

Svensk sammanfattning
Området för denna avhandling är hållbar utveckling av befintliga industriella
programvarusystem. I avhandlingen presenteras en nyutvecklad metod för att
automatiskt skapa systemmodeller som bl. a. kan användas för att undersöka
konsekvenser av tänkta systemutvecklingar och -förändringar. Genom tidig
information om vilka förändringar som är genomförbara så ökar möjligheterna
till återanvändning av existerande programvara vilket kan vara ett kostnads-
effektivt alternativ till nyutveckling. För ett befintligt programvarusystem inne-
bär detta hållbar utveckling, då det till en viss brytpunkt är billigare att under-
hålla och vidareutveckla det befintliga systemet jämfört med att bygga om sys-
temet från grunden. Metoden som presenteras i avhandlingen kan användas till
att skjuta denna brytpunkt framåt i tiden och på så sätt uppnås större lönsamhet
över systemets hela livscykel.

Huvuddelen av underhålls- och vidareutvecklingskostnaden för industriella
programvarusystem beror på att systemen är så komplexa att konsekvenserna
av en planerad förändring i systemet inte går att överblicka innan förändrin-
gen är genomförd. Om förändringar inte kan utvärderas innan de är imple-
menterade leder detta i värsta fall till att en förändring som inte uppfyller sys-
temkraven implementeras, vilket kan medföra onödiga kostnader i såväl tid
som resurser. Det är alltså önskvärt att så tidigt som möjligt kunna avgöra om
en förändring är möjlig eller inte med avseende på systemkraven. Ett möjligt
sätt att avgöra detta är att undersöka abstrakta prototyper (modeller) av sys-
temet tillsammans med en tilltänkt förändring. Detta kräver dock en modell
av systemet, vilken oftast inte är tillgänglig eftersom konstruktion och uppda-
tering av modeller normalt är för kostsamt att utföra manuellt och därför inte
sker.

Metoden för automatisk modellering som presenteras i avhandlingen byg-
ger på analys av inspelningar från programvarusystem under drift. Inspel-
ningarna innehåller information om systemets funktion inklusive tidsbeteende
och metoden extraherar systemets struktur. Metoden har implementerats och
utvärderats i en fallstudie på ett styrsystem för en industriell robot och i ett
kontrollerat experiment. Experimentet har genomförts i ett ramverk som har
utvecklats för detta syfte. Tanken är att ramverket i framtiden även ska kunna
användas för att jämföra olika metoder för automatisk modellering. Genom
detta arbete visas att modellering (till viss grad) kan automatiseras och att de
genererade modellerna kan användas för att undersöka konsekvenser av sys-
temförändringar.

Till Rebecca

This is not the end. It is not even the beginning of the end. But it
is, perhaps, the end of the beginning.

(Sir Winston S. Churchill, 1942.)

Acknowledgments
How can one man owe so much to so many? Now that this journey is coming
to an end, this is a relevant question. Though, by definition, thesis writing is
in large portions a one man job, it never ceases to amaze me how much help
and support you need to do something on your own. There have been multiple
points of failure in the conception of this thesis, meaning that there are a lot of
people that I could not have done without, and I am glad that it seems as if all
has worked out in the end. Thank you all!

The first specific thank yous go to my supervisors and my financiers: The
work presented here has been skillfully supervised by Professor Hans Hansson
and Professor Sasikumar Punnekkat and carried out within the SSF projects
SAVE and PROGRESS. The great quality of the supervision and co-operation
has been instrumental in producing this thesis. I would like to thank them both
for starting to teach me the art of weighing my written words on a silver scale,
and for all the other positive effects they have had on my writing. I am not there
yet, but I hope that I have improved! I would like to thank Dr. Henrik Thane
for introducing me to debugging of real-time systems and valuable supervision
during my first three years as a Ph.D.-student, when this subject was my focus.

During the course of this work, there has been extensive co-operation with
fellow Ph.D.-student Johan Kraft (formerly Andersson), resulting in co-author-
ships on both accounts. Thank you Professor Christer Nordström for support
during my time at the department, and as an excellent teacher during my un-
dergraduate studies. A number of people have helped in reading drafts of the
thesis: Professor Hans Hansson, Professor Sasikumar Punnekkat, Dr. Thomas
Nolte, Professor Paul Pettersson, Professor Bengt Jonsson at Uppsala Univer-
sity, Dr. Insik Shin, Dr. Cristina Seceleanu, Dr. Henrik Thane, Daniel Sund-
mark, Ylva Boive, Professor Christer Nordström, Professor Mikael Nolin, and
Johan Kraft. I would also like to thank my previous co-workers Daniel Sund-
mark, Anders Pettersson, and Lars “Lalle” Albertsson (SICS). Daniel, Anders,
and I have shared the same office space for almost my entire time at the de-
partment; thanks for putting up! I have had fruitful discussions with Profes-
sor Dmitrii Silvestrov and Dr. Anatoliy Malyarenko at IMa@MDH, and Olga
Grinchtein and Therese Berg from Uppsala University. During the initial parts

viii

of my Ph.D.-studies, I was employed by the Swedish Institute of Computer
Science (SICS). Thank you all at the CNA-lab at SICS!

Regarding help with specific technicalities and specifics of the thesis, I
would like to acknowledge the fruitful co-operation we had with Stefan Bygde
concerning the comparison measure for discrete distributions (see Section 8.3),
and Johan Kraft and ABB Robotics for the case study in Chapter 7. Dr. Gus-
tav Öquist and I sketched the first concepts of the evaluation framework over a
couple of alcohol-infused malt-beverages (see Figure 8.1, Page 113). Professor
Dmitrii Silvestrov and Dr. Anatoliy Malyarenko introduced me to Classifica-
tion (see Section 9.4.6). I am also very grateful to Arkitektkopia in Västerås
for swift and professional printing of this thesis.

From the department, I generally thank you all for creating a good envi-
ronment, and especially the following: Johan Kraft, Hans Hansson, Sasiku-
mar Punnekkat, Daniel Sundmark, Anders Pettersson, Thomas Nolte, Dag Ny-
ström, Jonas Neander, Ewa Hansen, Harriet Ekwall (thanks for all the help
and the talks), Else-Maj Silén, Monica Wasell, Ylva Boive, Johan Fredriksson,
Larisa Rizvanovic, Frank Lüders, Mats Björkman, Marcus Lindgren, Marcus
Nilsson; and, though he has moved on to Germany, Professor Gerhard Fohler
who initiated this beginning which is, perhaps, now ending. Thank you all!

During this work, I have spent a lot of time at the department of course, but
since moving back to Stockholm I have found two other creative environments:
the study halls of Kungliga Biblioteket (eng. National Library of Sweden) at
Humlegården and the Ritorno Café by Vasaparken. In fact, Ritorno also de-
serves honorable mention due to their porridge breakfast, their egg & anchovy
sandwich, and last but not least their liberal views on coffee refills and use of
wall sockets.

Thank you all who have provided me with distractions that prevented me
from, like Jack Nicholson in The Shining, writing a book filled with the proverb
“All work and no play makes Joel a bad boy”: Mikael Bendtsen, Maria Engvall,
Johnnie Blom, Ruth McNamara, Fredrik Mannerstedt, Gustav Öquist, Malin
Hjalmarsson, Peter Vouri, Stefan Lundgren, Camilla Urgell, Daniel Osser, Elin
Malmberg, Jocke Ekström, Anu Lindquist, Ingvar Åkerblad, Kotten Öquist,
Livia, Malin, and Niclas Ulltin, Ann-Sofie Berg, Johan and Birgitta Kraft,
Jonas Neander, Ewa Hansen, Emanuel Sparring, and Anneke Söderquist.

I want to thank my large family: Morfar, Mamma, Pappa, Mia, David,
Monica, Bianca, Hannes, Micha, Bengt, Jeff, Laban, Marre, Mimmi, Hasse,
Kristian H, Sara, Tessan, Kimmen, Eva, Bernt, Gunnel, Mats, Emma, Mats,
Ingrid, Erik, Dagmar, Ingrid, Anita, Petra, Magnus, Lotus, Kristian A, Katta,
Emilia, Tore, Hanna. I want to thank Luis and Rosa for a lovely time in Ense-

ix

nada, it was great seeing you again in Sweden! Thank you Bengt and Jeff for
the great time you showed me and Johan in Sydney during RTCSA06!

Finally, I thank my wonderful wife and favorite travel companion Rebecca
for being who she is!

Thank you all!

Joel Gustaf Huselius
Ritorno in May, with
spring finally here.

Publications
Mr. Huselius has authored or co-authored two theses, nine peer-reviewed pa-
pers, and two technical reports. A subset of these publications are directly
related to this thesis.

Related publications
1. “Evaluating the Quality of Models Extracted from Embedded Real-Time

Software”, Joel Huselius, Johan Kraft, Hans Hansson, and Sasikumar
Punnekkat. In Proceedings of the 14th Annual IEEE International Con-
ference and Workshop on the Engineering of Computer Based Systems,
pages 577-585. IEEE Computer Society, March 2007. Presented at the
5th Workshop and Session on Model-Based Development of Computer
Based Systems.

Synopsis: We present a methodology for the empirical evaluation of dy-
namic models generated from execution recordings of real-time software.
We also present a set of synthetic benchmarks with varying architectural
styles, with which we evaluate the performance of dynamic model ex-
traction.

Contribution by Mr. Huselius: Mr. Huselius wrote the paper under
supervision of Professor Hansson and Professor Punnekkat. Mr. Kraft
contributed in discussions.

2. “Automatic Generation and Validation of Models of Legacy Software”,
Joel Huselius, Johan Andersson, Hans Hansson, and Sasikumar Pun-
nekkat. In Proceedings of the International Conference on Real-Time
Systems and Applications, pages 342-349. IEEE Computer Society, Au-
gust 2006.

Synopsis: In this paper, we present a method for automatic model val-
idation and a method for using the validation method together with our
method for automatic model generation to perform model extraction. We
present a case study on a state-of-practice industrial robotics system,
where we show the usefulness of model extraction.

Contribution by Mr. Huselius: Mr. Huselius was the main author of
the paper. Together with Professor Hansson and Professor Punnekkat,
Mr. Huselius developed the method for automatic model validation. He
then implemented the method. The case study was performed together
with Mr. Andersson.

xii

3. “Presenting: An Automated Process for Model Synthesis”, Joel Huselius,
Hans Hansson, and Sasikumar Punnekkat. MRTC report ISSN 1404-
3041 ISRN MDH-MRTC-191/2005-1-SE, Mälardalen Real-Time Re-
search Centre, Mälardalen University, October 2005.

Synopsis: The report presents technical details of an early version of
the method for automatic model validation presented in Paper 2 and a
detailed process for dynamic model extraction.

Contribution by Mr. Huselius: Mr. Huselius was the main author of
the report. Together with Professor Hansson and Professor Punnekkat,
Mr. Huselius developed the method for automatic model validation.

4. “Model Synthesis for Real-Time Systems”, Joel Huselius, Johan An-
dersson. In Proceedings of the 9th European Conference on Software
Maintenance and Re-engineering, pages 52-60. IEEE Computer Soci-
ety, March 2005.

Synopsis: In this paper, we introduce a method for dynamic model gen-
eration (here called model synthesis). We present initial experimental
results suggesting the usefulness of the method.

Contribution by Mr. Huselius: Mr. Huselius was the initiator and the
main author of the paper, he developed and implemented the method for
dynamic model generation. Mr. Andersson contributed in discussions
and performed and wrote about the experiment related in the paper.

Other publications
Apart from the above, Mr. Huselius has published a set of theses, papers and
reports with the major focus on debugging of real-time systems.

Theses

1. Joel Huselius, “Preparing for Replay”, Licentiate thesis no. 16, ISSN
1651-9256, ISBN 91-88834-15-8, Mälardalen University, November,
2003. Opponent: Professor Peter Fritzson (LiU), examiner: Professor
Mats Björkman, supervisors: Professor Hansson and Dr. Henrik Thane.

2. Mikael Bendtsen and Joel Huselius, “Issues on the MidART Middleware
for Mobile Devices on Wireless Networks”, Master thesis, Mälardalen
University, June, 2001. Supervisor and examiner: Professor Gerhard
Fohler (presently at Technische Universität Kaiserslauten).

xiii

Peer-reviewed papers

1. “Extracting Simulation Models from Complex Industrial Real-Time Sys-
tems”, Johan Andersson, Joel Huselius, Christer Norstöm, and Anders
Wall. In Proceedings of the First International Conference on Software
Engineering Advances, October 2006. Best paper award.

2. “Constant Execution Time Recording for Replay of Sporadic Real-Time
Systems”, Joel Huselius and Henrik Thane. In Proceedings of the 2nd

Workshop on Compilers and Tools for Constrained Embedded Systems,
pages 39-47, September 2004.

3. “Availability Guarantee for Deterministic Replay Starting Points in Real-
Time Systems”, Joel Huselius, Henrik Thane, and Daniel Sundmark. In
Proceedings of the 5th International Workshop on Algorithmic and Au-
tomated Debugging, pages 261-264, September 2003.

4. “Replay Debugging of Complex Real-Time Systems: Experiences from
Two Industrial Case Studies”, Daniel Sundmark, Henrik Thane, Joel
Huselius, Anders Pettersson, Roger Mellander, Ingemar Reiyer and Mat-
tias Kallvi. In Proceedings of the 5th International Workshop on Algo-
rithmic and Automated Debugging, pages 211-222, September 2003.

5. “Starting Conditions for Post-Mortem Debugging using Deterministic
Replay of Real-Time Systems”, Joel Huselius, Henrik Thane, and Daniel
Sundmark. In Proceedings of the 15th Euromicro Conference on Real-
Time Systems, pages 177-184. IEEE Computer Society, July 2003.

6. “Replay Debugging of Real-Time Systems Using Time Machines”, Hen-
rik Thane, Daniel Sundmark, Joel Huselius, and Anders Pettersson. In
Proceedings of the International Parallel and Distributed Processing Sym-
posium, pages 288-295. IEEE Computer Society, April 2003. Presented
at the First International Workshop on Parallel and Distributed Systems:
Testing and Debugging.

Technical report

1. “Debugging Parallel Systems: A State of the Art Report”, Joel Huselius.
MRTC Report ISSN 1404-3041 ISRN MDH-MRTC-63/2002-1-SE, Mäl-
ardalen Real-Time Research Centre, Mälardalen University, September
2002.

Contents

1 Introduction 1
1.1 Problem definition . 6
1.2 Research methodology . 7
1.3 Contribution . 9
1.4 Organization . 9

2 Background 11
2.1 Real-time systems . 11
2.2 Model-based development 14
2.3 Maintaining and evolving legacy systems 16
2.4 Recording the execution of real-time systems 19
2.5 Testing . 30
2.6 Discussion . 33

3 Related work 35
3.1 A classification of automatic modeling techniques 35
3.2 Applying the classification 40
3.3 Discussion . 50

4 Recording-based automatic modeling 51
4.1 Notation . 51
4.2 System model . 51
4.3 Adding probes to the system model 54
4.4 Testing the probed system 55
4.5 Background: ART-ML . 56
4.6 A process for automatic modeling 58
4.7 Example . 66

xv

xvi Contents

4.8 Discussion . 67

5 Model generation 69
5.1 Synopsis . 69
5.2 Extraction of task executions (jobs) from recordings 72
5.3 Generation of a tree-representation of the task from the jobs . 80
5.4 Generation of ART-ML code from the tree-representation . . . 83
5.5 Discussion . 88

6 Model validation 91
6.1 Validating the selection of recordings 92
6.2 Allowing leeway as a precision parameter 93
6.3 Obtaining the automata . 94
6.4 Stopping criteria . 99
6.5 Analysis . 101
6.6 Discussion . 102

7 Case study: Automatic modeling of an industrial robot 103
7.1 System overview and limitation 103
7.2 Information extraction . 104
7.3 Model extraction . 105
7.4 Results . 106
7.5 Discussion . 108

8 Quality assessment 111
8.1 Assessing the generality and stability of automatic modeling . 112
8.2 Response time . 121
8.3 Comparison of sampled time distributions 122
8.4 Evaluation . 129
8.5 Discussion . 137

9 Conclusions 141
9.1 Results . 141
9.2 Faithfulness of the generated models 144
9.3 Reproducibility . 147
9.4 Future work . 147

Contents xvii

A Algorithms for model generation 153
A.1 Extraction of task executions (jobs) from recordings 154
A.2 Generation of a tree-representation of the task from the jobs . 157
A.3 Generation of ART-ML code from the tree-representation . . . 158
A.4 Producing models for a set of tasks 159

B Algorithms for model validation 161
B.1 Architecture for automata translation 161
B.2 General definitions and functions 163
B.3 The modset-automaton transformation functions and automa-

ton definition . 165
B.4 The recseq-automaton transformation functions and automaton

definition . 167

Bibliography 172

Chapter 1

Introduction

According to the IEEE standard 610 [42], an abstraction is:

“A view of an object that focuses on the information relevant to a
particular purpose and ignores the remainder of the information.”

In other words, for a given purpose, abstraction reduces the available in-
formation to the relevant information. Abstractions are made and used all the
time, as they are fundamental for efficient communication and cognition. In re-
ality, it is often difficult to choose the most appropriate abstraction for a given
situation. If the abstraction is too high, the value of the information is reduced.
If the abstraction is too low, processing the information is tedious. Finding
the most suitable abstraction is a balance between reducing the amount of in-
formation and preserving potentially relevant information. Unfortunately, the
relevance of the information is not always clear at the time when the abstraction
is made.

Furthermore, the process of making the abstraction can introduce errors,
e.g., by failing to maintain the essence of all relevant information or by intro-
ducing erroneous interpretations. This illustrates the dangers of abstraction; if
relevant information is disregarded, decisions based on the abstraction may be
erroneous.

As an example of abstraction, as humans, we often require abstraction as
a tool to manage the complex information flow that the implementation of a
system represents. The same problem is seen when computers are used to,
e.g., validate a design; the validation tools need more abstract views of the real
implementation in order to avoid computational complexity in terms of state

1

2 Chapter 1. Introduction

space explosion. In computer science, models can provide an abstraction of
the often complex inner workings of computer systems [15]. The model, while
being significantly less complicated than the actual system, should still be sim-
ilar to the system; finding the appropriate balance to meet this requirement is a
big issue in modeling.

In order to achieve the right level of abstraction, traditionally, modeling is
an art rather than an algorithmic process; the wit and cunningness of the model
designer is imperative to the accuracy, efficiency, and usefulness of the model.
This traditional view is challenged by the research presented in this thesis in
the sense that we are providing processes and methods that assist in modeling.
Our long term goal is to eliminate the need for human expert interaction.

In our work, we target the maintenance of legacy real-time software by
automatic modeling. In the following, we explain these terms informally:

In a real-time system, temporal and functional correctness are both impor-
tant. A real-time system consists of a set of tasks1 that may execute concur-
rently under the control of a scheduling algorithm. Each task is either triggered
as a function of time or as a function of occurring events. At each trigger-
ing signal, the task spawns a job that executes for some time, possibly reading
inputs, performing computations, or writing outputs. Jobs may also initiate
events that trigger the execution of other tasks (e.g., by sending a message on a
queue for inter-process communication). A scheduling algorithm is deployed
to resolve the scheduling problem that occurs when more than one job is ready
to execute at the same time. In this thesis, we will assume a fixed priority
scheduling algorithm [68], but it is possible to extend the work also for other
scheduling algorithms.

By the term models, we mean models of the whole system, which depict its
behavior. Every task in the system is modeled according to its time consump-
tion and environment interactions. Modeling denotes the activity of obtaining
a simplified representation of the system to the extent that the produced model
is of value to the engineers working on the system. Automatic modeling may
require a set of input parameters, but apart from that it should be free from user
interaction.

Maintenance is defined by the IEEE standard 610 [42] as:

“. . . modifying a software system or component after delivery to
correct faults, improve performance or other attributes, or to adapt
the product to a changed environment.”

1A task is, basically, a thread of execution.

3

In the context of this thesis, a legacy system has all or some of the follow-
ing properties: it consists of millions of lines of code, it is maintained by a
large team of engineers from several generations,2 it contains code that orig-
inated several years ago, and it is expected to function for many more years
to come. Real examples of these systems can easily be found within many
domains such as automation, automotive, and telecom industries. In such sys-
tems, a large effort must be spent on keeping complexity at acceptable levels.
If the complexity is allowed to increase without bound, the life expectancy of
these systems will be reduced or/and costs will dramatically increase.

Maintaining legacy real-time software is a multi-faceted problem: In or-
der to keep a long life expectancy, it is required that the software is carefully
engineered to improve long term software quality and reduce the need for re-
engineering. However, demands on short time-to-market limit the time budget
available for careful engineering, and the complexity and lack of documenta-
tion/models of the software make efficient engineering difficult. Many prod-
ucts require a highly versatile software that can serve many purposes (e.g.,
product line architectures [116] or an industrial robot with multiple hardware
configurations and operating environments), which increases complexity.

In his seventh law of software evolution [61, 62], Lehman proclaims that
for an E-type program:3

“E-type programs will be perceived as of declining quality unless
rigorously maintained and adapted to changing operational envi-
ronment.”

From this, it is evident that software maintenance is needed. In an uncon-
trolled quality decline software is made obsolete prematurely, which leads to
even larger costs than required for maintenance. Lehman’s second law (still
concerning E-type systems) states that:

“As a program is evolved its complexity increases unless work is
done to maintain or reduce it.”

Not only the software quality, but also the software complexity is jeopar-
dized by poor maintenance. Intuitively, a less complex system is less difficult
to maintain, and a more complex system is more difficult to maintain (this

2Several generations: The set of engineers that have contributed to the system is a superset of
the set of engineers currently working on the system.

3E-type program: a program that solves a problem or implements a computer application in the
real world, all industrial software applications are within this category.

4 Chapter 1. Introduction

has also been shown in [24]). Thus, maintenance should be a continuous ef-
fort throughout the life cycle of the system, and affordable efforts aimed to
maintain the complexity within acceptable bounds will limit the cost of devel-
opment. In this thesis, we assume that automatic modeling is affordable and
that modeling is good for maintaining the level of complexity in the system.

We have good reasons for these two assumptions: As an automatic mod-
eling process requires little input and guidance from the user, it is likely to be
affordable, provided that the product (i.e., the model) is usable and that the
computational overhead is low. Further, prototyping system modifications on
models is a common technique used in many fields, including software engi-
neering.

The technique has been presented as model-based impact analysis [4, 64,
116], where models are used to improve system quality. In model-based impact
analysis, proposed changes are prototyped on a model, prior to implementation
in the system. The idea is to allow early discovery of design flaws.

Late discovery of design flaws may induce large costs on software devel-
opment, as correcting the flaw may require extensive re-design. Due to short
term cost interests, late discovery could lead to the situation of that the imple-
mentation is being patched [42] rather than properly redesigned (i.e., design
problems introduced early in the life cycle are not completely removed and
remedied, but rather fixed via some “work around”). These patches will lead
to an increase in the complexity of the implementation.

Despite the apparent benefits of using models, it seems that the industry is
yet to be convinced [20]. In fact, out of all the industries that we have encoun-
tered during our work, none has used exhaustive modeling of the entire system.
In our contacts with industry, we have felt that, part of the reason for this, is
that modeling in general, and maintaining models in particular, is viewed as
being a difficult manual task without clearly quantifiable benefits. We can only
assume that the race for a short time-to-market yields an environment where
visible short term goals are given undue importance over the long term objec-
tives such as building and maintaining a reliable model of the system, probably
due to the perceived fuzziness of the latter.

We list six identified problems with manual modeling:

1. High learning threshold. In order to be a good model designer, gradu-
ate level courses combined with extensive experience are often required.
Many modeling languages have their very own tips and tricks that allow
the user to get the most out of them. It is generally not sufficient to be
able to use the language, one should actually master it in order to create

5

good and efficient models [14].

2. Model validity. A basic trade-off of modeling is that the model is sup-
posed to look like the real implementation, but the motivation for using a
model is to provide an abstraction. Thus, the model should be the same
as the system, but at the same time different. This contradiction makes
model validity subjective and difficult as there is no clear specification
or measurement of the amount of difference.

3. Model debugging. Subtle errors in model design frequently have large
implications on the accuracy of the model, but model-debugging tools
are often crude or even non-existing.

