You are required to read and agree to the below before accessing a full-text version of an article in the IDE article repository.

The full-text document you are about to access is subject to national and international copyright laws. In most cases (but not necessarily all) the consequence is that personal use is allowed given that the copyright owner is duly acknowledged and respected. All other use (typically) require an explicit permission (often in writing) by the copyright owner.

For the reports in this repository we specifically note that

  • the use of articles under IEEE copyright is governed by the IEEE copyright policy (available at
  • the use of articles under ACM copyright is governed by the ACM copyright policy (available at
  • technical reports and other articles issued by Mälardalen University is free for personal use. For other use, the explicit consent of the authors is required
  • in other cases, please contact the copyright owner for detailed information

By accepting I agree to acknowledge and respect the rights of the copyright owner of the document I am about to access.

If you are in doubt, feel free to contact

Mathematical models for optimising decision support systems in the railway industry


Licentiate presentation

Start time:

2015-04-28 13:30

End time:

2015-04-28 15:30


Room Zeta, T Block, Mälardalen University, Campus Västerås

Contact person:


After the deregulation of the Swedish railway industry, train operating companies compete for and on the same infrastructure. This makes the allocation of rail capacity a most delicate problem, and for a well-functioning railway system the allocation must be fair, efficient and functional.

 The capacity allocation tasks include e.g. constructing the yearly timetable and making track allocation plans for rail yards. The state of practice is that experienced planners construct the schedules manually with little or no decision support. However, as the planners are often faced with large combinatorial problems that are notoriously hard to solve there is a great potential in implementing optimising decision support systems. The research presented in this licentiate thesis aims at developing and examining mathematical models and methods that could be part of such support systems. The thesis focuses on two planning problems in particular, and the presented methods have been developed especially for the Swedish railway system.

First of all, a model for optimising a train timetable with respect to robustness is presented. The model tries to increase the number of alternative meeting locations that can be used in a disturbed traffic situation and has an execution time of less than 5 minutes when solving the problem for the track section between Boden and Vännäs. Secondly, the problem of generating efficient classification bowl schedules for shunting yards is examined. The aim is to find the track allocation that minimises the number of required shunting movements while still respecting all operational, physical and time constraints imposed by the yard. Three optimisation models are presented, and simple planning rules are also investigated. The methods are tested on historic data from Hallsberg, the largest shunting yard in Sweden, and the results show that while the simple planning rules are not adequate for planning the classification bowl, two of the optimisation models consistently return an optimal solution within an acceptable execution time.

Docent Johanna Törnquist-Krasemann, Blekinge Institute of Technology (faculty examiner)
Docent Per Enqvist, KTH Royal Institute of Technology
Assoc. Prof. Fredrik Wallin, Mälardalen University
Reserve: Prof. Björn Lisper, Mälardalen University

Docent Markus Bohlin, SICS
Prof. Mikael Sjödin, MDH,
Dr. Martin Aronsson

Sara Gestrelius,