of service ,
the issue regarding the failure of splits into two issues:
(1) promptly resume possibly at a degraded level
(2) revise for prevention of failure recurrence and a longer-term improvement.
Degraded operation of and revision of proceed concurrently
When revised becomes ready, two issues are merged into one issue:
degraded is retired.
revised is deployed.
The merged issue is to operate and monitor the revised
DPN LCM represents the situation with
token splitting	(a transition consuming one token and producing two tokens)
splitting transition attaches to produced tokens a shared tag (e.g. service ID)
token merging	(a transition consuming two tokens and producing one token)
Guard() of merging transition checks tags of consumed tokens
[bookmark: _bookmark8]Assurance of System Life Cycle Using DPN Models
The informal claim to be assured is “At any time, each required outcome for each issue is achieved or being achieved.”
This includes assurance of the ability to produce a ‘current’ assurance case whenever demanded.
The current assurance case assures that each outcome is either
achieved or, if not,
will be achieved by current plans for actions (under appropriately justified assumptions on future behaviours of the real life cycle).
The top-level claim statement for assurance of the system life cycle as the property of its DPN model is
For any reachable marking m,
for each outcome , for each place , for each token at ,
 holds
is a proposition representing
the aspects of outcome relevant to at in .
[bookmark: _GoBack]The ‘current’ assurance case is to be generated from proofs of , which in turn are n generated from assurance data carried in tokens .
For each , for all is required, since assurance of is not a one-shot activity done and finished in one life cycle stage.
 = “Stakeholders of the system are identified.”
Stakeholders changes during the life of a system — should be checked at every stage.
Achievement of outcomes may not be stable when the environment changes.
 = “When a breach of an agreement occurs, the stakeholders accountable 	for it provide in a timely manner the remedies for the non-accountable 	stakeholders and society in general.”
Preparation is the most of work — evidence of preparedness should be generated at every stage before the main action.
Confirming the effect of an action after the action is taken is also important for some outcomes.
 = “The system life cycle is improved continually.”
Outcomes concerned with the life cycle as a whole need to be decomposed to sub-outcomes for each life cycle stage.
[bookmark: _bookmark9]Future Work
Details on token data and transition functions needs to be developed.
For identification and formulation of
relevant artefacts (,
requirements on them () and
required outcomes (),
we are mapping relationship among three standards:
ISO/IEC/IEEE 15288 System life cycle processes (30 procs)
IEC 62853 Open systems dependability
OSD outcomes (~ 80)
guidance on achieving them using 15288 life cycle processes
ISO/IEC/IEEE 15289 Content of life-cycle information items (documentation)
Information Items (documentation) (~ 100)
info on which docs are input / output by 15288 life cycle processes
raw mapping data is too big – appropriate structuring is necessary.
We plan to define transition functions () in a formal language Agda that guarantees correctness of functions / proofs with respect to given specifications.
The formulation of DPN needs to be refined for understandability and faithfulness.
The ability to form composite transtions / places as hierarchical modules.
Timing behaviours of transitions should be specifiable.
Global constraints among issues should be formulated and considered
when controlling progression of issues
e.g. constraints arising from resource competition and overall priorities
Effectiveness of the approach need to be evaluated
against proper assessment criteria
with an extensive review of related work
with case studies using prototype implementations
image2.png
Development

.-.

Iteration and recursion possible on all paths

image3.emf
Failure Response Cycle

Change Accommodation Cycle

6.4.8

Integration

6.4.7

Implement

ation

6.4.4

Architecture

Definition

6.4.5

Design

Definition

6.4.1

Business

or

Mission

Analysis

Consensus Building Stage

Development Stage

Failure Response Stage

Agreement

description

database

Objective /

Environment

Change

Anomaly

Detection /

Failure

Accountability

Achievement

Cause Analysis

Responsive Action

Failure Prevention

6.4.2

Stakeholder

Needs and

Requirements

Definition

6.4.3

System

Requirements

Definition

6.1 Agreement Processes

...

6.4.9

Verification

6.4.10

Transition

6.4.11

Validation

...

Ordinary Operation Stage

Accountability Achievement Stage

6.4.12 Operation

6.4.13 Maintenance

6.3.7 Measurement

6.3.8 Quality Assurance

...

6.3.2 Project

Assessment

and Control

6.4.12 Operation

...

6.3.6 Information

Management

... ...

6.4.13 Maintenance

6.3.4 Risk Mgmt.

6.3.3 Decision Management

6.3.4 Risk Management

6.3.5 Configuration Management

6.3.6 Information Managemnet

Microsoft_PowerPoint_Presentation.pptx

Failure Response Cycle

Change Accommodation Cycle

6.4.8
Integration

6.4.7
Implementation

6.4.4
Architecture Definition

6.4.5
Design Definition

6.4.1 Business
or Mission Analysis

Consensus Building Stage

Development Stage

Failure Response Stage

Agreement
description
database

Objective / Environment Change

Anomaly Detection / Failure

Accountability Achievement

Cause Analysis

Responsive Action

Failure Prevention

6.4.2 Stakeholder Needs and Requirements Definition

6.4.3

System Requirements Definition

6.1 Agreement Processes

...