4. System knowledge. Apart from knowledge of how to use the modeling
language, an extensive knowledge of the system is also required. When
a large and dynamic workforce is cooperating to construct and maintain
a system, a consistent system view may be difficult to obtain.

5. Continuous evolution. The rapid evolution of systems compared to the
slow and tedious work of modeling threatens to invalidate models be-
fore they are completed. Models that do not accurately describe the cur-
rent version of the real implementation are not useful, but the process of
implementing and maintaining the system cannot be halted to allow an
accurate model to be constructed.

6. Multiple modeling languages. Many projects require the use of a va-
riety of modeling languages. Among the many activities and processes
that make use of models, we find design, verification, maintenance, etc.
As these uses have differing requirements and call for different abstrac-
tions, there is a large variety of modeling languages available. As each
language provides its own set of abstractions, and each use requires its
own set of abstractions, the use of several modeling languages within the
same project may be needed. Thus, the same organization often needs
competence in a number of modeling disciplines.

We believe that tools that significantly ease modeling with respect to these
problems will make the industry more inclined to adopt methods built on model-
based analysis. In order to prepare for model-based analysis, tools are needed
to make it possible to construct and maintain whole system models for legacy
systems, where models are currently missing. These tools should be easy to

6 Chapter 1. Introduction

use, allow model validation and debugging, and they should require little sys-
tem knowledge. A broad range of tools is needed to support different modeling
paradigms and languages. Finally, these tools should work fast and effectively
so that models are kept up to date at the same pace with software evolution. In
support of this vision, we have developed a method for automatic modeling, or
model extraction, which uses recordings from executions of a legacy real-time
system to generate and validate a model of the system.

At this stage, it is important to keep in mind that model extraction cannot be
effectively performed in an arbitrary situation; the process lacks the ingenuity
of an experienced engineer, and is only capable of reflecting a version of the
reality that has already been conceived by engineers. Under this restriction
however, model extraction can provide efficient aid in activities of development
and maintenance.

We argue that model extraction can provide accurate up-to-date models,
fast, without posing exotic requirements. This lets modeling take a more active
place in the system development and maintenance. Further, it provides a quick
way to model systems that have been constructed by a large and dynamic work-
force in which no one is capable of maintaining a complete understanding of
the entire system. We believe that model extraction will lead to reduced costs
and to higher quality systems with a longer life expectancy.

Having our background in developing tools for debugging real-time sys-
tems by means of record/replay techniques [39, 40, 41, 104, 110], we are expe-
rienced in using recordings for extracting real-time information from existing
systems during runtime. As we got acquainted with the problems of model-
ing, it was just natural to attempt an evaluation of the effectiveness of these
techniques also in automatic modeling.

1.1 Problem definition

Assuming that the scenario described above holds, industry has a need for tools
that support modeling of legacy real-time software at low cost and low over-
head on the engineers and on the system.

This thesis investigates the possibility of supporting modeling using only
recordings as input. We are doing this by developing methods that automate
whole system modeling of legacy real-time software based on recordings. We
have produced methods that are able to deduce models that can mimic record-
ings.

Generally, in real-time system research, the worst-case is the case that mat-

1.2 Research methodology 7

ters. However, one of the central issues of using recordings is the uncertainty of
interpreting the results. Without performing a thorough analysis, an observer
cannot determine if an execution has triggered the worst-case for the imple-
mentation. Thus, by necessity, the methods that we develop have a different
aim. We aim for the models to reflect the general behavior of the system. Not
the single most demanding instance, but some of the general-case behaviors
that may occur. In addition, recordings are made based on a set of assump-
tions and a set of test-cases, and the act of making a recording is intrusive by
nature. In return, basing models on recordings allows performance evaluation
with respect to the general behavior of the system and implementation proto-
typing with respect to the performance of the system. These possibilities are
not available to methods restricted to the worst-case behavior.

Assuming that a candidate for such an average-case method of automatic
modeling is developed, this leads to the following main problems studied in
this thesis:

1. Can the validity and accuracy of extracted models be quantified?

2. Are the overheads of model extraction acceptable?

3. Can the method of model extraction be evaluated?

At the end of this thesis, we will revisit these problems and assess whether
they have been solved or not.

1.2 Research methodology
Research in the field of computer science can be performed within three para-
digms [117]:

The mathematical method Here, abstraction of phenomena (e.g. computers,
programming languages, algorithms), and reasoning about this abstrac-
tion are used to obtain information about the phenomena.

For example, in deductive reasoning, a set of assumed premises are log-
ically (i.e., mathematically) proven to lead to a conclusion. One could
say that deductive reasoning is a proof of the fact that a cause leads to
an effect. The conclusion (or the effect) is then shown to be true iff4 the
premises (or the cause) are valid.

4iff: If and only if.

8 Chapter 1. Introduction

The empirical method Here, knowledge projected on a hypothesis is derived
from experiments and other methods of data collection.

For example, experiments can show that a set of independent variables
are controlling a set of dependent variables. The experiments should be
controlled, i.e., they should be constructed such that there are no con-
founding variables (i.e., variables that should be in the set of indepen-
dent variables, but are not included there). Also, it should be clear that
the dependent variables are valid measures of the phenomenon targeted
by the hypothesis. Finally, external validity, that several experiments in-
dicate the same result, should be established. This form of triangulation
is made to increase the confidence in the result.

The engineering method Here, the efficient fulfillment of a specific set of
specifications and requirements is in focus. This is achieved by the con-
ception of, e.g., a device, an algorithm, or a method. Essential in the en-
gineering method is to by experiment or formal proof provide evidence
of the fulfillment of the requirements.

Our motivation for developing the methods and performing the research
presented presented in this thesis comes from the desires expressed by indus-
trial partners, as well as observations stipulated in literature, which lead to the
formulation of the problem definition as presented above. In this work, we
have used all of the above methods to solve our set of problems:

Using the engineering method, we have developed a method for automatic
modeling, and implemented a tool suite that supports this method and the eval-
uation thereof. Loosely speaking, the requirements were that a probabilistic
model should be generated and validated from recorded execution traces. The
method of validation for the generated model is based on mathematical meth-
ods applied on model checking timed automata [3]. Also, mathematical meth-
ods were used to formulate a comparison measure for quantifying the differ-
ence between two entities, which can be systems or models.

As for the empirical method, the tool suite has been evaluated in a state of
practice industrial system, as well as in a controlled experimental study.

Intermediate results of this work have been disseminated and peer-reviewed
by publications and presentations at international conferences, but also infor-
mal presentation for peers and industry.

1.3 Contribution 9

1.3 Contribution
The following are the main contributions of the thesis:

• A method that uses recordings of real-time systems to extract probabilis-
tic models of that system.

• A method to analyze the validity of the extracted model.

• Using these two results as the major components, we have developed
a method of model extraction for the automatic modeling of real-time
systems.

• The model extraction method has been implemented and tested in an
industrial case-study.

• A classification of methods for automatic modeling.

• A measure for comparing two sampled time distributions as a means for
comparing model against system behavior of real-time systems, includ-
ing an algorithm that implements the comparison.

• A testbed for experimental evaluation of methods for automatic model-
ing. The testbed uses the method of comparing sampled time distribu-
tions to assess the accuracy of models.

• A controlled experiment using the introduced testbed. The collected ev-
idence, including the above case study, provides evidence of the useful-
ness of the proposed method of model extraction.

In a wider perspective, the work presented in this thesis establishes the
feasibility and supports the introduction of model-based analysis of legacy sys-
tems in industry. Model-based analysis aims to limit the uncontrolled complex-
ity increase of legacy systems, a perspective which is generally overlooked in
contemporary work. This thesis aims to highlight and address these important
issues.

1.4 Organization
The remainder of this thesis is organized as follows:

10 Chapter 1. Introduction

Chapter 2 relates background and discusses topics of importance for the com-
ing chapters. We discuss issues and problems related to recording, test-
ing, maintenance, and model based development.

Chapter 3 introduces a simple classification of methods for automatic model-
ing and presents known work according to the classification.

Chapter 4 introduces the method for model extraction based on chapters 5
and 6. The model extraction is targeting online scheduled real-time sys-
tems, and is based on input from recordings of the executing system.

Chapter 5 presents details on the generation of probabilistic models based on
recordings of a legacy real-time system. The output of the method is
one model per task in the modeled system, the models use probabilistic
constructs to specify non-deterministic relations (i.e., where the available
information is insufficient for a complete model).

Chapter 6 presents details on the validation of generated probabilistic models
based on a new set of recordings from the system. The output from the
method is an assesment of the validity of the model; validation is answer-
ing the question: “Based on the available knowledge, is the probability
that the model is representative of the system within a specified bound?”

Chapter 7 presents an industrial case study on the applicability of model ex-
traction performed at ABB Robotics.

Chapter 8 presents a testbed for empirical evaluation of methods for auto-
matic modeling, and results from the application of the testbed on model
extraction. The testbed requires a comparison measure that can quantify
the level of either likeness or difference between a model and a system.
We introduce such a comparison measure based on the comparison of
distributions of response times.

Chapter 9 concludes the thesis and presents future work.

Chapter 2

Background

As written text is communicated, it is important that the reader and the writer
share understanding of the basic terminology of the material. Popularly: the
writer should be on the same page as his/her readers. Due to the simplex na-
ture of written communication, ensuring such understanding is difficult. This
chapter is dedicated to relating the author’s view on some fundamentals of the
thesis. In the process, a multitude of references are made to related work.

For the understanding of the remaining chapters, the sections concerning
real-time systems and recordings are probably the most important. For the
motivation of the thesis, the section on maintenance is essential. The section
on model based development discusses the long term goal for model extraction
techniques.

2.1 Real-time systems

Common for all computer systems is that they are expected by their users to
provide functionally correct results. For example, when considering a train
about to leave from a station, it would probably be considered as functionally
correct if the train departs from the station. If the train sets to sea, similarly to
a ship, the result would probably be considered as functionally incorrect.

In real-time systems [101], results are required to be functionally and tem-
porally correct. To exemplify, a temporally correct result is that a train departs
on time from the platform. A temporally incorrect result is that the train departs
from the platform, but the departure is too early or too late. As such behavior

11

12 Chapter 2. Background

Figure 2.1: Task properties periodicity (T) and response time (RT) for one job
of task A.

is not consistent with our expectations, that would be considered as temporally
incorrect.

In computer science, real-time theories are typically applied to systems that
interact with an environment governed by the laws of physics. Typical domains
of application are telecom, aerospace, automotive, and automation-industries.

The workloads of real-time systems often consists of multiple threads of
control that execute on one or more processing units. There are many names for
the threads of control, whereas in this thesis we shall use the name task, which
is the term generally used in the context of real-time systems. In other contexts,
including some of our sources, the threads of control are called processes. In
many cases, these terms are more or less interchangeable, although real-time
tasks normally have less complex control-flows in the source code than many
non-real-time systems, but they have more complex non-functional constraints.

Many real-time systems are of a periodic nature, for example the sample-
actuate loops in control systems, where a task is to be performed with a certain
frequency. Note that, two tasks in the same system may very well have different
frequencies, and may be phase-shifted to each other.

Tasks may have a periodicity at which it emits jobs. A job is the execu-
tion of one instance of the code of the task. Non-functional constraints and
attributes of tasks are often expressed using deadlines, periodicity, response
times, overhead, etc. (see Figure 2.1).

The deadline of a task is the latest time at which the job of the task is re-
quired to complete. Should a job fail to complete before its specified deadline,
its contribution to the computation cannot be considered usable. The sever-

2.1 Real-time systems 13

ity of such a failure is grave for safety-critical hard real-time systems,1 where
functional and temporal correctness are equally important; complementary, soft
real-time systems,2 are designed to allow some amount of deadline-misses; i.e.,
functional correctness is more important than temporal correctness. The divi-
sion of real-time systems into hard and soft is often insufficient for describing
a given system; but it provides a framework that can be used for informal com-
munication. In this thesis, we focus on a category of real-time systems that are
hard in the respect that deadline misses may lead to failure of the system, but
the system is not safety-critical, i.e., consequences of failures are not severe
enough to motivate the rigorous development practice motivated in develop-
ment of safety-critical hard real-time systems. An example of such a real-time
system is provided in Chapter 7, where we present a case study performed on
an industrial robot controller; in that system, a deadline miss may lead to a fail-
ure, and a failure can lead to significant economical loss in terms of reduced
production rate, but the system is too complex to allow, e.g., traditional real-
time schedulability analysis. Therefore, as a trade-off solution, the system is
built using a real-time operating system, and instead of schedulability analysis,
extensive testing and quality control is deployed to increase the confidence in
the system.

We label the time measured from the point in time where the job is triggered
(the release time) until the time when execution of a job is completed, as the
response time of the job. To calculate the available resources for a task, the
overheads of operating systems, communication protocols, etc., are important
to account for as they interfere with the execution of the task.

Often, tasks have precedence orders that constitute dependency relations
between events (e.g., in order to travel by train one must board before depart-
ing, thus, boarding has precedence over departure when traveling by train).
Jitter, e.g., noice in the periodicity of task instances, is a consequence of the
cooperative use of resources between tasks and properties of the environment.
For example, as the processing power must be shared, and different tasks may
have different periodicities, scheduling of tasks will differ between jobs.

Because of these complex constraints that may characterize the workload, it
is a non-trivial task to schedule such systems. Real-time theorization has shown
how various types of workloads could be scheduled to ensure off-line assertion
of the schedulability of the specific workload. A scheduling algorithm operates
using the available knowledge of the system. Depending on the composition
and the complexity of the workloads, different scheduling algorithms can be

1Hard real-time systems: Traditionally, rockets, airplanes, etc.
2Soft real-time systems: Traditionally, multimedia streaming, toys, etc.

14 Chapter 2. Background

deployed to solve the scheduling problem. There are two fundamentally dif-
ferent approaches to solve the scheduling of a real-time system: by offline [54]
or by online [68] scheduling. In the former, all issues are resolved offline by
the creation of schedules whose fulfillment of the system requirements can be
proved. In the latter, tasks are assigned priorities or other properties that are
used as input to the scheduler in deciding online which task to execute at a
given time.

To exemplify the new terminology, we use the human diurnal rhythm: the
human real-time task of sleeping should emit a new job each night. Hence,
the periodicity of sleeping is approximately 24 hours, the execution time of
sleeping is perhaps averaging on eight hours, even if the worst-case execution
time may be much longer. An alarm clock can be set to indicate the deadline
of the task, a deadline miss would be oversleeping. Further, many people have
arrival-jitter in their sleeping task as they do not fall asleep at the same time
every night. The release time of the task could describe the activity of trying
to fall asleep. Waking up in the middle of the night, having to go to the privy,
would be a context-switch to another task. This multi-tasking will obviously
increase overhead – it takes time to fall asleep again once you have awoken.

2.2 Model-based development

Model-based development (a.k.a. model-based engineering) aims to improve
the efficiency and the quality of the software development process by making it
more formal and more mechanical. As opposed to traditional code-oriented de-
velopment, where the source code is the primary view of the developer, models
are the primary view of the development and maintenance process [50]. They
are used as media to formalize, convey, develop, and preserve the properties
and requirements of the system. After that the model is completed and val-
idated, the intention is that the push of a button (or the technical equivalent)
should generate the application code. The hope is also that the extensive use of
models that describe the functional and temporal properties of the implemen-
tation will facilitate reuse as well as automated validation and verification.

In order to use models as the primary view throughout the life cycle of
the system and its parts, the models must present a uniform view to avoid di-
vergence between models [94]. However, different activities in development
and maintenance are focused on different aspects of the system [107]. As de-
fined in Chapter 1, modeling is an abstraction for a given purpose, and different
purposes have different requirements regarding what information is important

2.2 Model-based development 15

and what can be abstracted. Thus, the modeling framework should allow for
separation of concerns.

2.2.1 Introducing model-based development in maintenance
of legacy systems

Research in model-based development focus on domain-specific modeling,
meta-modeling for architectural descriptions, code generation from models,
and analytic methods for supporting the development and maintenance of mod-
els [44]. Though much research has been conducted in these areas, it is proba-
bly safe to say that model-based development is not yet ready to make its mark
in industry on a broad front.

Systems maintained in industry are generally code-oriented, and as Little-
john et al. [67] point out: wholesale redevelopment is cost prohibitive, and
prior investments must be preserved. In order to take model-based develop-
ment into industry, reverse engineering methods must be developed that either
atomically transform code into models in a revolutionary manner, or find other
means of making a more gradual or evolutionary shift of development para-
digm. In code-oriented development, the existing code-base is a valuable asset
of the company. It is the result of enormous investments and has taken many
man-years using other development paradigms to perfect. Any technique for
introducing model-based development must do so with such detail and quality
that the existing code-base can be discarded. This poses very high demands
on the techniques for introducing model-based development. Contrary to intu-
ition, it is likely that the more gradual shift towards model-based development
is associated with a higher stake. Due to the accumulated work performed to
make the shift, and the reduction in work efficiency during the shift, the stake
of a failed paradigm shift is higher than in the case of the “big-bang”. The risk
however, is likely to be lower with a gradual approach that has the ability to
adopt dynamically to issues that arise during the paradigm shift. Most sources
seem to agree that a gradual paradigm shift is preferable [47, 67].

Thus, the conclusion is that model-based engineering provides features and
capabilities needed in industry, but more research is needed to facilitate its
introduction. The model-based technologies must mature, and introduction
of model-based engineering must be directed. Nevertheless, this is probably
where the world of embedded and real-time system development is going. As
the area matures, engineering principles will evolve much like they have done
in structural and civil engineering etc. In the beginning, we were building
houses and bridges without blueprint – today, when adding a room or story

16 Chapter 2. Background

to a completed house, construction is always preceded by the modification of
blueprints. Model-based engineering represents one such engineering princi-
ple, time and economics will probably conquer short sightedness and the lazy
nature of humans, and then we shall finally witness the much awaited demise
of code-oriented development.

2.3 Maintaining and evolving legacy systems

Industries around the world are continuously evolving, developing, improving,
maintaining, and adopting their respective systems. From an industry point of
view, this is a major issue (and has been for some time [1, 65, 120]). However,
from academia, little attention has been given to these matters [1]. For example,
according to their web page, the IEEE organized 759 conferences in 2005. Six
(6) out of these had a clear focus on maintenance.3 To put this in perspective,
twenty nine (29) of the conferences had the word “Wireless” in their title.

2.3.1 Reverse engineering

Reverse engineering [16] is the process of creating an abstract representation
of a legacy system, its components and their interrelationships. The objective
of reverse engineering is to gain an understanding of the software in order to
perform maintenance (see Section 1) or re-engineering activities. As the work-
force that maintains the legacy system is changing over time, it is likely that
the engineers that originally constructed a given part of the system are detached
from the development when the time comes to restructure or re-engineer it. In
fact, even if the original engineers are still involved, they are likely to have
forgotten many of the intricacies of the system and its implementation. To ob-
tain an understanding of the system and its construction, reverse engineering
must then precede any effort to restructure or re-engineer a system. Similarly
to the study of any arbitrary topic, it cannot be expected that reverse engineer-
ing (i.e. the study of the legacy system) can be automated. Spending time with
the system, and exploring its structure and implementation is a time consuming
process for which there is no direct substitution. However, we can construct

3(1.) The Working Conference on Reverse Engineering, (2.) the Annual Reliability and Main-
tainability Symposium - Product Quality & Integrity, (3.) the 9th European Conference on Soft-
ware Maintenance and Reengineering, (4.) the IEEE International Conference on Software Main-
tenance, (5.) the IEEE Workshop on Source Code Analysis and Manipulation, and (6.) the IEEE
13th Workshop on Program Comprehension.

2.3 Maintaining and evolving legacy systems 17

tools and methods to ease the process and to make it more predictable. For ex-
ample, the process can be structured to prevent ad hoc browsing and allowing
accounting and planning of the time required to perform the activity, and many
of the tedious tasks of collecting information can be automated to save time
and energy as well as to avoid misunderstanding.

There are contradictory views on the terminology. For example, Richner
and Ducasse [88] differentiate between reverse engineering based on static in-
formation (e.g. code), and program understanding based on dynamic informa-
tion (e.g. recordings). Our view however, as should be clear from the paragraph
above, is that the intuitive meaning of program understanding is rather a subset
of reverse engineering. The difference is that program understanding is based
on the code as input [84], while reverse engineering can be applied to any form
of system representation [16].

In [15], Byrne defines the concepts of refinement, abstraction, and alter-
ation. His main contribution is a conceptual framework that allows discussion
about software re-engineering [16], which has reverse engineering, or abstrac-
tion, as a key activity. Byrne starts by introducing a layered, refining, model
of software development consisting of four abstract stages: Firstly, at the con-
ceptual stage, general terms describe the system. Second, in the requirements
stage, these general terms are transformed into requirements for the system.
Third, in the design stage, requirements are mapped to architecture and data-
structures. Fourth, in the implementation stage, the system is realized. The in-
formation content and the sheer amount of information increases for each step.
Based on these four stages, Byrne formulates a set of properties for software
development. For example, information in one stage influences information in
lower stages, but never in higher stages. Also, characteristics of the system
are created at a particular abstraction stage, and are then propagated to lower
stages. Using this abstract model of software development, he then introduces
the refinement, abstraction, and alteration concepts to describe how the flow of
information can be reversed.

In Byrnes model, refinement is a process of replacing existing system in-
formation with more detailed information. Abstraction is a process of succes-
sively replacing existing system information with more abstract information,
but also to emphasize certain system characteristics by suppressing others. This
follows by the principle of creation of characteristics related in the above para-
graph. Finally, alteration is an optional process that allow the introduction
of changes within one stage. Alteration is optional, and could be seen as a
shortcut for abstracting to a higher stage and then refining down to the original
stage. Based on these three concepts, Byrne describes a set of strategies for

18 Chapter 2. Background

re-engineering.

2.3.2 Model-based impact analysis

One important motivation for our work is that system designers can use models
to prototype future design propositions [4, 6, 12, 64, 90, 100] in order to detect
side effects (see Figure 2.2). First (not shown in the figure) a valid model of
the existing system is generated. Second, a design proposition is constructed.
Third, the generated model is manually modified to reflect the proposed mod-
ifications. Fourth, the properties of the modified model are analyzed. If the
analysis show no evidence of problems with the design proposition (i.e. re-
quirement violations), the design is deemed feasible to implement. Otherwise,
a new design proposition is formed, and the process can start over. We label
this model-based impact analysis [4], the purpose of which is to avoid bad de-
signs without actually implementing them in the system. The assumption is
that it is significantly easier to implement the change in the model than in the
system. As model-based impact analysis can reduce the time spent and wasted
on bad designs, early identification and rejection of infeasible design alterna-
tives has the potential of improving quality and substantially reducing the cost
of maintenance (i.e. the adaption of existing software to make it conform to
changing requirements).

Model
New
model System

New
system

6 6 ? 6

6

?

m- Design
update

- Update
model

- Analyze
model

6
PPP

���
���

PPPGood
model?

No Yes

?

- Impl.
design

Figure 2.2: Model-based impact analysis.

We can identify the following set of properties that must be fulfilled in
order to allow model-based impact analysis:

• the model must be a temporal and functional abstraction of the system,

• changing the model must be easier than changing the system,

2.4 Recording the execution of real-time systems 19

• it must be possible to analyze whether the behavior of the changed model
violates requirements posed on the system, and

• the changed model must be valid with respect to the changed system.

The last point above stresses an important issue: For correct model-based
impact analysis, apart from that the original model must be valid with respect
to the system, it is essential that the changed model is valid with respect to
the changed system. Changing the model should mimic changing the system.
Otherwise, the analysis of the changed model will have no bearing on the fea-
sibility to introduce the proposed change in the system. Of course, since the
objective of model-based impact analysis is to only implement an abstraction
of proposed changes in the system, it may seem difficult to assess the general
validity of the changed model with respect to the system; as the model should
be an abstraction, one of the key properties of the model is that it should not be
equivalent to the system.

We can formulate our requirement loosely: Under perfect conditions, a fea-
sible change to the system is never deemed infeasible by model-based impact
analysis of the model, and an infeasible change to the system is never deemed
feasible by model-based impact analysis of the model.

In order to meet this requirement to as high degree as possible, we should
formulate a set of properties with respect to which we intend to analyze the
changed model. In the case of real-time systems, response times might seem
like the natural choice. We should then strive to build confidence in that the
response times of the changed model will correspond to those of the changed
system. We do this by ensuring that our modeling capabilities are sound in
the sense that the model is stable under change and that the modeling of the
change is realistic. The evaluation framework presented in Chapter 8 can be
used to assess the first of these two parts; that the model is stable under change.
The second part is essentially left to the engineer performing the model-based
impact analysis.

2.4 Recording the execution of real-time systems
Concerning recording, the following terminology is assumed:

By inserting probes into the system, we can monitor the events that occur
during execution. The output of monitoring can be logged to facilitate offline
analysis of the execution. Monitoring and logging are grouped into the activ-
ity recording. Our method for model extraction is dependent on recording to

20 Chapter 2. Background

produce input to the process, but as recording costs resources, the amount of
recording should be minimized.

Apart from being a part of dynamic model extraction as defined in this
thesis, recording can also be part of tools for debugging [35], performance
analysis, testing [109] etc.

2.4.1 Approaches to monitoring
In this section, we will discuss and compare three different basic approaches to
monitoring: software, hardware, and hybrid monitoring.

Hardware

Hardware monitoring mechanisms are tailored devices that need to be adopted
to the target system, which suggests that this is a rather expensive approach.
On the other hand, they do not have to intrude at all on the device functionality
of the monitored system [111].

Basic approaches to hardware monitoring include bus snooping, i.e. eaves-
dropping on information sent over buses or networks. The quantities of mes-
sages, and their size, result in large quantities of data that must be handled.
Another problem [111] with hardware implementations is that they often look
at very low level information. Hence, the data that is visible has low infor-
mation content relative to the program execution. That is to say that a single
bus message can not say much about the execution of a program, whereas (for
example) the name of the current state can say a lot about the traversing of a
state-machine. It is then up to off-line methods to interpret the collected in-
formation that is output from the recording process, correlate it to the system
software and hardware, and translate the result into a format that is understand-
able to humans [53]. Needless to say, the amount of information may be quite
extensive, but this problem is more or less inherent in the recording method-
ology as a whole. Also, implementations, and to some extent even solutions,
are platform specific. Furthermore, advances in hardware technology make
it more and more interesting to integrate solutions to a single chip, so called
System-on-Chip (SoC) solutions [111]. SoC solutions are not observable as
they limit the insight to the internals of the system, and it is therefore more dif-
ficult to construct hardware implementations for these systems provided that
they are not incorporated on the chip [53]. A solution could be to move also
the monitoring into the chip, but this is approach is of course only available to
the designers of the device.

2.4 Recording the execution of real-time systems 21

In their work on a “non-interference monitoring and replay mechanism”,
Tsai et al. [112, 113] present a hardware solution for monitoring by bus snoop-
ing. In their solution, they use a duplicate processor that executes in parallel
with the target. At certain points, the duplicate processor is frozen and its state
is logged - that state can then be used during replay to start the replay from.
Even though they claim in the title of their papers that their method provides
these services without interference of the target environment, they do point out
that they require the use of one occurrence of an interrupt to synchronize the
two processors at the start of the monitoring session (which is not necessarily
identical to the start of the system).

Boundary Scan IEEE Standard 1149.1 defines test logic [43]. The standard
is a result from work by the Joint Test Action Group (JTAG).4 The Boundary
Scan method can be used to test Integrated Circuits (IC’s), interconnections
between different assembled IC’s, and to observe and modify the operation
of an IC. However, the Boundary Scan interface, through which data of all
monitored events is to be fed, is a serial interface with a large shift register, a
solution that incurs large temporal penalties.

In their article “Emerging On-Chip Debugging Techniques for Real-Time
Embedded Systems” published in 2000 [72], MacNamee and Heffernan dis-
cusses the issue of On-Chip Debugging (OnCD) with a state of the practice
point of view. OnCD has the capability of addressing the problem of moni-
toring the executions of complex processor architectures, especially those with
on-chip caches, as it uses monitoring hardware that reside inside the compo-
nents. However, solutions available today lack real-time capabilities in, e.g.,
memory monitoring (an example is the Motorola ColdFire). The lack of real-
time monitoring of memory resources can be explained by the fact that real-
time monitoring requires the monitoring mechanism to be prioritized over the
application, thus leading to intrusive monitoring.

Logic Analysers are often used to monitor the behavior of hardware com-
ponents. There are many devices available on the market. They have the ca-
pability to hook on to, and monitor, buses that transport data or instructions
between physical modules of a system. On the positive side, logic analyzers
are not necessarily intrusive on the target functionality, not even in the tempo-
ral domain. However, traces available are very low-level, and not all required
information may be available. Systems that have integrated designs, perhaps
with on-chip caches, or even multiple processors on a single chip, do not pass
all required information on buses that are physically available for the logic an-

4The group has a homepage at www.jtag.com.

22 Chapter 2. Background

alyzer [53]. But the fact still remains that logic analyzers are used in many
commercial projects, and even though they cannot solve all problems, or even
provide good solutions to all of the problems that they can solve, they are
among the better solutions commercially available.

Several of Motorola’s MicroController Units (MCU’s) support the Back-
ground Debug Mode (BDM) [33] interface. BDM is utilized in their EValua-
tion Board (EVB) products that facilitate remote debugging of the MCU’s. The
BDM interface allows a user to control a remote target MCU and access both
memory and I/O devices via a serial interface. BDM uses a small amount of
on-chip support logic, some additional microcode in the CPU module, and a
dedicated serial port. The BDM interface provides a set of instructions that can
be issued in order to examine the state of the device. Instructions may be either
hardware instructions, in which case they are not necessarily very intrusive on
the functionality of the device, or they may be firmware instructions, which are
intrusive. Hardware instructions allow reading or writing to all memory loca-
tions of the device, these operations are initially given the lowest priority, i.e.
they are only executed if no other instructions are pending, but a fairness pol-
icy is used if the instructions are not issued within a predefined time. Firmware
instructions must be issued in a special firmware-mode, and then the debugger
can read and write registers on the device.

Motorola also provides an On-Chip Emulation (OnCE) interface with some
models. This interface combines features of BDM and JTAG.

The Nexus 5001 standard [72, 45] describes a hardware solution that sup-
ports monitoring of embedded systems, it also supports super scalar and pipe-
lined architectures.

Software

Software monitoring can either be performed at system or at task (process)
level [111]. Monitoring at system level enables the monitor to see operat-
ing system specifics in the system. It is possible to view many of the data
structures that affect system performance, such as Translate Look-aside Buffer
(TLB) entries that describe the mappings between virtual and physical memory,
also task control blocks, semaphore queues, and many other data structures are
visible. Issues related to the control flow of the system that are visible on sys-
tem level include interrupt occurrences, task switches and paths through code
within system-calls. Monitoring at the task level will not allow monitoring of
these, but other possibilities are open, such as events related to the specific task
that is monitored. Concerning the data flow, we can monitor local and global

2.4 Recording the execution of real-time systems 23

variables, and of the control flow, we can monitor the execution flow through a
program.

Thane [108] describes four architectural solutions for software monitoring:
kernel-probes, software-probes, probe-tasks, and probe-nodes. Kernel-probes
can monitor operating system events such as task-switches and interference due
to interrupt occurrences. Software-probes are additions to the monitored task,
they are auxiliary outputs from that task. Probe-tasks have as their only func-
tional objective to monitor other tasks, either by cooperation from software-
probes, or by snooping shared resources. Finally, probe-nodes are dedicated
nodes that either snoop the communication medium used by other tasks, or
receive input from either software-probes or probe-tasks.

Stewart and Gentleman [102] recommend the use of data structure audits,
a construct which is also described by Leveson in [63] where it is also referred
to as independent monitoring. An auditor could for example check whether a
data structure is self-consistent, or simply monitor its changes. Auditing can
be performed by a probe-task, also known as a spy task, and can be a more or
less complex operation.

Hybrid

According to Tsai et al. [111] hybrid monitoring come in two flavors, memory-
mapped, and coprocessor monitoring:

Memory-mapped monitoring uses a snooping device that listens to the bus,
and reacts to operations on certain addresses. These addresses may either be
snooping device registers that are memory-mapped into the address space of
the task, or just a dedicated RAM area. Each event that should be monitored is
forced to make a memory operation on the address that is associated with that
event, which will allow the monitor to detect its occurrence.

Coprocessor monitoring uses a device that is a coprocessor to the processor
that executes the application that is to be monitored. Events are forced to issue
coprocessor instructions to the coprocessor as the events that are to be mon-
itored will occur. The coprocessor monitoring approach requires, of course,
that the architecture targeted allows the use of coprocessors.

From Applied Microsystems comes the CodeTEST Trace Analysis tool that
provides hardware assisted software based tracing of program execution. An
extra stage is inserted into the compile stage where unique tags are added to
the program code according to some parameters (thereby leaving the original
source code unchanged). A database is also created to relate the unique markers
to specific lines of code.

24 Chapter 2. Background

Depending on where in the development stage the system is, different so-
lutions are then used to collect information from the execution. Early in the
design process a collection task that forwards the information to a remote host
is run together with the normal task set; later in the process, tags are modified
to only perform a memory write to a dedicated area, a hardware probe that can
snoop the bus is then used to collect the information and send it to the remote
host.

In “A Hardware and Software Monitor for High-Level System-on-Chip
Verification” [96], El Shobaki and Lindh present a method for recording the
execution of SoC’s with a built in hardware component named MAMon (Mul-
tipurpose/Multiprocessor Application Monitor). The MAMon component is
integrated with the design, and allows both hardware and hybrid monitoring.
The MAMon component can be used both with software based and hardware
based [66] real-time operating systems. In the case where the operating system
is hardware based, task information can be extracted non-intrusively from the
kernel. However, integration of MAMon into a SoC-system is only available
to the hardware-designer.

2.4.2 The probe effect

It is important to note that recording of a running system has its limitations;
it is not always possible to observe without interfering. If probes are added,
removed, or altered over time, so that the level of perturbation that they cause
varies between executions with otherwise identical premises, the system may
react to the variation and thereby change its behavior. For example, this may
lead to that the balance of race conditions is shifted so that one entity wins
more often than before (imagine what this would do in, e.g., a bus protocol
such as Ethernet – some nodes would get better service at the cost of service for
the other nodes – similar consequences will result in the interactions between
tasks). Thus, such a change may invalidate previous verification efforts.

The probe effect [23], which is another name for Heisenbergs uncertainty
principle (a.k.a. Heisenbugs [91]) when applied to software engineering [60,
76, 99], can become visible when code is added or removed to a system, when
breakpoints are used to debug the system, or when the system is modified in
some other way that will affect execution times. Modifying the system in any
way may alter the timing in the system. Extra code will require extra resources,
the removal of code will free resources that can be used by tasks that would
have been blocked, and modifications to data may change the program flow.
Differences in the temporal behavior may in turn lead to that the modifications

2.4 Recording the execution of real-time systems 25

have a different result on the system performance than expected.
It is quite convenient to use real-time systems when exemplifying the probe

effect. Imagine a system of two tasks that compete for execution resources,
where some synchronization problem exists between the two tasks. Say that
the two tasks control an external process, but that one of the tasks occasionally
issues control commands too soon after that the previous task has issued a
command, thus preventing the previous command from affecting the external
process as intended. This would have lead to a failure, and a debugging-effort
is launched.

In order to debug the system, we would like to probe into the state of the
tasks so that we could determine the cause of the problem. However, if we im-
plement this probe by inserting some auxiliary code (code that does not aid the
progress of the system) that will monitor the system, that code will effect the
system. If we are unlucky, it will do so in such a way that the time between the
two control commands is lengthened, thus causing the bug to disappear during
some executions which may very well be just that subset which we examine.
If we then remove the probes, the bug will reappear. Also the opposite is pos-
sible, by adding probes to a system, we may cause errors to appear that where
not previously present. Of course, also a combination of the two is possible, by
adding probes to the system, we may remove one error, only to invoke another.

The last example is perhaps the most intriguing, we may then find ourselves
identifying the wrong bug, and correcting that one instead of the real one. This
problem should be detected by a regression testing procedure. The probe effect
may, however, be ignored if the probes are allowed to remain inside the release
version of the program [111]. Not all systems can afford this though.

Recording is not the only situation in which the probe effect may effect the
system, it is also possible that modifications to old systems, or bug-fixes, cause
the same problems. One may view it as that the removal of code is equivalent
with removing a probe from the system, and that adding functionality can cause
the same problems as adding a probe to the system. A general rule is that if the
source code is modified, probe effect related problems may arise.

There are however two exceptions to this rule.
Schütz notes in “Fundamental Issues in Testing Distributed Real-Time Sys-

tems” [95] that it is possible to remove code if the only consequence of the re-
moval is that the idle task of the system will receive more execution time. How-
ever, this is rather hard to ensure unless the system is time-triggered. Schütz
states that, in a time-triggered system, provided that the scheduled execution
slot of the task that is to be removed is not adjacent to the slot of any other task
(except the idle task), the task is in a temporal firewall, and may be removed

26 Chapter 2. Background

without consequence to the remaining system. This is provided of course that
the task does not perform any work that is used by other entities in the system.

The second exception has been noted by Thane [108] concerning fixed pri-
ority scheduled systems. Thane starts with the same premise that Schütz did;
that code can be removed if the only consequence of the removal is that the
idle task of the operating system receives a larger percentage of the total sys-
tem execution time. He then states that this requirement is satisfied if the task
from where the code is removed has the lowest of priorities among the tasks
in the system (apart from the idle task) and it is established that the task never
blocks the execution of other tasks remaining in the system. Thus, the task from
where the probes are removed cannot control mutual exclusion or communica-
tion primitives, such as semaphores or other, shared with tasks remaining in the
system. The use of schemes such as direct inheritance or similar for deadlock
avoidance will limit the use of such primitives even further.

Note that these solutions are only feasible under the assumption that the
operation of the hardware (instruction pipelines, caches etc.) is not affected by
the removal of the probes.

One approach to avoid the issue of the probe effect is to reduce the over-
head of recording, this could be achieved by deploying one or several of the
following techniques:

• Selecting the set of variables that are the least demanding to record.

• Using logging algorithms that optimize logging in space or time require-
ments (e.g. ECETES [40] or memory excluding checkpoints [86]).

• Choosing read/write phase in which to probe the state of the variables
such that the workload is lower (e.g. only on read if writes are frequent
to the variable).

• Choosing system phase in which to probe the state of the variables such
that the workload is disguised (e.g. recording while the system is idle).

2.4.3 The correlation and the observability problems
In “Fundamentals of Distributed System Observation” published 1996 [21],
Fidge describe the problem of obtaining a truthful view of the events in an
observed system. For example, as a distributed system is being observed, if the
observer cannot be tightly coupled with the system it is observing, problems
related to the observers apprehension of the ordering of events on different

2.4 Recording the execution of real-time systems 27

nodes may occur. Depending on variations in the propagation time of observer
notifications, the ordering of events may be confused. We shall refer to this as
the correlation problem.

According to Fidge, we may divide the correlation problem into at least
four sub-problems [21]: (1) multiple observers may see different event order-
ings, (2) observers may see incorrect orderings of events, (3) different execu-
tions may yield different event orderings, and (4) events may have arbitrary
event orderings. All are more or less results of the absence of an exact global
time-base, and/or the fact that network propagation times are not constant. Be-
cause of the lack of a exact global time, we cannot rely on any time-stamp
taken at the node where the event occurred, if the observer is situated on an-
other node.

1. In a system where many observers are used, different observers may see
different event orderings, because the propagation of the event notifica-
tion requires different time to different destinations.

2. As the propagation through a network may differ between two network
packages, a package that is sent after another may arrive earlier. Thus, if
two events occur on different nodes at different times, the notification of
the last event may arrive at the observer before the first notification has
arrived, thus erroneously implying that the last event occurred before the
first.

3. Because the clock rate of each node will diverge slightly from the ideal
clock and the other clocks in the system, and the rate of that deviation
partly depends on environmental aspects, different invocations of a dis-
tributed system will differ.

4. Some of the events in the system are unrelated, and may therefore be
allowed to occur in arbitrary orderings. The problem with this is that an
observer must know and recognize that, as different tests are run, it is
allowed to have differing orderings between some of the events.

Item number (4) in the list above is related to Polednas Ph.D. dissertation
“Replica Determinism in Fault-Tolerant Real-Time Systems” from 1994 [87].
Poledna direct the problem of replica determinism when using redundancy as
a mean to increase the fault-tolerance of a real-time system. In other words,
he directs the problem of ensuring that two components, that are supposed
to perform the same task, have the same behavior when they are operating
correctly. This is related as (4) describe that we must be able to correlate

28 Chapter 2. Background

executions that are temporally differentiated and Poledna does the same for
spatially differentiated executions.

Schütz discusses a subject which he calls observability [95]. He states
that a system must be observable, meaning that it must be possible to extract
sufficient information from the system. What is “sufficient” is determined by
the intended use of the observations. In this thesis, we shall refer to this as the
observability problem.

2.4.4 Measuring execution time
To use recordings, it is often important to relate events to software execution.
It must be possible to state how much execution resources a task has consumed
between two records in the log. There are at least two ways of doing this, one is
to use a hardware platform which supports instruction counting, cycle counting
or similar, the other is to use a software implementation.

An example of a hardware solution is implemented in the Intel x86 archi-
tecture. A processor cycle counter is accessible through the use of the assem-
bler instruction RDTSC. Note however that this implementation is not reliable
in architectures such as Pentium II, Pentium Pro, and onwards. The reason
therefore is that more advanced models in the x86 family use out-of-order ex-
ecution which can lead to pessimistic or optimistic measurements.

In their article “Debugging Parallel Programs with Instant Replay” pub-
lished in 1989 [77], Mellor-Crummey and LeBlanc present a method that can
instrument assembler-code with counters, thus enabling the counting of exe-
cuted instructions, the method is called Software Instruction Counter (SIC).
The authors note that the code of a program consists of short chunks of se-
quential code, called basic blocks, and conditional, or unconditional, connec-
tions between some of the basic blocks (by branches, jumps, or function calls).
These one-way connections can either connect a basic block with a later (with
higher address-value than the present), a forward branch, or with a prior block,
a backward branch. To uniquely mark each instruction instance that is exe-
cuted, the authors state that a combination of the program counter value and the
number of backward branches required for the execution to reach the instruc-
tion from a known starting point is sufficient. They can therefore construct
a low-cost software-based instruction counter, which only resource require-
ments are a small computation overhead, and a reserved data-register that is
used solely for performance reasons.

In distributed systems, clock synchronization [55] becomes a problem if
nodes must have a global order of events [35]:

2.4 Recording the execution of real-time systems 29

As events occur on concurrent nodes, some system architectures cannot
produce a correct order between them. If this is a requirement, some measure
must be taken. Tightly coupled parallel systems, and multitasking single-node
systems, are able to produce a correct ordering because all system entities de-
pend on the same real-time clock [111]. But, because of the correlation prob-
lem (See Section 2.4.3), distributed systems can only make weak assumptions
about the ordering of events provided that they do not use an algorithm for
global clock synchronization.

Ordering of events can be either partial, or total [111]. Where partial order
describes the local sequence of events (in our context locally is on a specific
node), and total order describes the global order of events. Thus, unsynchro-
nized systems cannot determine the exact total order of events, but they may be
able to find an estimation of the global order by using a method for clock syn-
chronization or logic clocks [59]. Using any of these will inflict an additional
overhead on the system.

2.4.5 Operating system support
Gathering of information is often a difficult task. In the research described in
this thesis, we need to record occurrencies of context switches and system calls.
We even need to record the occurrence of the start of a system call and the end
of a system call. Monitoring context switches is significantly easier to solve
if the operating system provides an interface for doing so. Also monitoring
system calls can be helped by this as it reduces the possibility of introducing
bugs in the recording if only one system level probe per system call is used
as opposed to one task level probe per potential call. For example, in order to
monitor system calls or context switches in Windows 2000/NT, one must know
what functions to look for [71]. In view of this, it is interesting to survey the
support for probes in some available operating systems.

The Solaris 10 operating system provides DTrace [103], abbreviating Dy-
namic Tracing, which can be used to monitor a vast amount of events in the sys-
tem. A programming language is provided that allow specification of: which
events to probe, predicates for each probe that must be fulfilled in order for an
event to be probed, and what to do when a probe is triggered. Thus, a piece of
code can be made to execute at the occurence of a named event. At the time of
occurrence, individual events can be recorded. Examples of events that can be
probed are context switches and system call entry and exit points.

VxWorks by WindRiver [118] provides an interface to register hooks for
selected events. These hooks can be used to monitor context switches etc. But

30 Chapter 2. Background

the operating system does not facilitate the probing of system calls.
SMX (Simple Multitasking Executive) by Micro Digital [78] provides hooks

for context switches. In the case of SMX, the hooks are task specific for enter-
ing and exiting a task switch.

OSEck by the Enea company OSE Systems [83] provides hooks for both
context switches and selected system calls (send and receive).

During the work to compile this survey, we also investigated the Symbian
and the QNX real-time operating systems, but failed to find a similar function-
ality there.

2.5 Testing
It is well known that testing has some fundamental limitations to the set of
problems that can be solved by testing. For example, testing is performed
under a set of premises and results of testing cannot easily be extrapolated to
a different set of premises. Also, testing can only prove the existence of bugs,
not their absence [19]. Nevertheless, regardless of these limitations, testing
is a good technique for examining the operation of complex systems. The
method of model extraction presented in this thesis use recordings obtained
during testing to model the system.

2.5.1 The completeness problem

Kranzlmüller provides the following definition of a nondeterministic program
in his Ph.D. thesis [57]:

“A program is nondeterministic, if - for a given input - there may
be situations where an arbitrary programming statement is suc-
ceeded by one of two or more follow-up states. This freedom of
choice may be determined by pure chance or unawareness of the
complete state of the execution environment.”

Meaning that if one evaluation of a set of inputs may cause a task to, from
one run to the next, behave differently, then the system is nondeterministic.
Note that, according to this definition, a program is nondeterministic also if the
irregularity of its products is completely depending on factors that are unknown
but not necessarily unpredictable. Thus, a deterministic system can appear to
be nondeterministic just because we lack the knowledge to understand it.

2.5 Testing 31

The opposite of a nondeterministic program or system, must clearly be a
deterministic program. In the book “Communication and Concurrency” by
Milner [79], the issue of determinism has been formally defined.

During testing, in order to ensure that a system complies to its specification,
it is required that the testing procedure is performed under realistic conditions.
Two properties that must be tested are that the system reacts as intended on
different input data, and (in the case of real-time systems) that the temporal
behavior of the system satisfies the requirements. As different invocations of
a nondeterministic program, per definition, can behave differently even though
all controllable inputs are identical in all invocations, it is difficult to determine
the coverage of testing procedures. We state that a completeness problem exists
in testing: it is difficult to determine the coverage of performed testing.

2.5.2 Test coverage
Testing the complete set of possible combinations of known input data and
all execution orderings is normally referred to as exhaustive testing. Even in
a very small system the number of test-cases is very large, and it increases
drastically as the system grows. Therefore, exhaustive testing is normally not
an option as it would require too long time5 to perform. The alternative is to
only test a subset of the input combinations, which leads to that only a certain
level of confidence may be ascribed to the system’s functionality or capability
to fulfill its specification. The level of confidence relates directly to how well
the system was tested, i.e. the coverage of testing. It is true that small parts of
the system, that are considered as especially important, could be selected for
exhaustive testing. This would of course increase the confidence in the system,
but is directly comparable to testing only a small subset of the possible input
combinations to the system.

In multitasking systems, the completeness problem implies that even if the
system would be tested with all possible combinations of data inputs, bugs
may still remain because different execution orderings in the system also af-
fects the output and temporal behavior of the system. If the number of possible
execution orderings are unknown, it may be difficult to determine the level of
confidence that can be ascribed to the system’s functionality. Thane et al. dis-
cuss this problem in [109] where they propose a method for testing real-time
systems. The method describes how all possible orderings in a system can

5Consider a program that subtracts one 32-bit integer from another, it would require (232)2

test-cases. If one test-case can be run each nano-second, that would result in (264 · 10−9)/(60 ·
60 · 24), or approximately 200’000, days of testing.