6.4.9
Verification

6.4.10
Transition

6.4.11
Validation

...

Ordinary Operation Stage

Accountability Achievement Stage

6.4.12 Operation

6.4.13 Maintenance

6.3.7 Measurement

6.3.8 Quality Assurance

...

6.3.2 Project
Assessment
and Control

6.4.12 Operation

...

6.3.6 Information
Management

...

...

6.4.13 Maintenance

6.3.4 Risk Mgmt.

6.3.3 Decision Management

6.3.4 Risk Management

6.3.5 Configuration Management

6.3.6 Information Managemnet

1

image4.emf
CAAA:

check

Opera-

tion

failure

detection

change

detection

CAAA:

ready

CAAA:do

CB: do

DV:

ready

DV: do

CB:

check

CB:

done

CB:

ready

DV:

done

CAAA:

done

DV:

check

FRAA:

check

FRAA:do

Failure Response Stage (FR)

FR

-

Accountability

Achievement Stage (FRAA)

Consensus Building Stage (CB)

Development Stage (DV)

(Ordinary, Degraded,

Change-pending)

CA

-

Accountability

Achievement Stage (CAAA)

FR: do

FR:

check

start

Operation Stage

FR: ready

FR: done

FRAA:

ready

FRAA:

done

Microsoft_PowerPoint_Presentation1.pptx
CAAA:

check

Opera-
tion

failure
detection

change
detection

CAAA:

ready

CAAA:do

CB: do

DV:

ready

DV: do

CB:

check

CB:

done

CB:

ready

DV:

done

CAAA:

done

DV:

check

FRAA:

check

FRAA:do

Failure Response Stage (FR)

FR-Accountability

Achievement Stage (FRAA)

Consensus Building Stage (CB)

Development Stage (DV)

(Ordinary, Degraded,

Change-pending)

CA-Accountability

Achievement Stage (CAAA)

FR: do

FR:

check

start

Operation Stage

FR: ready

FR: done

FRAA:

ready

FRAA:

done

(Op)⟶[]⟶(Op)(Change Detected)

Token s0 split to

s1 representing operational, change-pending service

s2 representing the next version of the service.

WAIT. What if s1 failed?

Alt A. Cancel s2 – hard to express since s1 failure and s0 failure is indistinguishable without looking inside tokens.

Non-Alt B. Let s2 continue and wait at Developed until s1 failure settles

NO, when s1failure settles, what's at Operational is s1', which can't be merged with s2.

(FRed)⟶[FRAA]⟶(Op)

Cause Analysis and FRAA must be in a hurry.

⟦Op⟧(s) must include

 what [FRAA] should establish

"All previous failures of s have been accounted" ?

Not so bad, but s must carry around all the history with it.

what

(Dev)(Op)⟶[CAAA]⟶(Op)

⟦Op⟧(s) must include what [CAAA] should establish.

"All previous changes of s have been accounted" ?

again, history baggage.

1

image5.emf
IssueProgression .pptx

IssueProgression.pptx
Operation

CAAA:ready

DV:ready

CB:ready

FRAA:ready

Failure Response Stage

FR-Accountability

Achievement Stage

Consensus Building Stage

Development Stage

CA-Accountability

Achievement Stage

FR:ready

failure
detection

change
detection

FR

FRAA

CB

DV

CAAA

start

Operation Stage

 Issue: Operating service s must be monitored

(Op)⟶[]⟶(Op)(Change Detected)

Token s0 split to

s1 representing operational, change-pending service

s2 representing the next version of the service.

WAIT. What if s1 failed?

Alt A. Cancel s2 – hard to express since s1 failure and s0 failure is indistinguishable without looking inside tokens.

Non-Alt B. Let s2 continue and wait at Developed until s1 failure settles

NO, when s1failure settles, what's at Operational is s1', which can't be merged with s2.

(FRed)⟶[FRAA]⟶(Op)

Cause Analysis and FRAA must be in a hurry.

⟦Op⟧(s) must include

 what [FRAA] should establish

"All previous failures of s have been accounted" ?

Not so bad, but s must carry around all the history with it.

what

(Dev)(Op)⟶[CAAA]⟶(Op)

⟦Op⟧(s) must include what [CAAA] should establish.

"All previous changes of s have been accounted" ?

again, history baggage.