32 Chapter 2. Background

be identified, how all sequences of interleaving due to interrupts, blocking by
semaphores, or scheduling decisions can be listed. They can then group a par-
ticular monitored execution with an execution ordering. By running a sufficient
number of tests and relating each test to its ordering, it is then possible to in-
crease the confidence in the orderings that become subjected to testing.

However, this approach would either cause some of the less probable exe-
cution orderings to be insufficiently, or excessively, tested, due to the improba-
bility, or probability, of experiencing those orderings. Therefore, reproducibil-
ity in the testing should be ensured by enforcing execution orderings during
testing. By performing a sufficient amount of tests of a sufficient number of
orderings, the confidence in the system can be calculated based on the confi-
dence in each ordering. In their articles, Thane et al. states that the number of
execution orderings, and therefore also the testability of the system, is directly
proportional to the number of preemption points and the jitter present in the
system. Note that the confidence in a system according to Thane et al. can
be a 2-dimensional property, a confidence in each execution ordering, and a
confidence in covered execution orderings.

However, it is difficult to obtain the exact number of orderings and the total
number of unique executions for each respective ordering for a given system.
Further, due to the observability problem (see Section 2.4.3), special constructs
are required to sort performed executions based on ordering. Often, we are
forced to measure the coverage of testing using other factors.

Zhu et al. [121] present an excellent survey of test techniques including
some of the usual units of coverage measurement: statement coverage, branch
coverage, path coverage, and mutation adequacy. Of these, the first two are in-
tuitive, the third measures the percentage of possible paths between two points
in the execution that where tested, and the fourth measures the percentage of
inserted artificial bugs that are found during testing.

2.5.3 Test-case selection
To test, one must have a system to test, but also a setting in which to test it:
A set of test-cases must be realized that can evaluate the ability of the system
to comply to its expectations. Normally, a test-case consists of a combination
of input to the system and the expected output. The later is needed in order to
evaluate the outcome of the test. According to Zhu et al. [121], test-cases can
either be based on the system specification (i.e. expectations or requirements
in plain text, temporal logic etc.), the system implementation, or both.

Mandrioli et al. [73] provide a method for automated test (case) generation

2.6 Discussion 33

for behavioral models specified in a form of temporal logic. Hong et al. [32]
show how test generation can be formulated as a model checking problem.
Hessel and Pettersson [29] present an UPPAAL-based method for test gener-
ation using model checking. They assume the existence of timed automata
models of the system and its environment, and can generate test-cases given a
measure of coverage.

2.6 Discussion
In this chapter, we have introduced a number of different topics. These have all
implicitly or explicitly influenced the technical presentations in later chapters.
The current chapter can therefore be seen as a form of reference material for the
coming chapters, as an orientation to the mindset of the author, and as required
reading for those not familiar with recording etc.

Chapter 3

Related work

In this chapter we will discuss related work within the area of (semi-) automatic
modeling. A number of methods for automatic modeling have been presented
in the literature, but their scope and their assumptions vary significantly. In
order to describe this difference, we introduce a classification of techniques for
(semi-) automatic modeling. The classification is intended to aid in portraying
the differences of the surveyed methods.

3.1 A classification of automatic modeling tech-
niques

This section will introduce a classification scheme for model extraction and
related activities. We have identified a matrix of four dimensions:

1. Model properties

2. Intended use of the model

3. Interactivity level

4. Type of model extraction

Each dimension has a set of feasible options, which are not necessarily
mutually exclusive. For example, model properties can be both architecture
and behavior descriptions.

35

36 Chapter 3. Related work

Of course model extraction is closely related to the end product (the model)
and the language in which that model is specified. Thus, the abstractions that
the modeling language provides must be reflected in this classification scheme.

Note that the classification scheme is not intended to be complete to the
extent that it becomes a taxonomy, but sufficient enough for our purpose of
relating the work referred here to our contributions.

3.1.1 Model properties

The model properties describe what type of information is contained in the
model. Note that the model properties are independent from the type of model
extraction. Model properties may be one or several of the following:

• Architectural description

• Behavioral description

– Operational model

∗ Complete view
∗ Partial view (e.g., not all modes of operation)

– Non-operational model

• Temporal description

• Environment model

An architectural description defines entities in the system at some level
of abstraction, and describes how these can potentially interact. A behavioral
description defines the components of the system at some level of abstraction,
and describes the abstract behavior of these during runtime. A temporal de-
scription describes the time needed to perform some amount of computation
described by the model. An environmental description presents a model of the
environment in which the system operates.

Regarding the behavioral model, this can be either an operational or a non-
operational model. Non-operational models are defined as: models that are
not “sufficiently articulated in a form suitable for codification or automated
processing” [74].

3.1 A classification of automatic modeling techniques 37

3.1.2 Intended use of the model
Among the uses that we can see for extracted models are:

• Formal verification

• Simulation

• Debugging

• Testing

• Model-based impact analysis

• Study/clarification

• Performance evaluation

• Refinement

As in all modeling, the intended use of the model determines what type of
information that must be contained in the model; thereby, the use poses a set
of requirements on the modeling language.

In this particular classification however, we let the intended use of the
model describe also properties such as the required input and the methods of
model extraction that are feasible to use. For example, it is not possible to use
a model for simulation if the model is not operational. Thus, the intended use
says a lot about the mechanisms behind the immediately visible.

For each member in the set of uses that we have identified, we have formu-
lated a set of properties that could facilitate that use:

There are many ways to perform formal verification on models, but in gen-
eral the behavior expressed by the model, as well as the constraints posed by
the model, must be formally defined. It must also be possible to express the
requirements that are posed on the implementation. Imagine that we would
like to prove that a model can never come to deadlock; this requires a model
that can express the limitations of the implementation – there must be a notion
of absence of action.

The use of a model for simulation requires that the model is operational
and the environment must be specified or must be possible to specify.

Debugging is an activity that can take place on various levels of abstraction;
after all, most things can go wrong and need debugging. Thus, the model can
either just be used for debugging at a given abstraction, or must be organized

38 Chapter 3. Related work

for information hiding, since efficient debugging at a given level of abstraction
requires hiding of information irrelevant for that level.

Testing requires the use of operational models with behavioral descriptions.
Further, the models must be conservative in the behavior they describe; models
allow for abstraction, which may lead to false positives, but efficient testing
requires that we can determine if the test-case could actually lead to a failure
in the implementation – the model must provide this correlation to the imple-
mentation.

In order to facilitate model-based impact analysis (see Section 2.3.2), the
model must be modifiable. As the exact nature of the planned impact may be
unclear, a notion of probability in the modeling language is useful.

Clarification is facilitated through documentation, which requires two prop-
erties of the model to be preserved: the structure of the implementation, and
the naming of variables, functions etc.

To facilitate performance evaluation, the model must be able to express
the resources that the computation uses in a given setting and there must be a
way to correlate this amount to both the expected resource requirement, and
the amount of available resources in the given setting. In this way, it is possible
to control that the implementation performs as expected, or to find bottlenecks
in the system.

Finally, refinement allows an existing model to be extended with additional
information retrieved by model extraction; typically, this is performed as a
hybrid model extraction that, e.g., adds information about observed execution
time to an available model.

From this list of activities, more complex activities can be formulated, for
example, maintenance may include testing as well as debugging.

3.1.3 Interactivity level

The method of model extraction can be:

• Interactive, or

• Non-interactive

Model extraction may, depending on the type of solution in relation to the
model use, be a too complex task to complete. Thus, some solutions allow
the user to influence the procedure with the intention to make the model more
accurate. We refer to these methods of model extraction as interactive.

3.1 A classification of automatic modeling techniques 39

For example, if ambiguities are discovered, these may be resolved by hu-
man intervention. The user is presented with a set of possible interpretations
that the model extraction has identified, and is required to pick one and only
one of the interpretations.

Further, some methods require the user to specify translations for constructs
identified in the implementation, or to specify what parts of the input that are of
interest to the model extraction. These techniques are used to define the level
of abstraction of the model.

In any of these situations, two users may choose different translations,
which would lead to non-determinism in the model extraction as it leads to
two different models.

3.1.4 Type of model extraction
The mechanics of the model extraction is heavily dependent on the type of
input that is used:

• Dynamic model extraction, based on:

– execution trace with system-level information

– execution trace with task-level information

• Static model extraction, based on:

– source code

– extended source code

– compiled binary or bytecode

– other models, which are:

∗ operational
∗ non-operational

• Hybrid model extraction (i.e., a combination of the above)

Generally, model extraction can take input from either runtime informa-
tion (e.g., dynamic model extraction), or from information available even if the
system has never been executed (e.g., static model extraction). We can also
envision a hybrid of the two; for example, static model extraction can provide
a skeleton that dynamic model extraction will refine by adding runtime infor-
mation from a specific hardware platform.

40 Chapter 3. Related work

Regarding static methods; due to the dependence on specification or source
code as input, it seems reasonable to assume that static methods are depen-
dent on the language used for the implementation of the run-time system, and
may thus encounter difficulties when languages are mixed in the same system.
We suspect that fundamental differences between languages (pointers vs. no
pointers, object oriented vs. imperative, etc.) may limit the generality of such
methods.

Dynamic methods, on the other hand, can only model the behavior that
has actually been observed, which is likely to be only a subset of the valid
system behavior (compare to the completeness problem at Page 30). Further,
the extracted model is dependent on the observations of the running system
– if no observations can be made, no model can be created (compare to the
observability problem at Page 28). Finally, dynamic methods depend more
heavily than their static counterparts on the interpretations of the observations
made and the deductions made from these interpretations.

It should be clear from the above discussion that static and dynamic model
extraction each has different properties that makes them complementary to
each other. Some methods integrate these two in order to reap the benefits
from both solutions and avoid some of the drawbacks inherent to a more pure
breed approach.

We conclude that methods can be static, in which case the input may come
from source code of the implementation (possibly extended with some ex-
tra annotations to support model extraction), the binary of the implementa-
tion, and/or other models. In the latter case, these can be operational or non-
operational. As an alternative, methods may be dynamic, in which case the
input comes from recorded traces which may include data known only at op-
erating system-level, and/or at task-level. Finally, static and dynamic methods
can be combined into a hybrid approach.

3.2 Applying the classification

In this section, we apply the classification to related work in the area of model
extraction.

3.2 Applying the classification 41

3.2.1 From UML to SDL
Bastos and Sanches [9] proposed a static method that, based on UML (Unified
Modeling Language) models, produces SDL1 models. The authors motivate
their work by noting that development of object oriented, safety critical real-
time systems often require both UML and formal models. The method is in-
herently object oriented, and does require some additional input from humans.

According to our classification, the approach is:

1. partial, operational, behavioral and temporal descriptions

2. for formal verification

3. interactive

4. a static model extraction from non-operational models enhanced with a
special purpose notation.

3.2.2 Reverse engineering to UML sequence diagrams
Briand et al. [13] propose a dynamic method to synthesize UML sequence
diagrams. Even though sequence diagrams can be helpful in the effort to un-
derstand the system and verify that a known functionality is performing as
intended, it is uncertain if the overhead is justified. For example, the represen-
tation, while able to describe the act of making a selection, can only describe
the one path of the selection that was actually performed (e.g. only one path
of the selection can be modeled in a given sequence diagram). Further, the
model cannot represent state, and can therefore not be used in simulations etc.
In order to justify the overhead, it should be shown that the amount of record-
ing performed is sufficient to produce also other types of UML models of the
system.

According to our classification, the approach is:

1. behavioral, non-operational

2. for study/clarification

3. non-interactive

4. dynamic model extraction with task-level information.

1Specification and Description Language, see http://www.sdl-forum.org.

42 Chapter 3. Related work

3.2.3 Using Angluin’s algorithm on real-time systems
Grinchtein et al. [26, 27] present an dynamic method for model extraction to
time deterministic event recording automata (i.e. transition guards of the au-
tomata are mutually exclusive). Their approach is to view model extraction as
a learning problem.

In machine learning [7] a Learner is concerned with hypothesizing a model
from a system by asking a Teacher if the system accepts a given behavior trace
(i.e. asking membership queries). Which membership queries to ask is given
by inconsistencies in the Learner’s currently available data; if a set of behav-
ior traces that the Learner thinks are equal yields different answers when the
Teacher is asked, an inconsistency exists. By reformulating the hypothesized
model and asking a set of more detailed queries, these inconsistencies are re-
solved. When a Learner has obtained sufficient confidence in the correctness of
the hypothesis (i.e. when all inconsistencies have been resolved), the hypoth-
esized model is checked with an Oracle to determine its correctness (i.e. ask-
ing equivalence queries). If the model is incorrect, the Oracle will present a
counter example that can be used to extend the model. Implementation issues
involve realizing the Teacher and the Oracle. Implementing a Teacher may be
prevented due lack of reproducibility in the system [108]. Regarding complex-
ity: Since membership queries need to be asked until all inconsistencies are
resolved, the number of membership queries can potentially be large. Clark
and Thollard [17] has presented learning of probabilistic automata.

Grinchtein et al. conform to the original timed automata [3], which does
not include any notion of data state. In the setting of this thesis, this is a limi-
tation. The absence of data state will lead to that either the model is unable to
represent causal dependencies with longer span than one job, or the model will
be unnecessarily big. The complexity of learning a timed automata is high (ex-
ponential): Given two behavior traces such that their sequence of input symbols
are equal but their timing is different, if these yield different answers on mem-
bership queries, the possible set of membership queries is large (it includes the
behavior traces with the same sequence of input symbols but different timing).

According to our classification, the approach is:

1. temporal and partial operational behavioral description

2. formal verification

3. non-interactive

4. dynamic with system-level information.

3.2 Applying the classification 43

3.2.4 From C to Promela – as used in Spin
Holzmann and Smith [30, 31] introduced a method called Modex (acronym
for model extractor) for static model extraction. They describe static model
extraction as a hierarchical process, which makes it very comprehensible. As
a proof of concept, they present a one shot experiment on a large telephone
application.

The approach advocated by the authors takes the source code of the imple-
mentation as input to Modex, which is intended to make the model accurate
to the implementation; optimizing compilers, however, may break the logical
chain between source code and implementation, which is why the executable
implementation may be preferable as input to static model extraction.

Apart from the source code of the implementation, four additional types
of inputs are required; these can be seen as non-operational models that are
supplied as input. As the implementation evolves, the additional inputs must
be maintained by the user. It is claimed that the maintenance of these inputs is
a simple task, but that some updates to the input can take in the order of hours
to complete.

According to our classification, the approach is:

1. producing architectural and behavioral descriptions that are operational

2. for formal verification

3. interactive

4. a static model extraction from source code and non-operational models.

3.2.5 Test-based model extraction
Hungar et al. [34] describe a dynamic method for extracting models from sys-
tem level recordings. They use methods of automata learning (specifically, an
adaptation of Angluin’s algorithm [7]) to extract behavioral models without
timing information.

According to our classification, the approach is:

1. partial operational, behavioral description

2. formal verification

3. non-interactive

4. dynamic model extraction with system level information.

44 Chapter 3. Related work

3.2.6 LQN-models for performance evaluation
Israr et al. [46] present a dynamic model extraction from traces to Layered
Queuing Network models. The traces concern only message sending and re-
ceiving, and the models are made to represent message transactions rather than
computational entities (e.g. tasks). Thus, the finalized models can only be used
to analyze the message exchange patterns. Even though the model can express
time as elapsed between sending and receiving of messages, they cannot ex-
press the execution load. Neither does the model have any concept of data
state.

According to our classification, the approach is:

1. temporal, partial operational, and behavioral description

2. performance evaluation

3. non-interactive

4. dynamic model extraction based on task-level information.

3.2.7 Jensen’s method for UPPAAL-models
In his Ph.D. thesis, Jensen [49] introduces a method for model extraction to
the timed automata of the UPPAAL-tool [11]. The intended use is for testing
properties such as response time and model checking against implementation
requirements. For the verification, it is assumed that the requirements are avail-
able in the form of timed automata which are then parallel composed with the
extracted model by the UPPAAL-tool to allow model checking. The thesis
includes a schedulability test that (instead of WCET) uses a measure labeled
Reliable Worst Case execution time (RWC). RWC is a statistical measure that
is introduced in the thesis. As a proof of concept, Jensen includes a one shot
experiment of the model extraction. In relation to our method for model ex-
traction, the approach is similar, but more restrictive and provides less detail;
missing task-level information leads to that only system calls and elapsed exe-
cution can be modeled.

Jensen poses restrictions on how selections are used in the model – they
can only occur at the start of the job or after a performed receive() system
call.

In addition to the architectural and behavioral model, Jensen’s method out-
puts an environmental model. It is however comparable to a playback of ob-
served behavior – no elaboration is performed on the collected data. Jensen

3.2 Applying the classification 45

assumes a normal distribution of task execution times – as a selection where
one alternative takes between 10− 20 time units (tu) to execute, and the other
between 100− 200 tu describes the inappropriateness of this assumption.

According to our classification, the approach is:

1. producing architectural, behavioral, and environmental descriptions that
are operational and describes temporal properties

2. for formal verification

3. non-interactive

4. a dynamic model extraction from system-level information.

3.2.8 From sequence diagrams to state machines
Koskimies et al. [56] present dynamic model extraction of object oriented sys-
tems using machine learning such as Angluin’s algorithm [7]. They use non-
operational trace diagrams (a.k.a. sequence diagrams) as input to extract state
machines that will be operational if the trace diagrams allow this. As described
by Systä and Koskimies [105], the trace diagrams can also be obtained from
recordings of the executing system – thus, the method is hybrid according to
our classification.

The technology that the authors rely on is called inductive inference; ba-
sically, it is about collecting a large (in the optimal case and infinite) set of
examples that are then used to guess a rule (a model) – if the examples do not
contradict the rule, it is assumed to be correct.

The examples used for inductive inference are trace diagrams that describe
interaction between objects and internal actions of individual objects in a tem-
porally correct order.

A limitation of this method is that it is unable to represent a modifiable
state in the system in any other way than as states in the state machine. There
is no concept of variables etc., which leads to that the number of states could
be quite large – as the number of states in the model is a parameter for the
computational complexity of the method, this could be a problem.

According to our classification, the approach is:

1. producing an architectural and a behavioral description in the form of
state machines that may be operational

2. for clarification

46 Chapter 3. Related work

3. non-interactive

4. a hybrid model extraction from non-operational models or recordings of
task-level information.

3.2.9 Extending Esterel
Logothetis et al. [69, 70] proposes an extension to Quartz, which is a version of
the synchronous language Esterel. The purpose of the extension is to separate
the parts of the implementation that are required in verification from the parts
that are not – thus, as two different users could produce two different models,
the method is interactive.

The method requires that the user augments the code of the real imple-
mentation with information about what parts that need not be expressed by the
model. While this allows the user to have control over the level of abstraction
provided by the model, it also poses a large overhead to the model extraction if
the project is of industrial proportions.

According to our classification, the approach is:

1. producing operational architectural and behavioral descriptions

2. for formal verification

3. interactive

4. a static model extraction from extended source code.

3.2.10 Commercial soundness for CORBA-systems
Moe and Carr [80] present dynamic model extraction for CORBA-based sys-
tems. The work has been heavily influenced by the demand for a commercially
sound result, meaning that (while the usefulness should be other than marginal)
the impact must be low on both users and system performance; thus, recording
must be efficient but transparent and the interface must provide a low learning
threshold. The method is introduced in industry and used in an operation and
maintenance system for cellular networks by Ericsson.

Using the CORBA notion of interceptors to record performed RPC-calls
Moe and Carr obtains a transparent recording that can be modified dynamically.
Note that the relevant probe effect (see Section 2.4.2) is not directed. The
log of recorded RPC-calls is parsed offline, and call-response sequences and

3.2 Applying the classification 47

summary statistics that characterize the operation of the system are obtained.
The published material lacks details on how this parse is performed.

The product of the method is not an operational model, but rather a visual-
ization of occurred events. The view can be modified by the user to focus on
the task at hand (e.g., during a given time interval, what fraction of calls to a
given RPC-service that where terminated by an exception). This is reported to
have helped discover and identify a number of bugs in real systems.

According to our classification, the approach is:

1. producing architectural description

2. for performance evaluation and debugging

3. non-interactive

4. a dynamic model extraction from system-level information.

3.2.11 Query based reverse engineering of Smalltalk imple-
mentations

Richner and Ducasse [88, 89] present a hybrid approach that use both statically
and dynamically obtained data to extract models of object oriented non-real-
time systems implemented in Smalltalk. This will provide for a more com-
prehensive picture than a strictly dynamic or static approach. However, their
modeling language of choice cannot describe the nature of choices made in the
execution of the system (e.g. variables and values that determine selections),
which limits the applicability of the model.

The method is based on querying compiled static and dynamic information
about the system using a logic programming approach. The static informa-
tion concerns classes, inheritance-relationships, class attributes and methods,
interclass uses, and interclass invocations. Dynamic information concerns per-
formed transmissions between objects. A database of the information is col-
lected and a Prolog middle-ware is used to extract component views of the
system.

According to our classification, the approach is:

1. architectural description

2. for study/clarification

3. interactive

48 Chapter 3. Related work

4. hybrid model extraction based on the source code and dynamic task level
information.

3.2.12 From UML to timed automata
Shu et al. [97] provide an automated translation from their extended version of
UML state machines and sequence diagrams to timed automata.

According to our classification, the approach is:

1. producing operational, temporal, behavioral description

2. for formal verification

3. non-interactive

4. static based on non-operational models.

3.2.13 Tagging Esterel code to make models
Sifakis et al. [98] proposed a static method that use tagging of real-time soft-
ware with time constraints and environment behavior to facilitate automatic
modeling based on the code as input. The method assumes that the system
and the environment model is implemented in a version of Esterel. Allow-
ing the specification of the environment in Esterel (including non-deterministic
choices) enables engineers to specify the environment in the same language as
they implement the system.

According to our classification, the approach is:

1. producing a partial, operational, temporal, description

2. for formal verification

3. interactive

4. static model extraction based on extended source code.

3.2.14 A workbench for extracting models from scenarios
Uchitel et al. [114, 115] introduce a method for extracting labeled transition
systems using scenario-based specifications, specifically they use message se-
quence charts. In difference to most other work based on behavioral informa-
tion such as recordings or scenario-based specifications, the models produced

3.2 Applying the classification 49

by Uchitel et al. are generalized with respect to the components of the system.
That is, when other work can extract a model valid only in the observed case,
Uchitel et al. use existing architectural descriptions to extract general models
that can be instantiated into arbitrary architectures.

According to our classification, the approach is:

1. operational, behavioral description

2. simulation

3. interactive

4. dynamic with task-level information.

3.2.15 DiscoTect: retrieving architecture

The dynamic model extraction of Yan et al. [93, 119] is used to construct ar-
chitectural models from object oriented Java implementations. These models
can show the possible interactions between tasks and resources such as files,
semaphores, and abstract data objects.

Using the proposed method, it is possible to obtain a high-level view of the
functionality implemented in the system. This view can be compared to the
intentions of the developers to verify that the implementation has realized the
intended architecture. The authors note that static model extraction may not
always be feasible as it requires that the entire setup of the system is defined –
this may prevent use of dynamic libraries etc.

In relation to our contribution, this approach is inherently non-real-time
– monitoring of the real implementation is performed by using a debugger
to query the implementation during run-time to extract information about oc-
curred events. The use of an ordinary debugger effectively prohibits the possi-
bility to maintain real-time constraints [35].

According to our classification, the approach is:

1. producing an architectural description

2. for clarification

3. non-interactive

4. a dynamic model extraction from system-level recordings.

50 Chapter 3. Related work

3.3 Discussion
According to our classification, our approach is:

1. temporal and partial operational behavioral description

2. simulation and model-based impact analysis

3. non-interactive

4. dynamic with system-level information.

Among the differences that we note from comparing our proposition to the
work related above, we highlight the following:

Compared to the work by Grinchtein et al. [26], Koskimies et al. [56], and
Hungar et al. [34], we do not use machine learning. In contrast to these, we
cannot introduce loops on task level in the behavior of a job. On the other
hand, for the types of systems that we target, such loops are often avoided due
to predictability requirements. Also, we avoid the issue of having to construct
Oracles and Learners. As we target a very specific problem, the complexity
of our proposition is likely to be lower than that of machine learning, which
target a more general problem domain: The complexity of our proposition is
approximately O(N + T × S), where N is the total length of all recordings,
T is the size of the model, and S is the total number of data states identified
in the model. Typically, this yields an execution time in the order of seconds.
For example, the complexity of Grinchtien et al. [26] is greater than O(K4|Σ|),
where K is the bound on constants in the edges of the automaton, and |Σ| is the
size of the automaton’s language. There are no evident obstacles that prevent
our proposition to be merged with methods for machine learning.

Our method is non-interactive (compare to Bastos and Sanches [9] and
Holzmann and Smith [30, 31]). This is two sided: On one hand, a non-
interactive method is easier to handle. On the other hand, an interactive method
has the potential to produce a model which is more adapted to the needs of the
engineers.

Compared to for example Israr et al. [46] and Jensen [49], our method
allows modeling of the task data-state. Modeling of data state allows a compact
model representation to express causality between jobs.

Our method does not assume the use of a specific programming language
(compared to Logothetis et al. [69, 70]).

Chapter 4

Recording-based automatic
modeling

In this chapter, we present a method for automatic modeling from recordings
of real-time systems. The method includes model generation as well as model
validation.

4.1 Notation
The set of positive integers is denoted Z, and the set of non-negative integers
by Z∗. We use the letter z to denote a typeless undefined value. Given a set or
tuple A we refer to a member a ∈ A using a dotted notation, e.g. A.a. Given
a vector v, we refer to the nth element of the vector as vn. Given a set S, |S|
denotes the cardinality of the set.

4.2 System model
This section is consistent with Section 2.1, where we discussed real-time sys-
tems. The definition is also compliant with state-of-practice real-time operating
systems (e.g., VxWorks), which motivates that the system model is relevant to
the current industry practice.

We assume that the system is a fixed-priority scheduled real-time system
with a set of single threaded tasks that execute programs. Inter-process com-

51

52 Chapter 4. Recording-based automatic modeling

Figure 4.1: The operating system process states, dotted transitions are not pos-
sible to probe with commercially available operating systems.

munication (IPC) queues are used for explicit communication between tasks.
Consecutive executions of a task (i.e. jobs of a task) are assumed not to overlap
in time. The real-time operating system maintains an operating system state
(OS-state) for each task, such that the later is in one of the following states: ex-
ecuting, ready to run, suspended, or blocked. Only one job at a time can have
the OS-state executing, and that task is granted access to execute its program
on the single shared computational resource (i.e. we assume a uniprocessor).
Figure 4.1 shows the possible transitions between OS-states. Assuming that we
have a probing support in the operating system as described in Section 2.4.5,
the dotted OS-state transitions are not possible to probe.

Jobs are either periodic (i.e., triggered with a known and constant period
time), or event driven (i.e., triggered by the receiving of new messages on a
given queue). A periodic task is in OS-state suspended when it is between
jobs. Tasks waiting for input on a FIFO-ordered1 IPC queue are in OS-state
blocked. Each task of the system can have a set of local variables (without loss

1FIFO: First In First Out.

4.2 System model 53

of generality assumed to be integers) that can be manipulated and constitute the
data-state of the task, which is modified by executing assignment statements.
The data-state is persistent over jobs of the task, and controls the execution be-
havior of the task, i.e. determines the branching, outputs, and data-state mod-
ifications. Note that the data-state includes messages received on IPC queues,
since we assume that messages are copied into local variables when they are
received by a task. There are no global variables.

We show a conceptual view of this system model in Figure 4.2. Note that,
in addition to what is stated above, the figure shows that tasks execute programs
(P) and that the current location in the program is given by a program counter
(pc).

We can summarize our system model by defining the system state as fol-
lows:

Definition 1 (system state). The set of system states SState for a system con-
forming to our assumptions is given by:

• SState ⊆ TState0 × TState1 × . . .× TStaten.

• TStatei is the set of task-states for task i given by TStatei ⊆ DStatei ×
PCi × IPCi.

• DStatei is the data-state of task i given by DStatei ⊆ dom(vi
0)×dom(vi

1)×
. . .× dom(vi

|V
i
|−1), where dom(v) is the set of possible values (the value

domain) of variable v.

• Vi is the set of data variables in task i, ranged over by v.

• PCi is the set of possible program counter values in the program Pi exe-
cuted by task i.

• IPCi is the IPC state of task i given by IPCi ⊆ list(q0)× list(q1)× . . .×
list(q|Qi|−1), where list(q) is a finite (possibly empty) list of messages
each carrying (without loss of generality) a single integer value.

• Qi is the set of input queues to task i, ranged over by q.

Note that it is outside the scope of this thesis to go into further detail of the
system model, such as defining the semantics of an execution.

54 Chapter 4. Recording-based automatic modeling

Figure 4.2: Conceptual system model.

4.3 Adding probes to the system model

The model extraction is based on recordings of the system. Probes are used
to extract information on a set of observables, i.e. specific events and their
properties. There is a set of obligatory probes to cover system-level events, and
an optional set to cover modifications in data-state. A probing configuration
or probing setup consists of the set of obligatory probes and a subset of the
optional probes. Thus, there can be several possible probing configurations for
a given system.

The system-level observables are context switches and system calls. The
optional observables are state-probes that record the assignment of values to
selected variables of those that represent the data-state in the system.

For the continued presentation, we shall assume that state-probes are used.
The state of the probed system is defined as follows:

Definition 2 (probed system state). The set of system states for a probed sys-
tem diverges from the states of the corresponding unprobed system (see Defi-
nition 1) in the following aspects:

4.4 Testing the probed system 55

• New local variables may be added such that Vi → V
′

i.

• The program is extended with probes (i.e. code that collects data) to
record observables such that Pi → P

′

i.

• As a consequence, the set of possible program counter values is extended
such that PCi → PC

′

i.

• Observables in recorded executions are stored in a global list GR, i.e.,
there is a global data structure GR in which the collected data is stored.

For model extraction as described here, the recorded executions (GR) rep-
resent the only available source of information on the execution of the system.
However, the properties of probing do not ensure that the information in GR
perfectly reflects the execution of the system. Hence, the relation between one
recorded execution and one execution of the system is not bijective; several
executions of the system can yield the same recording. Therefore, from our
recorded viewpoint, the system may appear to be non-deterministic (see Sec-
tion 2.5.1).

For example, only a subset of the data-state modifications to V
′

i is included
in GR, and the properties stored (e.g. describing an evaluation of v ∈V

′

i) can be
abstractions of the properties of the system event (e.g. a single value may be
used to represent a range of values). Also, the recorded time of e.g. a variable
update may be later than the actual update, since the probing (i.e. storing the
update in GR) is distinct from the actual update.

The model data-state is built from recorded updates to the set of probed
variables. Each model data-state is a projection of recorded values on the set
of variables included in the optional probing. Thus, a model data-state corre-
sponds to a unique evaluation of a subset of the variables in V

′

i, more specifi-
cally a unique evaluation of the probed variables.

4.4 Testing the probed system
A test is an execution of a system for a given test-case (i.e. a set of given
inputs over the execution of the system). The test-case places the execution in
a context, i.e., governs what is performed, what are the inputs, and what are the
expected outputs.

56 Chapter 4. Recording-based automatic modeling

Recordings with a given probing configuration are obtained by testing the
system. We will assume that the test is performed by applying one or several
test-cases defined by the user. The extracted model is strictly speaking valid
only with respect to the test-cases used to generate the recordings. We will
elaborate on model validity for other test-cases in Section 5.5.

The model is a projection of the system, characterized by the observables
included in the recording and triggered by the test-case. Relative to test-cases,
which are defined by the user, the model preserves the occurrence of observ-
ables and the approximate timing of these. Thus, if a task emits a job that
performs a set of observable events, the model can recreate these and separate
them in time as observed in the recording.

The model will always faithfully preserve the relative ordering of observ-
ables within jobs. In order to preserve the ordering of observables between
jobs (e.g. mode changes), the update events on data-state that control this or-
dering must be included in the recording (i.e. the event of performing a mode
change must be recorded). If this is not the case, the system may seem non-
deterministic from the viewpoint of the recording. Such non-determinism will
ultimately result in that the model will have probabilistic properties.

This thesis is not concerned with, and will not further elaborate on, how
tests are selected. Test selection is a research field of its own, see e.g. [28].

4.5 Background: ART-ML

We have chosen ART-ML (Architecture and Real Time behavior Modelling
Language) [4, 6, 116] as modeling language. The major reason for our choice
is the probabilistic properties of the language that seem to rhyme well with the
fact that observations may not be able to provide all details about the imple-
mentation.

ART-ML has been introduced to allow modeling of complex real-time sys-
tems. Each task is modeled individually, and a compiler and an FPS (fixed pri-
ority scheduling) simulator are provided. These tools allow a set of ART-ML
task models to be co-simulated, tested, and evaluated. The current simulator
mimics the VxWorks operating system version 5.5. In addition, the ART-ML
framework includes tools that facilitate efficient analysis of recordings: the
TraceAlyzer and the Property Evaluation Tool (PET). The intention is to facili-
tate a model of the system that can be altered in order to reflect the intrusion by
future changes to the implementation. It is assumed that it is easier to modify
the model than to modify the actual implementation. Thus, if the altered model

4.5 Background: ART-ML 57

task AAA
trigger period 1300
priority 254
deadline 1300

behaviour{
chance(60){
execute((20,100),(30,130),(50,200));

}
else{
execute((50,200),(50,210));
snd(MBOX0,0);
chance(50){
snd(MBOX0,1);

}
}

}

Figure 4.3: ART-ML example.

is successfully evaluated with respect to resource availability and temporal re-
quirements specifications, the confidence in the proposed implementation can
be increased. We believe that this will lead to less dead-ends and less ad-hoc
alterations in order to make the implementation answer to its requirements.

As the ART-ML model provides a very high-level view of the system, the
logic for selecting different behaviors might not be available in the model.
ART-ML solves this by providing a notion of probability such that runtime
selections can be resolved by chance. Relieving the model from much of the
implementation details moves the focus from low-grained functional issues to
architectural issues and temporal behavior.

4.5.1 Example

In Figure 4.3, we provide a small example of a task modeled in ART-ML.
Among the set of reserved words in ART-ML, the following subset is important
to the contents of this chapter (for a more detailed description, we refer to
[116]):

if, else: works intuitively, as in e.g. C or Java. Variables can be defined
and modified to provide input for the selection.

chance, else: a selection that takes a probability as input and makes a
choice based on that value during run-time.

58 Chapter 4. Recording-based automatic modeling

execute: taking a series of tuples (probability, execution time) as input,
the execute-statement can represent computation with varying execution
times.

snd, recv: provides means to perform inter-process communication.

4.5.2 The TraceAlyzer

The TraceAlyzer [6] provides a graphical interface to execution recordings that
can originate either from the system or the simulator. The viewer shows a
structured view of system execution including the task level probes. The tool
can be used to observe the behavior and the task interactions in the system.
The TraceAlyzer is successfully used at ABB Robotics today, where engineers
are reportedly grateful to the insight that the tool provides into their complex
system. Also, the tool is under evaluation at Bombardier Transportation.

4.5.3 The Property Evaluation Tool, PET

To compare differences between recordings, the PET tool [6] allows the spec-
ification of a set of queries and rules. Using PET, two recordings can be com-
pared with respect to the properties of given tasks in the recordings. Rules are
used to specify the requirements of the comparison.

For example, two recordings can be compared with respect to the response
time of task TA, which exists in both recordings. Rules can be set to require
that the maximum response time of TA does not exceed X time units for any of
the recordings, and that the relative difference between the median of the two
recordings’ response time distributions for TA is less than Y time units. The
tool allows for a set of properties with accompanying rules to be tested quickly
and effectively.

4.6 A process for automatic modeling
We introduce a process of model extraction that combines model generation
and model validation as described in Figure 4.4. The process of model extrac-
tion consists of a set of activities. There are five inputs to the process (these are
detailed with the respective step that uses them):

• The system implementation that is the subject of model extraction.

4.6 A process for automatic modeling 59

Figure 4.4: Our method of model extraction.

60 Chapter 4. Recording-based automatic modeling

• The test-case that defines the context in which the system will be mod-
eled.

• The validity properties which define the quality that the model should
have in relation to the implementation.

• The resolution threshold that defines the resolution that is required for
the probabilistic choices in the model.

• The reiteration threshold that defines the maximum number of reitera-
tions to be performed in order to find a valid model with a given probing.

The output of the process is the model, which is described by the ART-ML
modeling language [116].

The set of major activities and subprocesses in the process are described in
the following steps:

• Probing Analysis checks if there are any untried probing setups (referred
to as probing configurations), and evaluates the previous probing config-
uration (if any).

• Implementation Probing is responsible with choosing a probing configu-
ration and preparing the implementation, by inserting the relevant probes
so that required information can be obtained.

• Implementation Execution produces two set of recordings: one is used
to produce the model, the other is used to validate the model.

• Model Generation generates a model based on recordings from imple-
mentation execution.

• Resolution Analysis examines auxiliary output from model generation
to evaluate if the quality of the probabilistic choices in the recording is
sufficient.

• Resolution Comparison evaluates the result of resolution analysis with
respect to the resolution threshold.

• The Continue-step decides, based on the reiteration threshold, if the
search for a usable recording is likely to terminate or not.

• Model Validation evaluates the level of similarity between the model and
recordings from the implementation.

These steps are explained in more detail in the sub-sections that follow:

4.6 A process for automatic modeling 61

4.6.1 Probing analysis
The probe setup is the current configuration of probes in the implementation.
There is a minimal set of system-level probes that is required for model gener-
ation, and an optional set of task-level probes that can be added to improve the
produced model by recording the dynamic state of variables in the system. The
process of determining the members of the set of optional task-level probes
is a crucial part of model extraction; without these, the model obtained by the
process described here is essentially unable to express causal relations between
the functional behaviors of a task’s jobs.

As the set of variables used in the implementation is finite, there is of course
a finite set of possible probe setups, and these can be listed. Currently, this is
a manual step, but it is possible to automate at least parts of this step. Once
all probe settings have been tried unsuccessfully, it is concluded that model
extraction cannot be performed under current circumstances. The process is
then aborted, but it may be possible to adjust the parameters of the process and
make a subsequent attempt. The failure to complete the process may be due to
one or several of the following reasons:

• The validity properties are too restrictive for the non-determinism of dy-
namic inputs, etc., to the system.

• The probing required to capture the behavior of the implementation is
too demanding. In this case, the overhead of probing has lead to live
lock [35] in the system (i.e. as probing consumes too much resources,
the amount of relevant work performed is low).

• The probing analysis failed to find all alternatives during the probe setup
inventory in probing analysis.

• The implementation is not suitable for model extraction (e.g. the imple-
mentation does not conform to our system model).

The probe setup inventory performed by probing analysis is not (in any
way) affecting the performance of model extraction – it is just a matter of
whether there are more options or not. The analysis will consider the available
variables in the implementation, and the history of used probe setups.

4.6.2 Probes to add
If the probing analysis has identified probe setups that have not been tried yet,
the selection performed in this activity will lead to the fact that the probing is

62 Chapter 4. Recording-based automatic modeling

implemented in the “Implementation probing” activity. Otherwise, if there are
no untried probe setups, this instance of model extraction will fail as described
above.

4.6.3 Implementation probing
The subsequent model generation assumes that it is possible to probe both
system- and task-level events in the system. Probing of system-level events
(i.e. context-switches and system calls) are mandatory, and will allow the ex-
traction of a relatively crude and undetailed model of the system. In order to
refine the model, so that its behavior approaches that of the real implementa-
tion, task-level probes are added to extract information about the dynamic state
(i.e. variable values) of the system.

Recording the state in the system by using task-level probes allows us to
understand (and model) causality between jobs and events in the system – here,
causality describes the fact that one event in one job affects the continued ex-
ecution (i.e. the probabilities of future events and selections). Understanding
and being aware of these form of causal dependencies between actions and
reactions is fundamental to making good behavioral models; in our work we
allow causal dependencies to be reflected in the model generation by prob-
ing variables. Other possibilities to achieve a similar result are by using static
analysis of source code or evaluating advanced guesses about causal dependen-
cies between events, using hypothesis testing etc.

The set of variables that are included in the task-level probing limits the
quality of model extraction. However, excessive probing will lead to an unnec-
essarily high overhead in the system, and make the model more complex than
necessary – thus, a trade-off has to be made: the set of variables that are probed
should be sufficient, but the overhead of recording that set of variables should
be kept as low as possible.

Deciding on the appropriate probe setup is a non-trivial task. Thus, as this
activity will have such an impact on the final product, several iterations of the
model generation in the model extraction process are performed, to search for
an appropriate probe setup. Later in the process, a comparison between the im-
plementation and the model is used as an evaluation to determine if the model
from the current probe setup is sufficiently detailed. To reduce the number
of iterations of model generation in the model extraction process, the search
for an appropriate setup may use heuristic methods (such as those for memory
exclusive checkpoints as introduced by Plank [86]) to make suggestions for
variables to be included in – or removed from – the probing setup.

4.6 A process for automatic modeling 63

4.6.4 Implementation execution

The probed version of the implementation is executed twice, and two sets of
recordings recg

i and recv
i are thereby obtained. Informally, a recording consists

of a list of entries, where each entry has a type, a time stamp, and a set of
type-specific parameters. The first set of recordings will be used for Model
Generation (g), the second set for Model Validation (v).

The required length of the implementation execution is preset to some value
and can then be renegotiated by the resolution analysis.

4.6.5 Model generation

Our method for model generation has been described in earlier work [36]. We
provide a detailed explanation of the method in Chapter 5.

Model Generation operates on task basis and has three steps, the primary
output is an ART-ML model for each task:

1. For each task, all jobs are extracted from the set of recordings.

2. According to a set of rules, all jobs (except the first job) from each
recording are merged into a tree structure per task.

3. Each tree structure is transformed into an ART-ML model for the task.

The motivation for removing the first job of each recording in the second
step is that the first instance of a task tends to have a rather different behavior
compared to other jobs and it only occurs once in a recording. This provides
too little data to make accurate predictions. To model a behavior that only
occurs in the first instance of a task would require analyzing a multitude of
recordings in order to get a sufficient amount of data on execution times and
probabilities.

Model Generation is performed on both sets of recordings generated in the
implementation execution step. Apart from the primary output, which is the
ART-ML model based on recg

i , model validation uses the representation of
jobs from recv

i and the tree of collected jobs from recg
i .

4.6.6 Resolution analysis

The objective of resolution analysis is to determine whether recorded data is
sufficient to capture a model of the implementation in the current test-case. The

64 Chapter 4. Recording-based automatic modeling

analysis is made on parameters of the model to ensure that a longer recording
time is not likely to give any additional detail.

We argue that it is reasonable to assume that the complexity of the im-
plementation (and a given test-case), and therefore also the complexity of the
model, will affect the required length of the recordings reci. Resolution analy-
sis of the model is used to determine if the recording lengths used to obtain
recg

i are sufficient.
Basically, resolution analysis is performed by observing the probabilistic

assumptions of the model with respect to the resolution threshold criteria that
is supplied as input to model extraction.

The resolution threshold consists of two parts: the individual threshold,
which defines how many observations are required for each event observed,
and overall threshold, which controls how large part of the observed events
must fulfill the individual threshold.

If a sufficient number (defined by the resolution threshold) of parts of the
model has sufficient observations (defined by the resolution threshold), so as to
make it likely that all parts have been identified, the length used to obtain the
recordings is deemed sufficient – otherwise, the length is increased by some
factor C. Note that the value of C has no impact on the quality of the final
model, but it will effect the time required to successfully perform model ex-
traction, and the amount of memory required to house the recordings.

If the recording length is modified, the current iteration in model extraction
is back-traced to the point of the implementation executions. This is performed
with the new length, and the process is continued from that point on.

4.6.7 Resolution comparison
This selection acts on the output of the resolution analysis above. If the reso-
lution was deemed sufficient, model validation will commence, otherwise, the
future progress of model extraction is evaluated in the following selection.

4.6.8 Continue with increased recording time
As a consequence of the resolution analysis, it is possible to conclude a failure
of this instance of model extraction with the current probe setting (see Fig-
ure 4.4). If the decision by the resolution analysis to increase the length of the
recording does not help the resolution, we must abort this attempt, sooner or
later. It is the task of the current step to determine at what point the process is
no longer likely to succeed with its objective.

4.6 A process for automatic modeling 65

If the process seems unable to deem the resolution of the model fit under
current conditions, it is likely that the test context supplied as input to the
process is not restrictive enough. This will mean that the resolution analysis
is performed for the same i more than a predefined number of times, such
that the counter j exceeds a threshold value iterationmax. The optimal value of
iterationmax depends on the complexity of the implementation, the value of C,
and the initial length of the recording.

4.6.9 Model validation

Our method for model validation has been described in earlier work [37]. We
provide a detailed explanation of the method in Chapter 6.

We validate the fact that the recordings used to generate the model are suf-
ficient to describe the system by answering the question “Would the model
be drastically better if the length or number of recordings used during model
generation are increased?”. Automatic model validation uses a set of system
execution recordings to answer this question. The model and the recordings
are transformed into a set of communicating timed automata with integer vari-
ables [3, 10]. While the model-automaton is a graph structure that may contain
more than one transitions from each label, the recording-automata are all se-
quential with one or zero transitions from each label. The final state of the
recording-automata is the only state that hasn’t got any exiting transitions.
The validation is performed by reachability analysis of the final state in each
recording-automaton when co-simulated with the model-automaton.

To allow the model to be an approximate abstraction of the system, the
recording-automata are constructed using a leeway-parameter. The higher the
leeway, the more forgiving the recording-automaton will be. The maximum
allowed leeway can be supplied by the user as a parameter.

The stopping criteria of the validation is based on two factors: the com-
pleteness measure, i.e., the probability that the model can replicate any job that
the system can exhibit, and the accuracy measure, i.e., the relation between the
probability that the system exhibits a particular job and the probability that the
model exhibits an equivalent job.

Validation can provide the maximum required leeway, the completeness
measure, and the accuracy measure as auxiliary outputs. The primary output is
the binary answer to the question posed at the top of the section.

66 Chapter 4. Recording-based automatic modeling

4.6.10 Model valid

If model validation has succeeded, this will result in a successful termination of
the process, otherwise, probing analysis will evaluate the possibility to modify
the task probing.

4.7 Example

To explain the dynamics of model extraction, we present an abstract example:
For a system S, we are trying to extract a model M . During the course

of the extraction, we will investigate several prospective models Mi,j , where
i and j varies in the process as described by Figure 4.4. They are both zero
at the start of model extraction. Initially, we use a recording length l0 for all
execution recordings. This can then change as lj = l0 + C × j.

As a first step, probing analysis is performed to determine how many possi-
ble probing configurations there are in the system. If there are any, the selection
Probes to Add will then lead to Implementation Probing, where a probe config-
uration is chosen and implemented in the system. Thereafter, Implementation
Execution will yield two sets of recordings: recg

0 and recv
0 .

Using recg
0, Model Generation will yield M0,0, but also recv

0 is processed
as intermediate output from model generation of these two sets are later used
in Resolution Analysis and Model Validation.

After Model Generation, Resolution Analysis will examine intermediate
output to ensure that all parts of the model are based on a sufficient number of
observations (e.g. more than one).

Should Resolution Analysis conclude that the model is based on too few
observations, j will be incremented and Implementation Execution will be re-
performed with l1, l2, etc. This will yield models M0,1, M0,2, etc.

Eventually, else this probe configuration is deemed unusable after a total
of iterationmax attempts have been made, Resolution Analysis will be satisfied
and the selection Resolution Comparison will pass, leading to the commencing
of Model Validation.

If Model Validation fails, Probing Analysis will determine if there are more
probing configurations to try, and models M1,j , M2,j , etc. are generated from
there.

4.8 Discussion 67

4.8 Discussion
In this chapter, we have introduced our method for model extraction. The intent
is to allow automatic modeling for model-based impact analysis in the context
of legacy real-time systems.

Given this context, it is interesting to discuss the capability of a changed
model to resemble a changed system, keeping in mind that the model is based
on information obtained by some form of testing. Note that we have stated, on
Page 30, that results of testing cannot easily be extrapolated to other premises
than those under which testing was performed; the question that follows from
this is: is it then possible to assume that the model can be valid after that it has
been changed?