1

Operation

CAAA:ready

DV:ready

CB:ready

FRAA:ready

Failure Response Stage

FR-Accountability

Achievement Stage

Consensus Building Stage

Development Stage

CA-Accountability

Achievement Stage

FR:ready

failure
detection

change
detection

FR

FRAA

CB

DV

CAAA

start

Operation Stage

 Issue: Detected failure of s must be responded

(Op)⟶[]⟶(Op)(Change Detected)

Token s0 split to

s1 representing operational, change-pending service

s2 representing the next version of the service.

WAIT. What if s1 failed?

Alt A. Cancel s2 – hard to express since s1 failure and s0 failure is indistinguishable without looking inside tokens.

Non-Alt B. Let s2 continue and wait at Developed until s1 failure settles

NO, when s1failure settles, what's at Operational is s1', which can't be merged with s2.

(FRed)⟶[FRAA]⟶(Op)

Cause Analysis and FRAA must be in a hurry.

⟦Op⟧(s) must include

 what [FRAA] should establish

"All previous failures of s have been accounted" ?

Not so bad, but s must carry around all the history with it.

what

(Dev)(Op)⟶[CAAA]⟶(Op)

⟦Op⟧(s) must include what [CAAA] should establish.

"All previous changes of s have been accounted" ?

again, history baggage.

2

Operation

CAAA:ready

DV:ready

CB:ready

FRAA:ready

Failure Response Stage

FR-Accountability

Achievement Stage

Consensus Building Stage

Development Stage

CA-Accountability

Achievement Stage

FR:ready

failure
detection

change
detection

FR

FRAA

CB

DV

CAAA

start

Operation Stage

 Issue: Failure response on s must be accounted

(Op)⟶[]⟶(Op)(Change Detected)

Token s0 split to

s1 representing operational, change-pending service

s2 representing the next version of the service.

WAIT. What if s1 failed?

Alt A. Cancel s2 – hard to express since s1 failure and s0 failure is indistinguishable without looking inside tokens.

Non-Alt B. Let s2 continue and wait at Developed until s1 failure settles

NO, when s1failure settles, what's at Operational is s1', which can't be merged with s2.

(FRed)⟶[FRAA]⟶(Op)

Cause Analysis and FRAA must be in a hurry.

⟦Op⟧(s) must include

 what [FRAA] should establish

"All previous failures of s have been accounted" ?

Not so bad, but s must carry around all the history with it.

what

(Dev)(Op)⟶[CAAA]⟶(Op)

⟦Op⟧(s) must include what [CAAA] should establish.

"All previous changes of s have been accounted" ?

again, history baggage.

3

Operation

CAAA:ready

DV:ready

CB:ready

FRAA:ready

Failure Response Stage

FR-Accountability

Achievement Stage

Consensus Building Stage

Development Stage

CA-Accountability

Achievement Stage

FR:ready

failure
detection

change
detection

FR

FRAA

CB

DV

CAAA

start

Operation Stage

Issue1: (Degraded) s must be resumed and monitored

Issue2: Revision of s must be agreed

Issue splits to two issues

(Op)⟶[]⟶(Op)(Change Detected)

Token s0 split to

s1 representing operational, change-pending service

s2 representing the next version of the service.

WAIT. What if s1 failed?

Alt A. Cancel s2 – hard to express since s1 failure and s0 failure is indistinguishable without looking inside tokens.

Non-Alt B. Let s2 continue and wait at Developed until s1 failure settles

NO, when s1failure settles, what's at Operational is s1', which can't be merged with s2.

(FRed)⟶[FRAA]⟶(Op)

Cause Analysis and FRAA must be in a hurry.

⟦Op⟧(s) must include

 what [FRAA] should establish

"All previous failures of s have been accounted" ?

Not so bad, but s must carry around all the history with it.

what

(Dev)(Op)⟶[CAAA]⟶(Op)

⟦Op⟧(s) must include what [CAAA] should establish.

"All previous changes of s have been accounted" ?

again, history baggage.

4

Operation

CAAA:ready

DV:ready

CB:ready

FRAA:ready

Failure Response Stage

FR-Accountability

Achievement Stage

Consensus Building Stage

Development Stage

CA-Accountability

Achievement Stage

FR:ready

failure
detection

change
detection

FR

FRAA

CB

DV

CAAA

start

Operation Stage

Issue1: (Degraded) s must be monitored

Issue2’: Revised s must be developed

(Op)⟶[]⟶(Op)(Change Detected)

Token s0 split to

s1 representing operational, change-pending service

s2 representing the next version of the service.

WAIT. What if s1 failed?

Alt A. Cancel s2 – hard to express since s1 failure and s0 failure is indistinguishable without looking inside tokens.

Non-Alt B. Let s2 continue and wait at Developed until s1 failure settles

NO, when s1failure settles, what's at Operational is s1', which can't be merged with s2.