We argue that the question of validity applies only to the original model;
clearly, a changed model is no longer valid with respect to the original system,
but it may very well be valid with respect to the changed system (provided that
the change applied to the original model is a valid abstraction of the change
applied to the original system). In Chapter 8, we will examine the stability
of model extraction, which will evaluate its possibility to extract a model that,
when changed, is similar to the correspondingly changed system.

In the following two chapters, we describe in further detail two of the most
essential steps in model extraction: model generation and model validation.

Chapter 5

Model generation

In this chapter, we present a method for model generation, first introduced
under the name “model synthesis” [36]. Chapter 4 puts model generation,
presented in this chapter, within the context of model extraction.

5.1 Synopsis
Based on recordings of a running system, a model that can describe the ob-
served behavior is automatically generated. This allows for faster modeling
of existing systems, as compared to manual modeling, and reduces the risk of
introducing bugs in the model.

5.1.1 Assumptions
Apart from the implicit assumptions of the system model defined in Section 4.2,
we assume that the following are known for each modeled task:

• the priority of the task,1

• the unique identification of the task,

• the method of triggering a new job of the task (i.e. periodic or event
driven, see Section 4.2),

1It is possible to formulate an educated guess of task priorities out of recordings. Yet, for
brevity, we have chosen not to do so.

69

70 Chapter 5. Model generation

Event Abbreviation Parameters

Context switch (TA by TB) csw time, operating system
state of TA, unique
identifier (id) of TA, id
of TB .

Send to IPC queue: initialize sndi time, queue identifier.
Send to IPC queue: finalize sndf time, message.
Read from IPC queue: initialize rcvi time, queue identifier,

timeout.
Read from IPC queue: finalize rcvf time, message.
Variable assignment vas time, value, variable

name.

Table 5.1: Events and their parameters in the recording.

• the IPC queue that triggers new jobs, in case the task is event driven,

• the operating system’s task-state (OS-state) that signifies blocking of a
periodically triggered task (i.e. the end of the current job), and

• the initial values of monitored variables.

For each event, a set of parameters, as described by Table 5.1, is logged.

5.1.2 From recordings to ART-ML models

The input to model generation is a set of recorded executions (recordings).
Informally, each recording is a non-empty list of entries that originate from
probes triggered by the execution of a system. Each entry has a time stamp
that indicates the time elapsed from the start of the system execution, an event
type, and a set of parameters that describe some attributes of the type.

Our model generation consists of the following three sequential steps:

1. Extraction of task executions (jobs) from recordings. Here, record-
ings of the system are separated into observed task executions, and jobs
of the task are identified and described.

5.1 Synopsis 71

2. Generation of a tree-representation of the task, from the jobs. In this
step, the jobs of each task are collected and, according to a set of rules,
merged into a treelike-representation.

3. Generation of ART-ML code from the tree-representation. Here, the
model code is generated from the tree-representation (the tree is folded
into a timed and probabilistic automaton).

Each step in our model generation represents an increased abstraction of
the system in the sense that the set of task behaviors (i.e. timed sequences
of observables) represented in later steps are supersets of behaviors in earlier
steps. The first step separates the cooperative execution of tasks into the jobs
of individual tasks. The second step forms a compact tree-representation of the
jobs observed; while the ordering and characteristics of observed observables
is preserved, timing properties are abstracted by grouping similar execution
demands. In the third step, as the model code is generated, the timing properties
are further abstracted. Also, if the optional state-probes provide insufficient
data for separation of the possible task behaviors, probabilistic selections are
introduced and the ordering of jobs is abstracted.

These three steps are explained in detail in the following sections and algo-
rithms are provided in Appendix A.

5.1.3 Example

We introduce a small example implemented in C that will guide the explanation
of the three steps of model generation (see Figure 5.1). There are three tasks
in the example: TA is periodically triggered, and transmits IPC messages to
trigger TB , and TC is the idle task, which executes with the lowest priority.
IPC messages are sent by the function IPCsend, and received by the function
IPCreceive (no timeout is assumed for this function, which is realized by
setting the timeout parameter to infinity). Data-state probing is performed by
calling the function record_var with an identifier for the variable and the
evaluation of the variable. We assume that the idle-task TC is executing at the
start of the system.

72 Chapter 5. Model generation

Figure 5.1: Example with three tasks, TA sends messages to TB .

5.2 Extraction of task executions (jobs) from rec-
ordings

As indicated in Section 5.1.2, a recording is a non-empty ordered sequence
of entries: 〈entry0, entry1, entry2. . . entryn〉, where each entry describes
an observed event in the execution, together with the time when the event oc-
curred. Each event is described by its type and parameters, as presented in
Table 5.1.

The currently considered events in EventType are given in Table 5.1.
More system calls or other event types could be added.

As a first step in model generation, we analyze recordings collected from
the system that is to be modeled. These are analyzed on a task-basis (using

5.2 Extraction of task executions (jobs) from recordings 73

recordings of context switches to differentiate between tasks). The objective
of the analysis is to identify all jobs and the events occurred in each job, for all
tasks.

While doing this, we need to resolve the following:

• Find the recording entries signaling the starts and ends of jobs.

• Build and represent the model data-state.

• Identify events, actions and action parameters.

5.2.1 Example revisited – recording

A possible recording of our example is displayed in Figure 5.2. This is a typical
example of input to the model generation.

At context switches, the OS-state of the preempted task is recorded, the
first task identifier is the preempted task, and the second task identifier is the
preempting task. Thus, at time 0, TC is preempted by TB .

5.2.2 Finding the starts and ends of jobs

Using knowledge of the triggering method of each task (see our assumptions
in Section 5.1.1), we can determine the start and end of the jobs of each task in
the recordings, in the following manner:

• If the triggering method is periodic, the logs of the recording are an-
alyzed to determine the end and start of jobs based on the OS-state at
context switch (csw) events. For a periodic task, transferring from ex-
ecuting to suspended signals the end of a job. Under our assumptions,
the start of a periodic job cannot be exactly determined, but the start of
a job is in the interval defined by the time of the end of the last job, and
the time of the csw event that occurs when transferring from ready to
executing.

• In case of event driven triggering, the end of a job is signaled by a Read
from IPC queue: initialize (rcvi) event, such that the queue identifier
parameter is the triggering IPC queue of the task. The start of the next
job is then signaled by the first subsequent event, with action of type
Read from IPC queue: finalize (rcvf) of that task.

74 Chapter 5. Model generation

Figure 5.2: A possible recording from the example.

5.2.3 Distinguishing jobs with different initial data-state

In the model generation it will be important to distinguish jobs with different
initial states (i.e., with different initial variable values). For obvious reasons,
here, it is only possible to consider the observed variables.

From the definition of model data-state on Page 55 we can define the task
model data-state for task i to be a corresponding projection of the observed
variables of task i. To distinguish jobs with different initial task model data-
state, we will label each event of the job with this state. Later on, these labels
will be used as identifiers for classes of jobs that can be joined in the model
generation, as will be explained in Section 5.3.

5.2 Extraction of task executions (jobs) from recordings 75

Action type Abbreviation Parameter

Send to IPC queue snd state, previous message, queue
identifier, message

Read from IPC queue rcv state, previous message, queue
identifier, timeout

Variable assignment upd state, previous message, value,
variable name

Execute exe state, previous message, time
consumption

End job end state, previous message, suspen-
sion time

Table 5.2: Members of the set Actions and their action parameters in a recseq.

Definition 3 (TaskModelDataStates). Given a task i and a set {vi
0, v

i
1, . . . , v

i
n}

of probed local variables a task model data state s is a unique evaluation of
these variables, i.e. s ∈ dom(vi

0) × dom(vi
1) × . . . dom(vi

n). We denote the
set of possible such states TaskModelDataStates.

5.2.4 Identifying remaining events, actions and action para-
meters

Between the start and end of jobs, we identify the events that constitute the
observed behavior of the job. We define an event as follows:

Definition 4 (event). An event o ∈ Events is a tuple 〈a, s〉 where a is an
action in the set Actions with action parameters as described by Table 5.2, and
s ∈ TaskModelDataStates.

In order to compile a description of each job, the events of jobs are ex-
tracted from the recording; two events sndi and sndf as defined in Table 5.1
are joined and a single event with action type snd as defined in Table 5.2 is
formed. A corresponding operation is performed to identify events with ac-
tions of type rcv. Events with actions of type exe are inserted as needed be-
tween other events, to account for the execution time spent.

Most of the parameters, except data-state, execution demands, previous
message, and suspension time, are given from the recording via direct transla-
tion from event parameters. Exceptions are handled as follows:

76 Chapter 5. Model generation

• Handling of model data-state is consistent with Section 5.2.3. The initial
state is derived from the initial values of variables (see our assumptions
in Section 5.1.1) and the subsequently performed Variable assignment
(vas) events, such that each variable in the model, which has vas events
present in the recording, is represented.

• We identify the execution demands of each task in terms of accumu-
lated execution time between non-context switch events. Measuring the
time elapsed between recorded events in the tasks, and using the context
switch information to subtract time spent on executing other tasks, we
derive execution demands between each system level event such as send,
receive, variable assignment, and end.

• Messages received in communication with the environment or with other
tasks (i.e. by inter-process communication) are included in the previous
message parameters of all event types. To introduce the knowledge of
communication, we let the event immediately subsequent to the event
with the receive action contain information on the content of the com-
munication.

• The suspension time is only relevant for periodically triggered tasks. In
this case, the suspension time is the time elapsed between the end of one
job and the start of the next consecutive job.

5.2.5 A set of jobs of a task
The information extracted in the above is stored in an intermediate format
called recseq (short for recorded sequence), see Definition 5. Intuitively, a
recseq is a serial list of jobs, which are defined in Definition 6. The recseqs
from a set of recordings can be concatenated into one recseq.

Definition 5 (recseq). A recseq is a list of jobs j ∈ ObservedJobs ranged
over by R.

Definition 6 (ObservedJobs). A job j ∈ ObservedJobs is a non-empty list
of events o ∈ Events, for which each event with exe action must be succeeded
by an event with another action, and for which an event with end action cannot
have a successor, and all jobs end with an end action.

Intuitively, a job is a list of events. At the end of each job, there would be
an end-event. This event is inserted when generating the recseq.

5.2 Extraction of task executions (jobs) from recordings 77

5.2.6 Example revisited – recseq generation

Concerning the recseq for TA based on the recording in Figure 5.2: Knowing
that TA is periodically triggered, we can determine that the first job of the
task starts at time 2, as TB is blocked on a receive on IPC queue Q. As the
initial value of variable a is 0, all events in this job of the recseq will have the
TaskModelDataStates a=0. The task executes for 8 time units (tu), before
variable a is assigned the value 1 at time 10. Thereafter, a send to IPC queue Q
will trigger TB to preempt the task until time 25, when the send is completed.
After executing for a small amount of time, the job is ended as the OS-state
goes to suspend. We measure the suspension time to be 100 time units (tu).
In a more complicated example, the suspension time could be larger than this,
but model extraction ensures that repeated measurements are made so that the
minimum measured suspension time approaches the real value as expressed in
the code of the task.

We find a series of ObservedJobs for TA as described in Figure 5.3.
The way in which we handle model data-state in the recseq is justified by

the recseq generated for task TB (see Figure 5.4 for a partial recseq): We dis-
play two identified behaviors, the only significant differences between them
being the initial data-state of the jobs and the values assigned in events with
action upd. Separation of these is not readily available for the events that dif-
fer, it is the data-state at the beginning of the job that determines which of
the two behaviors is performed, but that data-state has been overwritten at the
differing event. In the next step of model generation, we will generate a tree-
representation based on the recseq. To maintain a small tree-size, recseq nodes
with different data-states may be grouped in the same node of the tree. There-
fore, we must be able to separate the two jobs even if a prefix of the jobs is
located in the same path of the tree. By keeping the initial state all through
the job, we ensure that the tree-representation cannot express the unobserved
behavior, i.e., the beginning of the first job, and the ending of the second.

In general terms, we can describe this as follows: assume a recseq with
two jobs {A,B} for a task where state-probes cover at least one variable. Job
A consists of a prefix X with data-state a, followed by an update-action trans-
ferring the data-state from a to c, and a postfix Y . Job B consists of a prefix
X with data-state b (b 6= a), followed by an update-action transferring the
data-state from b to c, and a postfix Z (Z 6= Y).

When generating the tree-representation, the prefixes will be in the same
path of the tree. Our handling of model data-state ensures that only the prefix
with data-state a can lead to the postfix Y , and only the prefix with data-state

78 Chapter 5. Model generation

Figure 5.3: A recseq of TA.

5.2 Extraction of task executions (jobs) from recordings 79

Figure 5.4: A recseq of TB .

80 Chapter 5. Model generation

b can lead to the postfix Z.

5.3 Generation of a tree-representation of the task
from the jobs

When all jobs have been compiled for a task, the next step is to compile a
unified representation of the task that contains all information accumulated in
the recseqs. These are combined to form a set of trees as follows:

We introduce the tree-structure modset to unify the collected recseqs of a
task. Each modset is a set of modtrees as defined below:

Definition 7 (modtree). M is a set of modtrees ranged over by T , whose ele-
ments are given by 〈id, S, a, T, c〉, where:

• id is a unique identifier,

• S ⊆ TaskModelDataStates is the set of valid observed data-states for
the modtree T ∈ M,

• a ∈ Actions is the action of the modtree T ∈ M,

• T ⊆ M, the set of successors, is the ordered list of the alternatives for
subsequent execution after a has been performed, and

• c is a counter.

Intuitively, a modtree performs an action, can have a set of successors, and
is guarded by a condition on variables local to the task.

The use of modset in conjunction with modtrees allows a modset to have
more than one first action of a job.

Definition 8 (modset). A modset is a set of modtrees.

In the modset, nodes of the tree have actions describing execution and sys-
tem calls (execute, send, receive, data-state update, or end of a job), and action
parameters of these nodes describe the detail of the particular action (time,
queue, etc.) as described by Table 5.3.

There are three differences between the different action parameters of the
modtrees compared to the parameters of the events in recseqs: First, the data-
states of all recseq-actions that comprise a modtree are added to a set of valid

5.3 Generation of a tree-representation of the task from the jobs 81

Action type Abbreviation Parameters

Send to IPC queue snd states, previous message, queue
identifier, message.

Read from IPC queue rcv states, previous message, queue
identifier, timeout.

Variable assignment upd states, previous message, value,
variable name.

Execute exe states, previous message, collec-
tion of time consumptions.

End job end states, previous message, mini-
mum suspension time.

Table 5.3: Action types and their action parameters in a modset.

data-states for that branch. Also the number of occurrences of different data-
states are recorded. Second, each modtree with an execute action represents
execution times as a collection of values and associated data-states, rather than
a single value. Third, the minimum suspension time parameter in modtrees with
end actions represents the minimum suspension time found in the correspond-
ing recseqs.

These differences are due to that each modtree in the modset is a compact
representation of possibly several events from several recseqs.

5.3.1 Making the tree
To make a transition from a serial structure such as recseq, to a tree structure
such as modset, rules to determine if two events in the recseq should be in the
same node in the modset are required. The goal is to construct a minimal tree
such that each path of the modset represents a job of the task. For two events
to be placed in the same node of a tree, their predecessors in the job must be in
the same path of the tree, and the two events must be equal. If the equality of
events can be determined, constructing the smallest tree is straightforward.

Two recseq events are equal iff the distinguishing parameters of their re-
spective action are syntactically equal.

Depending on their action types, different events have different distinguish-
ing parameters as described in Table 5.4. We may then proceed to construct the
smallest modset that can represent the set of job-sequences while respecting

82 Chapter 5. Model generation

Action type Distinguishing parameters

snd Action type, unique queue identifier, message, and the pre-
vious message.

rcv Action type, unique queue identifier, timeout, and the pre-
vious message.

upd Action type, unique variable identifier, value, and the pre-
vious message.

exe Action type, type of the immediately subsequent action,
and the previous message.

end Action type.

Table 5.4: Distinguishing parameters of action types.

that only equal recseq events are located in the same node of the modset.

5.3.2 Example revisited – modset generation

In the recseqs of TA, we find four different behaviors (see Figure 5.5). Three
of these are dependent on the value of variable a, and one is not dependent
on the data-state. Based on the distinguishing parameters, we can determine
that all recseqs start with an event with action-type exe, followed by an event
with action-type upd. Since this is all that is required for determining equal-
ity between these events, they are grouped into one node in the modset. The
TaskModelDataStates of the upd-node will contain all three possible data-
states for variable a: a=0, a=1, and a=2. Thereafter, each recseq performs
an update, but since the value of the update differs between three different
behaviors, branches are introduced in the modset such that three behaviors are
separated. One of these behaviors is subsequently branched into two behaviors.
Since both behaviors of that branch has the same initial data state, the branch
is not depending on the data-state and will give rise to a chance-selection in the
ART-ML model. Note that the modtrees are supplied with an identifier ranging
from a to s.

5.4 Generation of ART-ML code from the tree-representation 83

Figure 5.5: A modset of TA.

5.4 Generation of ART-ML code from the tree-
representation

Now that the modset has been formed from the collected set of recordings, we
are finally ready to generate the model. This step includes representation of
execution times and handling of selections based on data-state or probability
as explained in the following.

5.4.1 Representing execution time

In comparing instances of different Execute-actions when constructing the fi-
nal modset, the time spent on execution is not considered as a distinguish-
ing parameter. Instead, as data is collected and many versions of the same
execution-type modtree are discovered, these will be represented by a distrib-
ution of execution times. In this way, the size of the modset is reduced at the

84 Chapter 5. Model generation

cost of precision.
When the ART-ML code is generated, the model should express this distri-

bution in some descriptive manner that allows the model to behave temporally
similar to the modeled system. This is indeed an important factor that has a
large effect on the perceived resemblance between the behavior of the model
and the behavior of the modeled system.

We could imagine several ways in which these distributions could be rep-
resented, and the final choice is inherently dependent on the capabilities of the
modeling language.

In ART-ML, an execute statement represents execution time distributions
as a set of pairs 〈ET, P〉, where ET is an execution time value and P is the prob-
ability of the execution time based on its occurrence ratio in the distribution.
Given that limitation, we have chosen to limit our representation of execution
time distributions to five execution time samples: The minimum value, the 25th

percentile, the median, the 75th percentile, and the maximum value. Probabili-
ties for these are used to describe the distribution over the sequence.

5.4.2 Introducing if- and chance-selections in the model

In ART-ML, there are two fundamentally different selections available: the
chance- and the if-selection. The first is based on probability, and the second
is based on model data-state. If a division of behaviors can be determined
from the available model data-state and received IPC messages (i.e. the previ-
ous message parameter of events in the modset), ordinary if-selections will be
inserted in the place of chance-selections.

The following deals with how to make the conversion from the modset to
the ART-ML code:

From hereon, the model data-state of a modtree and the previous message
parameter of the action of the same modtree are collectively referred to as
model-state. We use a notion of state-pairs defined as follows:

Definition 9 (state-pair). A state-pair is a pair 〈S, B〉, ranged over by sp, where
S is a set of model-states and B is a set of modtrees.

To extract ART-ML code for a set of modtrees M ranged over by m, we
follow the three steps below:

1. Initially, for each unique model-state s in M , there is a state-pair sp such
that sp.S = {s} and sp.M = {∀m ∈ M : sp.S ⊆ m.S}. As modtrees that

5.4 Generation of ART-ML code from the tree-representation 85

may have several model-states and several modtrees can share model-
state, each modtree may occur in several state-pairs.

This set of state-pairs is referred to as SingleStateSP.

2. Thereafter, all state-pairs sp ∈ SingleStateSP with equal sp.B with re-
spect to distinguishing parameters are merged into a single state-pair.

The set of new state-pairs is referred to as SP.

3. Finally, traversing all the modtrees in each member of SP, the ART-
ML model is extracted. Between the state-pairs sp ∈ SP, if-selections
are introduced. Note that the conditions of the if-selections are based
on the model-states and the updates performed previously in the task.
Within each state-pair sp ∈ SP, chance-selections are formed in between
branches in sp.B. The probabilities of chance-selections are calculated
based on the number of recseq events that the modtrees in the selection
are based on (i.e. the c-parameter of the modtrees in the selection).

These three steps are performed recursively on all sets of modtrees in the
modset. When branches with update actions are encountered, the details of
these actions are passed on to the subsequent branches of the modtree.

5.4.3 Example revisited – ART-ML generation
In Figure 5.6, we show both the SingleStateSP’s and the SP’s for all sets of
modtrees in the modset. The first row is the root of the modset, which is {a}.
The next row is a.T = {b, g, l}.

The sets of state-pairs that are most interesting are those for the modsets
{a}, {b, g, l}, and {n, q}: For {a}, the SingleStateSP contains three items, one
for each model-state. Since all items sp in SingleStateSP has the same sp.B,
this is then reduced so that SP only contains one item. Hence, this will not
result in a branch in the ART-ML code. In {b, g, l}, such reduction cannot be
performed, and since there are more than one element in the set SP, this will
result in an if-else branch. Reduction is not possible in {n, q} either, but since
there is just one element in the set, we cannot introduce an if-else branch to
separate the modtrees. Instead, the set of state-pair will result in a chance-else
branch.

We display the finished ART-ML code for task TA in Figure 5.7. We have
marked the scope of the two branches in the model. The if-else branch is
due to the difference between nodes {b, g, l} in the modset. The chance-else

86 Chapter 5. Model generation

Figure 5.6: State-pairs for TA.

5.4 Generation of ART-ML code from the tree-representation 87

Figure 5.7: ART-ML model for TA.

88 Chapter 5. Model generation

branch is due to the difference between nodes {n, q}. Observing the code of
the task, we notice that the chance-else branch could be replaced for an if-else
branch by including the task’s variable b in the optional state-probing. In this
example, we have omitted the details of execute statements and the probability
calculation for the chance-else branch.

5.5 Discussion

In this chapter, we have presented automated model generation from recordings
of real-time systems. There is a number of issues with the current version of
the model generation, some possible to amend, some inherent in the approach.

The input to model generation is recording. Hence, model generation is
subject to the problems described in Section 2.4. Further, we cannot ensure that
the model generated describes the implementation in every aspect (compare to
the completeness problem, Section 2.5.1). This could be partially amended
by combining the tool with a static model generation as in [5], or by using a
limited amount of manual modeling.

The test-cases determine the context of the model, and in the same way that
a photographer cannot take a picture from a new perspective without seeing it,
model generation cannot make a model for a new test-case without executing
it. One model could however include a set of test-cases, in which case the
optional state-probes should be used to distinguish disjunct behaviors.

Obtaining an accurate measure of the start of a job is often difficult. Re-
garding periodically triggered tasks, the quality of the measure is given by
the probing technology used: an observability problem (see Page 28) is often
present as the probes cannot see exactly when a task is placed in the ready-
queue of the operating system, but see only when it receives its first time quanta
to execute (see Section 2.4.5 on operating system probing support). Regard-
ing event triggered tasks, depending on how the probing was realized, the first
event of the task is either a preemption event or a read from IPC queue, initiate
event (see Table 5.1).

The drawback with the optional state-probes is that their use normally re-
quires access to the implementation code and the possibility to modify it – the
mandatory probes on context-switches and system calls can be added in an
operating system abstraction layer. Modifying the source, however, requires
a white-box rather than a black-box view of the implementation. Addition-
ally, there is also significant risk that the probing activity is flawed; if a subset
of state-updates are missed, this can lead to bad models. It may be possible

5.5 Discussion 89

to avoid these problems if the application is using a data-base such as that de-
scribed in [82]. In such a system, the data-base can be accessed by an observing
probe transparently from the system and without treating the system as a white-
box. However, without the ability to use the source code as guide, it could be
difficult to find the most suitable set of variables to record. The options are to
either perform an exhaustive search, or to use profiling to find variables that
are modified in patterns that are representative of their importance (e.g. once
per job).

Currently, we only support two system calls: send and receive over inter-
process communication queues. This is indeed a limiting factor, but we expect
no problems in extending our method to support other system calls such as
semaphore operations etc.

Further, the probabilistic nature of the models may lead to that worst case
execution times are over or under estimated, and that best case execution times
are under estimated: Imagine a trace through the model of a task that passes
two execute-statements in the same job of the task. In the real implementa-
tion, it may be that executing for example a low time-count in the first execute-
statement will lead to that the second statement must execute a high time-count.
This implicit knowledge is not necessarily incorporated in the model, which
is why the distribution of modeled execution times may cover a larger inter-
val than what is actually possible in the running system. This can of course
be amended by incorporating the optional state-information into the recording
effort, but requires relevant variables with respect to task control-flow to be
identified and included in the probe configuration.

Chapter 6

Model validation

As the model generation phase of model extraction may have to be iterated in
order to find an appropriate probe setting and a suitable recording length that
result in an acceptable model, efficient automatic modeling requires automated
model validation. This chapter shows how to perform validation by testing
the generated model of each task (in the form of a modset) against a new set
of recorded traces (a set of recseqs) obtained by recording the execution of
the modeled system. The test serves to determine whether more, longer, or
more detailed traces are needed for model generation to produce models of the
required quality. To this end we need techniques to compare the modset with
the set of recseqs.

The necessary techniques can be found in automata theory; model checking
allows us to compare the two, since it is possible to formulate the inclusion
checking as a reachability problem.

To achieve our goal, we can either translate recseq and modset into cor-
responding timed automata, or develop new tools suited for our existing data-
structure. We choose the first option as we believe it is the least demanding.
As a part of our solution, we will evaluate if pairs of intervals overlap. Timed
automata allow a simple notation for specifying such evaluations. Therefore,
we choose to develop a translation from recseq and from modset to timed au-
tomata.

We follow the definitions of timed automata by Bengtsson et al. [10], which
extends Alur and Dill’s original timed automata [3] by adding integer variables
(see Section 6.3.1). Using integer variables allows for expressing causality
between jobs (for example modeling mode changes) and for communicating

91

92 Chapter 6. Model validation

action-properties between automata.
The two types of automata are constructed so that the automaton for the

model of a task (a modset) is a tree-like structure, whereas the automaton for
each recording (each recseq) is sequential. A proof that the recorded traces
are contained in the model is constructed by using model-checking to verify
the reachability of the final state of each trace automaton when composed with
the model automaton. The objective is to show that the sequences of actions
and action-properties in the recseqs do not contradict the modset. The modset
is discarded if any of the tests fail. Otherwise, we conclude that the model is
valid. Properties of the set of recseqs determine the validity measure: the level
of confidence that can be placed in the final model.

Previously, model validation has been a manual process performed by peo-
ple with knowledge in the system and/or in the modeling language. Balci [8]
suggests a range of manual approaches for validation out of which this chapter
automates one: Predictive validation, in which the model is provided with au-
thentic inputs and its output is compared to that of the system. In this thesis,
we implement this by extracting and analyzing intermediate data from model
generation. Other manual methods for model validation have been presented
by Sargent [92].

Similar to the work presented here, Szemethy and Karsai [106] present a
method for translating their handmade SMOLES models of component based
real-time systems into timed automata as a step in model-based development.
Shu et al. [97] provide an automated translation from their extended version
of UML to timed automata. Contrary to our work, the goal of both Szemethy
and Karsai and Shu et al. is to perform system validation rather than model
validation. Further, their work does not consider models with data state, and
queries performed on the model have to be tailor made for the specific system.

6.1 Validating the selection of recordings

In order to achieve automated model validation in the way described here, we
need to address the following 3 major issues:

A. Obtaining the automata. We need a translation from the modeling lan-
guage to timed automata and from traces to timed automata.

B. Stopping criteria. It must be possible to determine when a sufficient con-
fidence in model validity has been established.

6.2 Allowing leeway as a precision parameter 93

C. Allowing leeway. Since the model is meant only to be an abstraction of the
system that is modeled, the model should be allowed to differ slightly
from the traces. The validation must be able to allow a user-defined
leeway parameter for the model with respect to the system. A variable
leeway will provide the user with the ability to decide the granularity of
the solution taking into account the constraints on cost and effort as well
as the precision necessary for the intended use of the model.

Since the solutions to C influence the solution to A, we present our solu-
tions in the order in which they appear in our approach.

6.2 Allowing leeway as a precision parameter

A useful model should be an abstraction of the system it models. Since we
are primarily interested in modeling real-time systems, this requires the model
to be an abstraction of the system with respect to timing properties. Being an
abstraction, the model cannot be a perfect reflection of the system; rather, it
should provide a similar behavior while being significantly less complicated
than the modeled system.

We choose to realize the abstraction, or leeway, by relaxing the timing
requirements in the timed automata for recseq, thus providing the ability of
passing validation even though the model does not exactly correspond to the
modeled system. This could be implemented in several ways: According to de-
finition, each execute statement in the recseq is based on a single observation
in an execution recording of the system. Each such time observation could be
manipulated with some function to describe a wider span than that single ex-
ecution time. This would relax the requirements posed by guards on edges of
the recseq-automaton that represent execution requirements. One example of
such a function is to use percentages (i.e., each time observation t is replaced
with the interval (t− t× p, t+ t× p), where p is a percentage). Another possi-
bility is to allow a number of mismatches; e.g., for a recseq of X events, Y of
these are allowed to lack correspondence in the modset. That would however
require a more complex recseq-automaton than in the previous example.

In our implementation, we take an even simpler approach by replacing each
time observation t in the recseq with the interval (t− pp, t + pp), where pp is
a user supplied precision parameter.

94 Chapter 6. Model validation

6.3 Obtaining the automata
Our method for model validation requires that a modset and a set of recseqs
can be transformed into communicating timed automata. Once that is achieved,
the modset-automaton can be paired with each recseq-automaton. Each pair is
composed in parallel, and a reachability test is performed for the last location
in each recseq-automaton.

To obtain the two automata required, we need algorithms to perform the
transformation. We present such algorithms in Appendix B. Below, we de-
scribe these algorithms abstractly.

6.3.1 Timed automata
Timed automata was introduced by Alur and Dill [3]. Tools such as UP-
PAAL [11] and KRONOS [18] provide verification of systems of timed au-
tomata models through model checking of properties formulated in some tem-
poral logic (e.g. TCTL [2]).

Being a kind of automata, a timed automaton is essentially a set of nodes
and edges, where the edges connect the nodes in some pattern (each edge has
exactly one source and exactly one destination). One of the nodes is the initial
starting node from which traversal of the automaton can proceed to adjecent
nodes, such that exactly one node is the current node at any given time. As-
sociated with each edge is a guard that states the (temporal) conditions that
must be fulfilled if the edge is to be taken and an action that can be used to
synchronize with other automata.

We conform to a definition of timed automata as introduced by Alur and
Dill [3], extended with integer variables by Bengtsson et al. [10]. However, our
application of timed automata requires only a subset1 of the original work:

Definition 10 (timed automata). Let C be a finite set of real-valued variables
ranged over by c and d. Let W be a finite set of variables with values in
Z∗ ∪ {z}, ranged over by x, y and z. Let Σ be is a finite alphabet of actions
including the internal ε-action, ranged over by a and b.

Let B(C) be the set of clock constraints of the form: c ≤ n, c ≥ n, c− d ≤
n, or c− d ≥ n, where c ∈ C, d ∈ C and n ∈ Z∗.

Let B(W) be the set of variable constraints of the form: x = n, or x− y =
n, where x, y ∈ W and n ∈ Z∗.

1We do not use invariants or urgent locations, and the clock and variable constraints are sim-
plified.

6.3 Obtaining the automata 95

A timed automata A is a tuple 〈Locations, l0, Edges〉 where:

• Locations is a finite set of locations,

• l0 ∈ Locations is the initial location,

• Edges ⊆ Locations×Locations×B(C)∪B(W)×Σ× 2C ∪ 2W×Z∗

is the set of edges.

Intuitively, a timed automaton with integer variables is a finite state ma-
chine with integer variables and real-valued clocks. Clock values are increas-
ing over time, but individual clocks can be reset at any time. The value of
integer variables can be changed instantaneously at any time. Associated with
edges, guards are postulated and must be respected on transition over edges.

We write l
g,a,r−→ l′ with 〈l, l′, g, a, r〉 ∈ Edges, where g is the constraint, or

guard of the transition, a is the action that caused it, and r is the clock reset and
variable update performed during the transition. Normally, ε is used to denote
the internal action, which cannot synchronize with other automata. In many
tools and representations, an action is associated with an exclamation mark to
signal that it wants to perform a synchronization, or a question mark to signal
that it offers a synchronization.

6.3.2 Example

To complement the presentation in this chapter, we continue the example from
Chapter 5. In the current chapter, we focus on the validation of the periodically
triggered task TA, for which the recseq-automaton is displayed in Figure 6.1,
and the modset-automaton is displayed in Figure 6.2.

Note that names of locations are noted next to each location (e.g. L5), and
that the initial location has a circle inside it (e.g., L0 in Figure 6.1).

As a concrete example of possible transitions from one location to another,
consider the edge from L2 to L3, in Figure 6.1. This edge defines that tran-
sitions from L2 to L3 are possible while the internal clock c_t is less than 6.
If the transition is performed, the internal clock c_t is reset. For the transition
to be performed, there must be a second automata that offers the action snd?
(e.g., the edge between L1 and L4 in Figure 6.2).

96 Chapter 6. Model validation

Figure 6.1: A timed automata representation of part of the recseq in Figure 5.3,
using a precision parameter of 5.

6.3 Obtaining the automata 97

Figure 6.2: A timed automata representation of the modset in Figure 5.5.

98 Chapter 6. Model validation

6.3.3 General automata structure

A recseq-automaton consists of serial string of locations connected by edges:
The initial location has no entering edge; i.e., there is no edge l

g,a,r−→ l′ for the
initial location l′. Each node has at most one outgoing edge; i.e., there is at
most one edge l

g,a,r−→ l′ for a given location l.
A modset-automaton is a simple graph: The initial location is the only

location that can be reached from more than one location. Each path with an
edge exiting the initial location can always reach the initial location.

As described in the previous chapter, there are five different action-types in
recseqs and modsets: Send to IPC queue (snd), Receive from IPC queue (rcv),
Variable assignment (upd), Execute (exe), and End job (end). The language
of the automata is defined as Σ = {ε, snd, rcv, upd, end}. Hence, the action-
type exe is not included (since each exe is translated to clock constraints, as
explained below).

Out of the five action-types, snd, rcv, and upd will generate one edge in a
recseq-automaton per occurrence. An occurrence of an exe-action in the recseq
will not generate any edge in the automaton by itself, but the minimum and
maximum of the execution-time distribution for the action is included in the
guard on a local clock for the subsequent action (e.g., the edge between L4 and
L8 in Figure 6.2). An occurrence of an end-action in the recseq will generate
two edges in a recseq-automaton with the action end. The first of these edges
checks possible execution time, and the second checks possible minimum sus-
pension time as well as updates of the model data-state. Furthermore, the local
clock is reset at every edge.

The modset-automata is constructed very similarly to the recseq-automata,
but with two major differences: First, the modset-automaton does not add
leeway to the execution-time guards on its local clock. Second, the modset-
automaton maintains a data-state. Like the modset, the nodes of the automaton
are labeled with the initial task model data-state of the job. This initial task
model data-state is used in construction of guards on the automaton data-state
on edges leading to each label. At the end of the job, the automaton data-state
is updated according to the updates that where made during the job (e.g., see
the edge between L8 and L0 in Figure 6.2). The initial task model data-state
is added as guards to the edges of the modset-automaton (e.g see the edge be-
tween L0 and L1 in Figure 6.2). As a path through the modset may have a set
of initial data-states, this yields a set of guards. Each separate guard is assigned
to a separate edge, which may share the same destination node.

Next, we describe how action parameters are handled in the two automata:

6.4 Stopping criteria 99

The parameters must be checked to ensure that the action sequences in the
recseqs and the modset have the same parameters. The general idea is that there
is a set of global variables that are updated by the recseq-automaton accord-
ing to its action parameters, the modset-automaton adds guards on its edges to
control that the assignments from the recseq-automaton describe an event that
is in the modset (e.g., see the edge between L1 and L2 in Figure 6.1 and the
edge between L0 and L1 in Figure 6.2). In order for this to work, it is required
that the recseq-automaton makes its assignments to the global variables be-
fore the synchronization of the action-types. Therefore, the recseq-automaton
starts with an edge with an ε-action that performs the updates required for the
parameters of the first event in the recseq (see the edge between L0 and L1 in
Figure 6.1). These assignments will then remain phase-shifted to the event that
they describe throughout the automaton.

6.4 Stopping criteria
We use two validity measures on the observed jobs to determine whether we
have performed enough testing to make us sufficiently confident that the model
is an adequate abstraction of the system. We also require that the validation
fulfills certain user defined criteria based on these measures:

• Completeness measure: i.e., the probability that the model can replicate
any job that the system can exhibit. It is desirable for the model to have
a high completeness measure.

• Accuracy measure: i.e., the probability that the system exhibits a partic-
ular job. This measure must be sufficiently close to the probability that
the model exhibits an equivalent job.

To this end, we need a new notion for estimating equivalence between ob-
served jobs. Using such a notion, we will be able to group the jobs into classes
and estimate the above measures based on the properties of the classes.

We say that two jobs of a task are syntactically equivalent iff their action
sequences, variable updates, inputs, and outputs coincide.

Intuitively, syntactic equivalence can be tested using a time abstracted ver-
sion of the timed automata test described above (i.e., a test that disregards
timing).

The completeness measure is assessed by analyzing the frequency with
which new Syntactic Equivalence Classes (SECs) are discovered in the record-
ing of the system. This set is denoted SoSECs. We start out with the set of

100 Chapter 6. Model validation

SECs identified in the recordings used to generate the model (see Chapter 4),
and we assume that the probability of discovering a job of an unknown SEC
follows a binomial distribution.

There is a plentitude of ways to determine how many recseqs need to be
tested to satisfy a given completeness requirement. Essentially, we want to
know the number of tests (i.e., recseqs) needed to attain a certain confidence
in the modset. For example, if we state the null hypothesis h0 that there are
more SECs than have been discovered so far, with probability π0 ≤ 0.01 of
falsely rejecting h0, with significance α = 0.01 and margin of error ε0 = 0.01,
we can estimate that the required sample size is lower than 1, 000 according to
Jeffrey’s 100(1− α)% confidence limits [85].

The produced models are probabilistic – that is, the model can use prob-
ability to determine selections at behavioral level – which requires that the
model has a valid estimate of the probabilities of different SECs. The accu-
racy measure should determine if these estimates are valid; i.e., within allowed
tolerances.

Let G denote the set of jobs used to generate the model, and V the set of
jobs used for validation. Internally, we group the jobs into SECs and analyze
the probability distributions of equivalence classes in the two sets G and V .
For the analysis, we let the function sec_cnt : 2job × SoSECs → Z∗ denote
the number of jobs of a SEC in a set of jobs. The function h : SoSECs ×
2job × 2job → Z∗ compares the probabilities of a SEC n in G and V .

h(n, G, V) =
∣∣∣∣sec_cnt(G, n)

|G|
− sec_cnt(V, n)

|V |

∣∣∣∣ (6.1)

The lower h(n, G, V) is, the more accurate the model is. We specify an
accuracy threshold ha that is the maximum allowed difference between proba-
bility of equivalence classes in the two traces. The objective is to ensure that,
for all identified equivalence classes n, h is below this threshold, i.e.:

∀n ∈ SoSECs : 0 ≤ h(n, G, V) ≤ ha (6.2)

Intuitively, if h(n, G, V) is in the specified interval, the accuracy measure
applied to both sets of system recordings is within the specified bound. This
shows that the distribution of behaviors (i.e., distribution of SECs) described
by the recordings is a representative sample of the behavior distribution of the
system. Thus indicating that the probabilistic model is likely to emit the same
distribution of behaviors as the system.

6.5 Analysis 101

6.5 Analysis

The intention is that, after both the modset and the set of recseqs have been
transformed into their timed automaton (given some precision parameter), then
their co-simulation is possible. In fact, if model generation has succeeded,
there should indeed be a way to co-simulate each possible pair of modset-
recseq-automata so that the last location of the recseq-automaton is reached.
This property can be checked via reachability analysis, using the same tech-
niques as in a dedicated model checker for timed automata (e.g. UPPAAL
[11]). Due to the generality of the model-checking algorithms and the num-
ber of physical locations for our models, this is unfortunately feasible only
for small examples. For realistic examples, the number of locations in the au-
tomaton is too big for a general purpose model checker like UPPAAL. This is
mostly due to the recseq-automaton, which typically has more than 5, 000 lo-
cations. However, our requirements are quite simple: we test only one property
of two automata with one clock each, and out of which at least one automata
(the recseq-automaton) has a maximum of only one outgoing edge per location
and no edge out from the accepting state. For this scenario, it is quite straight
forward to implement a lightweight model checker that can perform only this
test (i.e. check for the inclusion of a finite timed trace in the model). We have
implemented such a model checker [37]. The complexity of the test is linear to
the number of edges in the modset-automaton multiplied by the length of the
recseq – even for traces of up to 5, 000 events, the computation time for our
tailor-made model checker is in the order of seconds on a Pentium 4.

The argument for why this test will validate the version of the model pro-
duced by model generation is as follows: As the last location in the recseq is
reachable, the recseq is included in the model. As the recseq is included in
the model, the model refines the recseq, and therefore the model is a represen-
tation of the recseq which in turn is a representation of the implementation.
This chain links the behavior of the model to the behavior of the system. It is
important that the set of recordings used to generate the recseq-automaton is
disjunct from the set of recordings used to generate the modset and the modset-
automaton, otherwise this would be a circular argument.

The measure of the precision parameter required for the test to succeed is
a measure of the quality of the model. Viewing the test as a function of the
precision parameter only (i.e. with the same recordings and the same model),
yields a monotonic function of the precision parameter. The function starts at
false, and subsequently, turns true, and then remains true. As the function is
monotonic, we can use binary search [51] to find the smallest precision para-

102 Chapter 6. Model validation

meter for which the function is true. This value is then used to express the
validity of the model.

6.6 Discussion
In this chapter, we have presented a method for validation of models that are
automatically generated from execution recordings.

The method validates that the recordings that are used to generate the model
are representative for the test-cases used in model generation. Validation is
performed by testing to certify that the functional behavior of the model and
the system do not differ, and that the temporal behavior of the model follows
the temporal behavior of the system.

This type of validation is essential for model extraction. The validation
answers two questions: Firstly, is the risk that the system can exhibit a behavior
not captured in the model sufficiently low? Secondly, is the distribution of
behaviors in the model similar to the distribution of behaviors in the system?

Admittedly, the result of the validation (whether new event sequences are
discovered and the smallest achievable precision parameter) is highly depen-
dent on the test-case selection, and in particular the relation between the test-
cases used for model generation and those used for model validation. We are
here implicitly assuming that the two sets are non-overlapping but similar; i.e.,
derived using the same strategy or method. A further investigation of the gen-
erality and validity of our model generation and validation is needed, yet it is
outside the scope of this thesis.

Chapter 7

Case study: Automatic
modeling of an industrial
robot

In this chapter, we present a small case study performed at ABB Robotics to
evaluate model extraction from an industrial perspective.

7.1 System overview and limitation
In the case study, we study the ABB Robotics state of practice industrial robot
control platform IRC5.

The > 2500 KLOC1 object-oriented C-code base of the robot runs un-
der VxWorks 5.5 on Intel Pentium 3 industrial PC hardware. We study the
main computer (MC), running almost 100 tasks with preemptive fixed priority
scheduling. Many of the tasks are event triggered, typically executing one of
several services requested by the triggering task.

Motion control is a critical subsystem of the MC, responsible for generating
motor references and brake signals to a DSP that in turn controls the physical
robot. The DSP issues requests to the MC with a fixed rate (f > 200 Hz). It
is critical that the MC replies to each request within a given time. The motion
control subsystem consists of tasks A, B, and C (see Figure 7.1). Task A, with

1KLOC: Kilo of Lines of Code, is an approximate measure of the system size.

103

104 Chapter 7. Case study: Automatic modeling of an industrial
robot

Figure 7.1: Robot motion control architecture.

low priority, calculates the motion control commands on a high level of abstrac-
tion and submits results to task B. Task B, with medium priority, communicates
with C and A to reduce the abstraction of the motion control commands from
A. Task C, with high priority, is responsible for maintaining the communication
with the DSP.

In the experiment, we have focused on tasks A, B and C, whose implemen-
tation consists of more than 250 KLOC. The test-case that we analyzed was
a complex, fast, moving pattern, where the robot moves short distances and
halts its movement at designated coordinates. This pattern will result in high
calculation intensity for the recorded tasks.

Probes are introduced to record context switches, explicit delays, selected
variable updates, IPC-send, and IPC-receive events. Each probe generates 6
bytes, and takes about 0.8µs to execute, which is quite negligible w.r.t. the task
execution times, which are often measured in milliseconds.

As we focused on only a small subset of the task set on the MC, simulating
the behavior of the model required the use of an intricate manually produced
environment model. As it turned out, this environment model affected the qual-
ity of the simulation.

7.2 Information extraction
In VxWorks, a concept of hooks allows insight in the dynamics of the operating
system. Hooks are offered at special operating system events, and by hooking
a piece of code to these events, the dynamic information about the events can
be accessed. This setup facilitates performance monitoring and recording.

In the case study, we used hooks to access the context switches that oc-
curred during execution. The hook-function receives pointers to the task con-
trol blocks (TCB’s) of both the interrupted task and the interrupting task. Using
these pointers, it is possible to access, e.g., the stack area of the task. However,

7.3 Model extraction 105

we are only interested in the identity of the tasks involved in the context switch
and the time at which the switch was triggered.

As the system platform is an Intel Pentium, the RDTSC assembler instruc-
tion can be used to read the processor cycle counter (see Section 2.4.4 for
details about this instruction). This instruction provides us access to a reliable
and accurate clock of fine granularity.

The system calls that we are interested in are mainly IPC-send and IPC-
receive operations. Though the VxWorks hooks present a good method for
accessing information about the system, only a limited number of events im-
plement them. For example, IPC-queue operations do not provide a hook-
interface. However, in the particular system that we consider, these operations
are wrapped in a small middle-ware to support easy portation of the applica-
tion, in particular to a simulator platform. The existence and extensive use of
this wrapping middle-ware allowed us to insert probes at the sending and re-
ceiving on IPC-queues. As we knew that the portation of the software worked
and was extensively used in development, we relied on that all operations of
significance used the wrapping middle-ware.

Consequently, the only probes that had to be inserted into the actual appli-
cation software where the probes that recorded the data state of the application.
As the risk of introducing an error in probing is somewhat proportional to the
number of probes that must be introduced, the relatively few probes we needed
to insert increases our confidence in the correctness of the monitoring.

7.3 Model extraction

The search for the appropriate probing configuration, i.e., suitable variables to
include in the data state monitoring, was difficult in that we are largely unfamil-
iar with the intricate functionality of the system as well as the use of data state
in model generation. We had to make five iterations before finding a satisfac-
tory probe configuration. In the final setting, we had introduced new variables
to make behavior that we had observed explicit; implicit rules embedded in
the construction of the system prevented certain behavior, this was made ex-
plicit and thus recordable by introducing new variables and variable updates.
The TraceAlyzer (presented in Section 4.5.2) proved to be a handy tool in this
work, and model validation effectively helped us to discard unsuitable probing
configurations.

After having setup the equipment used, each probing configuration took
approximately four hours to introduce and use, including building new exe-

106 Chapter 7. Case study: Automatic modeling of an industrial
robot

Table 7.1: Execution time distributions from system execution and model sim-
ulation.

cutables and recording of executions. This time could probably have been
decreased significantly with better system knowledge and experience in the
dynamics of the model extraction process.

7.4 Results
After a few unsuccessful attempts, when the model validation showed probing
to be insufficient, we successfully generated models of the three tasks based on
five recordings (the final probe setting generated approximately 11, 000 events
per second). However, during validation using five other recordings, it was
discovered that the two recorded variables in task A required a leeway in excess
of 10 percent of the task’s Measured Worst Case Execution Time (MWCET) to
pass all tests (see Figure 7.2). After we had iterated the information extraction
two times, we found a set of variables that when probed gave better data-state
information. This allowed us to pass the test with less than 10 percent leeway.
In the final information extraction setting, we recorded two variables in task A,
one in task B, and one variable in task C.

As we analyzed the stopping criteria for the final set of recordings we found
that, even though the completeness measure was very low (our sample size for
validation was only five recordings), the accuracy measure was ha ≥ 10%, as

7.4 Results 107

Figure 7.2: Leeway requirements for the first probe setting during the modeling
of task A.