(FRed)⟶[FRAA]⟶(Op)

Cause Analysis and FRAA must be in a hurry.

⟦Op⟧(s) must include

 what [FRAA] should establish

"All previous failures of s have been accounted" ?

Not so bad, but s must carry around all the history with it.

what

(Dev)(Op)⟶[CAAA]⟶(Op)

⟦Op⟧(s) must include what [CAAA] should establish.

"All previous changes of s have been accounted" ?

again, history baggage.

5

Operation

CAAA:ready

DV:ready

CB:ready

FRAA:ready

Failure Response Stage

FR-Accountability

Achievement Stage

Consensus Building Stage

Development Stage

CA-Accountability

Achievement Stage

FR:ready

failure
detection

change
detection

FR

FRAA

CB

DV

CAAA

start

Operation Stage

Issue1: (Degraded) s must be monitored

Issue2’’: Revision of s must be accounted

(Op)⟶[]⟶(Op)(Change Detected)

Token s0 split to

s1 representing operational, change-pending service

s2 representing the next version of the service.

WAIT. What if s1 failed?

Alt A. Cancel s2 – hard to express since s1 failure and s0 failure is indistinguishable without looking inside tokens.

Non-Alt B. Let s2 continue and wait at Developed until s1 failure settles

NO, when s1failure settles, what's at Operational is s1', which can't be merged with s2.

(FRed)⟶[FRAA]⟶(Op)

Cause Analysis and FRAA must be in a hurry.

⟦Op⟧(s) must include

 what [FRAA] should establish

"All previous failures of s have been accounted" ?

Not so bad, but s must carry around all the history with it.

what

(Dev)(Op)⟶[CAAA]⟶(Op)

⟦Op⟧(s) must include what [CAAA] should establish.

"All previous changes of s have been accounted" ?

again, history baggage.

6

Operation

CAAA:ready

DV:ready

CB:ready

FRAA:ready

Failure Response Stage

FR-Accountability

Achievement Stage

Consensus Building Stage

Development Stage

CA-Accountability

Achievement Stage

FR:ready

failure
detection

change
detection

FR

FRAA

CB

DV

CAAA

start

Operation Stage

Issue: Revised s must be monitored

Two issues merge to one

(Op)⟶[]⟶(Op)(Change Detected)

Token s0 split to

s1 representing operational, change-pending service

s2 representing the next version of the service.

WAIT. What if s1 failed?

Alt A. Cancel s2 – hard to express since s1 failure and s0 failure is indistinguishable without looking inside tokens.

Non-Alt B. Let s2 continue and wait at Developed until s1 failure settles

NO, when s1failure settles, what's at Operational is s1', which can't be merged with s2.

(FRed)⟶[FRAA]⟶(Op)

Cause Analysis and FRAA must be in a hurry.

⟦Op⟧(s) must include

 what [FRAA] should establish

"All previous failures of s have been accounted" ?

Not so bad, but s must carry around all the history with it.

what

(Dev)(Op)⟶[CAAA]⟶(Op)

⟦Op⟧(s) must include what [CAAA] should establish.

"All previous changes of s have been accounted" ?

again, history baggage.

7

CAAA:

check

Operation

CAAA:

done

(Ordinary, Degraded,

Change-pending)

t

image6.emf
CAAA:

ready

DV:

ready

DV:

do

CB:

ready

DV:

done

DV:

check

1

2

3

4

5

6

7

8

9(a)

9(b)

9(c)

10(a)i

10(a)ii

10(b)i

10(b)ii

10(c)i

10(c)ii

Microsoft_PowerPoint_Presentation3.pptx
CAAA:

ready

DV:

ready

DV:

do

CB:

ready

DV:

done

DV:

check

1

2

3

4

5

6

7

8

9(a)

9(b)

9(c)

10(a)i

10(a)ii

10(b)i

10(b)ii

10(c)i

10(c)ii

(Op)⟶[]⟶(Op)(Change Detected)

Token s0 split to

s1 representing operational, change-pending service

s2 representing the next version of the service.

WAIT. What if s1 failed?

Alt A. Cancel s2 – hard to express since s1 failure and s0 failure is indistinguishable without looking inside tokens.

Non-Alt B. Let s2 continue and wait at Developed until s1 failure settles

NO, when s1failure settles, what's at Operational is s1', which can't be merged with s2.

(FRed)⟶[FRAA]⟶(Op)

Cause Analysis and FRAA must be in a hurry.

⟦Op⟧(s) must include

 what [FRAA] should establish

"All previous failures of s have been accounted" ?

Not so bad, but s must carry around all the history with it.

what

(Dev)(Op)⟶[CAAA]⟶(Op)

⟦Op⟧(s) must include what [CAAA] should establish.

"All previous changes of s have been accounted" ?

again, history baggage.

1

image1.png