Figure 7.3: h(n, G, V) distribution of all tasks.

108 Chapter 7. Case study: Automatic modeling of an industrial
robot

can be seen in Figure 7.3. This is probably due to the length of the recordings:
each recording was approximately 22 seconds long and spanned thousands of
jobs.

When validated models had been obtained for all three tasks, we merged the
models and co-simulated them together with a hand made environment model
that partly emulated the remaining tasks on the MC. Thus allowing validation
of the collected model from a system perspective. We performed a large series
of simulations, using several different starting conditions. During these, we
could observe a strong similarity in the behavior of the model and the legacy
system. However, as the accumulated model does not represent the entire sys-
tem, we cannot perform realistic measures of response times. We can however
analyze the execution time distributions for the three tasks.

Comparing the execution times measured on the system with that of simu-
lations (see Table 7.1), it is evident that there are deviations from the expected
results: Due to limitations in the handmade environment simulation, the event
triggered task C did not receive input as intended. This insufficiency in the
environment model caused many short jobs never to be triggered in the sim-
ulation. This is seen in the 25th and 50th percentile of task C. With better
environment modeling or with larger scope in the case study, this error could
have be remedied.

The final model, including the environment model, occupied 4.0 KLOC
without any optimizations, which is less than 1.6% of the size of the imple-
mentation.

7.5 Discussion
There are a few points that we learned regarding the practical work:

• The many probing configurations resulted in a large number of different
recordings. As this number grew, it was difficult to remember the de-
tails of the configuration; i.e., which variables are probed and what are
their functional meaning. Industrial application of our model generation
would require an infrastructure to manage this information.

• Some functionality is implicit by the construction of the system. To
model this it may be required to make the functionality explicit by intro-
ducing new variables.

• The use of a middle-ware to wraparound IPC system calls, and the open

7.5 Discussion 109

nature of this that allowed us to modify the middle-ware, significantly
eased the introduction of probes.

• More accurate methods than the one we used are needed to model the
environment. We provide methods to model the system, but the reactive
nature of the system often requires that also the environment is modeled;
if the system is triggered by the environment, simulation requires that
also the environment is modeled.

Chapter 8

Quality assessment

In this chapter, we present a framework for empirical testing and comparison
of extracted models with respect to response time distributions. We present a
set of system definitions with varying architectural styles to be used as bench-
marks in this framework. We discuss the difficulties in comparing response
time distributions, and present an intuitive and novel approach along with an
associated algorithm for performing such a comparison. Using the framework,
benchmarks, and the comparison algorithm, we present an empirical evaluation
of the proposed model extraction.

In our evaluation, we consider the following qualities:

Generality The use of model extraction in an industrial setting requires that
engineers are confident in that model extraction can produce models of
their system. Therefore, the technique for model extraction should be
evaluated with respect to generality by answering the questions: “Which
types of systems can be modeled? Which types of systems cannot be
modeled?”

Stability Model-based impact analysis as described in Section 2.3.2 requires
that the model is stable with respect to the system and the change: i.e.,
when a change is applied to a system and an extracted model, the changed
model should be valid with respect to the changed system. Stability
should be considered only in those cases where generality applies, i.e.,
in the cases where both the original system and the changed system are
in the subset of systems that model extraction can model.

111

112 Chapter 8. Quality assessment

Early versions of the evaluation framework and comparison algorithms are
presented in [38].

8.1 Assessing the generality and stability of auto-
matic modeling

The evaluation framework presented in this section serves to evaluate model
extraction with respect to generality and stability. Generality is evaluated by
extracting models from a diversity of system types. Assuming that any ex-
tracted model can also be obtained by manual modeling, we then proceed to
extract models from variations of the system types. Variations to the system
types simulate manual changes to the systems, and the models extracted from
variations of the system types simulate manual change to models. Positive ev-
idence of stability is provided if we can establish that significant variations in
the system leads to significant variations in the model while generality persists.

8.1.1 Framework for empirical evaluation
In this section, we introduce the framework for empirical evaluation depicted
in Figure 8.1. We use a notion of archetypes to describe architecturally dif-
ferent system designs. For example, a system consisting of a set of periodic
tasks without inter-process communication (IPC) is a different archetype than
a system consisting of event triggered tasks where the exchange of messages
trigger execution.

To each system definition, which implements an archetype, we can add an
increasing portion of Population, Imperfectness, or Complexity (PIC) for each
test performed on the system.

Imperfectness regards the number of probes in the system that generate
recordings. With low imperfection, all relevant information is recorded. Com-
plexity regards the task complexity; e.g., the number of task instances and
amount of environment stimuli. Finally, population regards the number of task-
types in the system and the number of recordings used in model extraction.

For each system definition and PIC combination defined, we perform two
sets of executions of the system: recordings from the first set are used to gener-
ate the model and recordings from the second set are used to validate the model
(as described in Chapter 4).

Varying the PIC will serve two purposes: It will further test generality, and
it will test the stability of the model extraction with respect to changes in the

8.1 Assessing the generality and stability of automatic modeling 113

Figure 8.1: A process-view of the framework for empirical evaluation.

114 Chapter 8. Quality assessment

system.
We perform two sets of comparisons of response time distributions of sys-

tem executions and extracted model simulations; the first comparison tests gen-
erality and the second one tests stability:

Generality is tested by comparing the simulations of the extracted model to
new executions of the system. The collected set of such comparisons
can then be analyzed to evaluate the generality of the method of model
extraction. This test is performed in the step “Compare wrt to generality”
in Figure 8.1.

Stability is tested by comparing executions of each system-PIC combination
to simulations of all other systems within the same archetype but with
different PICs. The corresponding comparisons are performed for each
model. For stability to exist in a given archetype, the comparison be-
tween one model of PIC X and one model of PIC Y should have a re-
lation similar relation to the comparison between the system of PIC X
and the system of PIC Y (i.e., if the systems are different, the models
should reflect this relation and vice versa). This test is performed in the
step “Compare wrt to stability” in Figure 8.1.

As the set of archetype-PIC combinations is intended to be large, it is desir-
able to automate the comparisons. We present a novel automated measurement
in Section 8.3 that can be used in such a comparison.

The decisions in the empirical evaluation framework are taken based on
the availability of untested archetypes and PICs respectively. The manual
implementation steps of the process are “Develop system” and “Apply PIC”:
The first of these is to develop a general implementation of a given archetype
(given be the previous step “Select archetype”), this is performed only once
per archetype. The second mutates a general archetype implementation with
respect to some PIC (given by the previous step “Select PIC”), this is per-
formed only once per archetype/PIC-combination. If any of these steps have
already been performed for the given input in a previous evaluation, the old
implementations can be reused. At the end of the evaluation, the manual step
“Evaluate the results of the performed comparisons” is responsible for compil-
ing and processing the obtained comparison results from the steps “Compare
wrt to generality” and “Compare wrt to stability”. This last step is inherently
dependent on the method of comparison used to obtain the comparison results.

8.1 Assessing the generality and stability of automatic modeling 115

8.1.2 Archetypes and PIC

The following archetypes are used in our study:

1. Client-server without reply. This archetype describes a common de-
sign pattern in the industrial systems that we have encountered. A client
sends varying service requests to a server that services the requests. Re-
sults of the computations may affect the environment or successive re-
quests to a third or fourth task. PIC applied are priority ordering, fre-
quency increase, execution time fluctuations, and accuracy in logging of
data state.

Specifically, this archetype is implemented with two tasks T1 and T2.
With a fixed periodicity, Task T1 sends a message to Task T2 that reacts
on the contents of the message. We distinguish between four different
contents, representing four different commands, plus one default behav-
ior in the case that the content is unrecognized. Task T1 maintains a
variable to keep track of the data sent, and task T2 maintains a variable
to keep track of the data received.

We have defined four variants of PIC: At PIC 1, T1 has lower priority
than T2. The relation is reversed in the other PICs. At PICs 3 and 4,
the periodicity of T1 is shortened and the execution time distribution is
widened for both tasks. At PIC 4, the data state recording is inactive in
both tasks.

2. State machine. Here, a task acts as a state machine which makes one
transition per job. Transitions are triggered by messages from the en-
vironment or from another task. Task mode changes can be expressed
by this archetype. In contrast to the client-server archetype, the same
message can trigger different behavior at different points in time. PIC
applied are reduced recording of variable assignments (simulating poor
probing), environment stimuli, complexity of the state machine, priority
ordering, frequency increase, and execution time increase.

The archetype is implemented by two tasks T1 and T2. With a fixed
periodicity, Task T2 sends a message to Task T1 with randomly selected
contents 0 or 1. The event triggered Task T1 consists of a finite state
machine that can make one state transition per job. The target state of
each transition is depending on the contents of the triggering message
from T2. A variable is maintained to keep track of the current state.

116 Chapter 8. Quality assessment

We have defined four variants of PIC: At PIC 1, T1 has lower priority
than T2. The relation is reversed in the other PICs. At PICs 3 and 4, the
periodicity of T2 is shortened. At PIC 4, the distribution in execution
time is widened in both tasks.

3. Purely periodic without communication. A task set of periodic tasks
where execution times for any given task varies randomly between jobs
within determined intervals. In this case, the PIC consists of increase of
the task set size.

In our experiments, the implementation consists of at most seven peri-
odic tasks T1−7 that execute a bounded random interval in each job. For
each task, the worst case execution time (WCET), the period (T), uti-
lization (U), and analytical worst case response time (R) are described in
Table 8.1.

We have defined four variants of PIC: At PIC 1, tasks T4, T5, T6, and T7

are active. At PIC 2, tasks T3, T4, T5, T6, and T7 are active. At PIC 3,
tasks T1, T3, T4, T5, T6, and T7 are active. At PIC 4, all tasks are active.

WCET T R U
T1 10 80 10 12.5%
T2 30 120 40 25.0%
T3 20 160 60 12.5%
T4 15 180 75 8.3%
T5 30 200 115 15.0%
T6 40 300 300 13.3%
T7 80 1000 960 8.0%
Σ 94.6%

Table 8.1: Maximum utilization for Archetype 3.

4. Feedback loop. Here, tasks exchange messages in a loop. Examples
include client-server with reply, and a feedback control system. The PIC
consists of priority ordering, message complexity, message reply fre-
quency, and environment stimuli.

The implementation consists of seven tasks, four of which (T1 to T4) are
implementing the feedback loop, and the three remaining are concur-
rently executing a client-server without reply (T5 and T6) and a simple
periodic task (T7). Task T2 maintains a variable that contains its internal

8.1 Assessing the generality and stability of automatic modeling 117

data state. The architecture of the feedback loop is as follows: provided
that it does not receive a command from T4, T1 periodically sends a
message to T2. Task T2 forwards the message to T3, and sometimes also
to T4. Task T3 reacts on the message type by varying its execution time.
When triggered, task T4 sends a message to T1.

We have defined four variants of PIC: At PIC 1, only the tasks imple-
menting the feedback loop are active. At PICs 2, 3, and 4, T5 and T6

are also active. At PICs 3 and 4, T7 is active. At PIC 4, the data state
recording in task T2 is inactive.

5. State machine feedback loop This archetype is a combination of the
two archetypes 2 and 4, as is the PIC.

The implementation consists of five tasks, T1 to T5. Tasks T1 and T2 im-
plement the state machine feedback loop; both tasks are state machines,
T1 generates input to trigger T2, T2 generates input that, if available, will
affect the execution of T1. Task T2 maintains a variable that keeps track
of its data state. Tasks T3 and T4 implements a client-server without
reply, and T5 is a periodical task.

We have defined four variants of PIC: At PIC1, the execution time re-
quirements are lower and with less spread. At PICs 1 and 2, T1 has
a higher priority than T2. The relation is reversed in the other PICs.
At PICs 3 and 4, tasks T3, T4, and T5 are active. At PIC 4, data state is
not recorded.

In the test-bed setup, it is important that we are able to compare a model
and a system and quantify the model’s resemblance with the system (see Fig-
ure 8.1).

8.1.3 The system platform simulator
We have implemented an instance of the framework, where the system platform
is a multitasking, fixed priority scheduled, instruction-set simulator that we
have developed specifically for this purpose. Using our own simulator allowed
complete control over execution and recording, and saved us from integration
problems. The simulator is architected as follows:

The simulator can handle 16 types of instructions (Table 8.2), including
absolute and relative sleep, branching, IPC, explicit logging, register manipu-
lation and testing, and random number generation. Each instruction takes one
clock cycle to complete. All instructions have two parameters.

118 Chapter 8. Quality assessment

TST <r> < > Test the contents of register r, updates the status
register (SR) to SR EQ if the contents is zero, to
SR NEG if the contents is less than zero, and to
SR POS if the contents is more than zero.

CMP <r> <r> Compare the difference between the contents of the
first register and the contents of the second, updates
SR to SR EQ if the difference is zero, to SR NEG if
the difference is less than zero, and to SR POS if the
contents is more than zero..

BNEG <l> < > Branch to label l if SR is SR NEG.
BEQ <l> < > Branch to a line l if SR is SR EQ .
B <l> < > Branch to label l.
INC <r> <r> Increase contents of the first register with the value of

the second.
LOAD <r> <d> Set the contents of register r to an integer value d.
SND <q> <r> Send contents of register r on IPC-queue q (contents

of r must be positive).
RCV <q> <t> Receive from IPC-queue q, store in register r1, time-

out t clock ticks.
OUT <r> < > Print contents of register r to screen.
YREL <t> < > Yield a time t relative to the starting time of the cur-

rent job.
YABS <t> < > Yield an absolute time t from now.
NOP < > < > Do nothing but consume one clock cycle.
RAND < > < > Get a random number in register r1.
MULO <r> <d> Modulo the contents of a register r with the value d -

store result in register r1.
LOG <t> <r> Record an entry with event type t and data from reg-

ister r.

Table 8.2: Instruction-set of the simulator.

8.1 Assessing the generality and stability of automatic modeling 119

{
IPCS 3
OUTPUT 0
TICKS 65535
TRACEFILE et.txt

}
At2{
PRIO 11
TRIG 2
FILE At2.def

}
At1{
PRIO 10
TRIG 0
FILE At1.def

}
idle{
PRIO 255
TRIG 0
FILE idle.def

}

Figure 8.2: A system definition file.

120 Chapter 8. Quality assessment

LOAD 2 1
SND 2 2
NOP 0 0
YABS 300 0
LOAD 2 2
SND 2 2
NOP 0 0
YABS 300 0
LOAD 2 3
SND 2 2
NOP 0 0
YABS 300 0
NOP 0 0
NOP 0 0
NOP 0 0
YABS 300 0
B 0 0

Figure 8.3: A task definition file.

8.2 Response time 121

A system of tasks is defined by a system definition file (Figure 8.2) together
with an assembler-file per task (Figure 8.3).

The system definition file defines a set of parameters for the system:

• The IPCS property defines the number of IPC queues in the system.

• The OUTPUT property enables (if set to 1) a history of the simulation
to be printed to screen. The printout is usable for debugging the system
implementation.

• The TICS property defines the length of the simulation counted in clock
cycles. As the system is executed, occurred task switches, performed
IPC, and executed explicit log instructions are automatically recorded in
a system specific log.

• The TRACEFILE property indicates the file where the system specific
log is stored.

After the system parameters, each task is defined by three properties:

• PRIO is the priority of the task, 255 is the lowest and 0 is the highest.

• Each task is either defined by the TRIG property as triggered periodi-
cally or triggered as a result of input on an IPC queue. If TRIG is larger
than zero, the value denotes the identifier of an IPC queue, otherwise the
task is periodic and the periodicity is defined by the implementation in
the task’s assembler-file.

• The assembler-file is identified by the FILE property.

8.2 Response time
In real-time systems, the temporal and functional requirements are equally im-
portant. We assume that the embedded real-time systems we consider consist
of a set of tasks that can either be periodic or event triggered. As a task is
triggered, a job (a task invocation) is executed for some period of time, after
which the task will await until further triggering. We label the time measured
from the point in time where the job is triggered (the release time) until the
completed execution of a job as the response time (RT) of the job.

122 Chapter 8. Quality assessment

8.3 Comparison of sampled time distributions

The framework proposed above assumes that it is possible to objectively com-
pare two distributions of, e.g., response times. However, comparing two series
of measured response times is a non-trivial task. There are several methods
available, but many fall short of expressing ’similarity’ in a useful and intuitive
way for the problem at hand.

The χ2 test of independence [22] and the Euclidean distance metric are
both categorical 1 in the temporal dimension, which results in that they are not
sensible to the difference that two samples have almost the same response time
if they are in different categories (timing intervals). They are only sensible in
the sample dimension, which means that they can acknowledge that almost the
same number of samples in both distributions have response times in the same
category. This leads to unintuitive results due to false negatives.

The Kolmogorov-Smirnov test [75] assumes that one of the distributions in
a comparison is mathematically modeled [52, 81]. However, the execution time
distribution of a program is often very complex. On the source code level in
a system implementation, selections where one path has a significantly longer
execution time than the other are common. Execution time distributions that
cover both branches of such selections do not follow a simple pattern. There-
fore, it cannot be assumed that a response time can be classified to a known
distribution (e.g., a normal distribution). We know of no universal method of
determining or estimating similarity between unclassified finite discrete distri-
butions.

We wish to device a measure that can express a ’similarity’ between dis-
tributions in both the ’time’ and ’spread’ dimensions. The measure should be
sensible to similarities between samples from the two distributions (i.e., two
samples can be similar even if they are not equal); this is the ’time’ dimension.
It should also be sensible to similarities in the spread of the two distributions
(i.e., two distributions can be similar if the spread in their respective distribu-
tions are similar).

As an example, we observe Figure 8.4. These two distributions are not
identical, but share a general topological structure with two peaks consisting
of approximately the same number of samples at approximately the same re-

1Categorical variables are also called nominal variables; the distance between categories of
nominal variables is binary (either 0 or 1). For example, consider the four categories dog, cat,
giraffe, penguin; the distance between any pair of these categories is either 0 (if the categories are
identical), or 1 (if the categories are different); the distance between two different categories is not
depending on which categories that are compared.

8.3 Comparison of sampled time distributions 123

System Model

RT RT
-

6
samples samples

-

6

Figure 8.4: Two similar response time distributions, notice that the response
times are not exactly the same and that the number of samples in the peaks
differ slightly between the two distributions.

sponse time values. The method of comparison should be able to sense such
similarities.

To implement a comparison that can express this abstract understanding of
similarity, we introduce a novel objective measurement for sampled distribu-
tions based on the notion of divergence between two distributions, which we
will introduce next.

8.3.1 The sum of divergence of two distributions

A distribution, or a series of sampled response times, d is represented as a bi-
nary tree where each node has the attributes value and count, these are referred
to with a doted notation (e.g., n.value for node n of distribution d). The at-
tribute value is the sampled response time and count is the number of samples
of the same response time. All nodes in the binary tree have unique value
attributes. The distribution has two operations getLowest and remove, these
are called using a similar doted notation (e.g., d.getLowest()). The operation
getLowest returns the node that has the smallest value in the distribution, it does
not take any parameters. If the distribution is empty, ’invalid’ is returned. The
operation remove removes a number of samples of a certain value, the number
and value are supplied as parameters to the operation.

To perform the comparison, the sizes of the two series of response times are

124 Chapter 8. Quality assessment

first normalized by size: They are normalized by linearly adjusting the count
of value’s such that the total sum of count’s in each of the two trees is equal to
the Least Common Multiple (LCM) of the original total sum of count’s of both
trees.

Definition 11 (sum of divergence). Let U be the set of samples. There is a
function time : U → Z∗. For a given sample u ∈ U , we use time(u) to
denote the value of that sample.

Let A,B ∈ 2U be two sets of samples from two sources (e.g., a model and
a system) with equal cardinality. We define a match between these two as a
bijective mapping between A and B, ∆AB : A → B. Let CAB be the full set
of matches (i.e., the full set of bijective mappings) between A and B.

We are now able to define a measure of a match ∆AB ∈ CAB by the
function [] : CAB → Z∗ as:

[∆AB] =
∑
a∈A

|time(∆AB(a))− time(a)|

Then, the sum of divergence between two sets of samples is the measure of
the most favorable match in the sense that the measure is minimized:

sum_divergence(A,B) = min
∆AB∈CAB

{[∆AB]}

Intuitively, for two equally sized sampled distributions A and B, ∆AB de-
scribes a mapping such that each sample in A is paired with a unique sample
in B (the uniqueness follows from that the mapping is bijective). The sum of
divergence is then considering the best possible mapping in the sense that the
sum of differences of response times that the matched samples represent is as
small as possible.

Next, the measure must be normalized.2 We let distribution_size(A,B)
denote the normalized size of the two distributions A and B, and the function
max_divergence(A,B) denote the maximum difference between samples of A
and B. Then, normalization of the measure is performed as follows:

sum_divergence(A,B)
distributions_size(A,B)× max_divergence(A,B)

(8.1)

2In the same way the speed of a moving vehicle has low information content unless the current
speed limit is known, the presented measure must be normalized in order to be useful.

8.3 Comparison of sampled time distributions 125

That is, the mean of the measure is compared to the maximum of the terms
of the measure. This yields a percentage in the interval (0%, 100%).

Intuitively, a small value indicates that the divergence of the two distribu-
tions is small compared to the dispersement of the distributions, which should
indicate that the two distributions have a close resemblance. Consequently, a
high value indicates that the distributions have low resemblance.

8.3.2 An algorithm for measuring the sum of divergence of
two distributions

In this section, we will introduce an algorithm for efficient calculation of the
sum of divergence for two sampled distributions. The algorithm assumes that
the distributions are normalized by size as described above.

Algorithm 1 SumDivergence(i1, i2) calculates the divergence between two
equally sized response time distributions i1 and i2.
Require: DivSum ∈ Z
Require: d ∈ Z
Require: c ∈ Z

1: DivSum := 0
2: repeat
3: e1 := i1.getLowest()
4: e2 := i2.getLowest()
5: if e1 is valid ∧ e2 is valid then
6: d := |e1.value− e2.value|
7: if e1.count < e2.count then
8: c := e1.count
9: else

10: c := e2.count
11: end if
12: DivSum := DivSum + d× c
13: i1.remove(e1.value, c)
14: i2.remove(e2.value, c)
15: end if
16: until e1 is invalid ∨ e2 is invalid
17: return DivSum

Intuitively, Algorithm 1 iteratively pairs and removes the smallest samples
in both distributions, and terminates when both distributions are empty.

126 Chapter 8. Quality assessment

The theoretical complexity of the SumDivergence algorithm for two dis-
tributions A and B is O(MA×MB), which are normalized by size, where MX

is the number of unique sample values in distribution X . Typically, with MX

of approximately 1, 000, the algorithm takes in the order of seconds to execute.

8.3.3 Proof of that the algorithm implements the measure
Lemma 1. Algorithm 1 will eventually terminate.

Proof. Initially, the sets A and B are finite and normalized by size. Each itera-
tion, c > 0 elements are removed from one distribution, and equally many are
removed also from the other distribution. The algorithm is completed as both
distributions are empty.

Lemma 2. Algorithm 1 finds a match ∆AB , a bijective mapping, between two
distributions A and B.

Proof. The semantics of removing an element from a distribution is that the
element has been matched with another element. In each iteration of the algo-
rithm, equally many elements are removed from both distributions; the seman-
tics of this is that a match has been established between the sets of elements
removed; though there may be several possible matches between the elements
of the removed sets, we assume that exactly one is chosen. That the algorithm
finds a match is then given by the proof to Lemma 1.

In the following, we prove by induction that the algorithm provides the
minimal sum of divergence. We prove a general step:

Lemma 3. Given two distributions A and B of the same (unknown) size n, and
assuming that n − 2 samples are optimally paired in both cases (with respect
to small sum of divergence): the optimal pairing of the remaining samples
a, b, c, d where a, b ∈ A; c, d ∈ B; a ≤ b; and c ≤ d is: 〈a, c〉 and 〈b, d〉.

Proof. With the pairing suggested by Lemma 3, [∆A,B] is:

[∆A,B] = X + |a− c|+ |b− d|

The only other possible pairing yields [∆A,B]:

[∆A,B] = Y + |a− d|+ |b− c|

Thus, if Lemma 3 is not true, the following proposition should hold:

P1: Y + |a− d|+ |b− c| < X + |a− c|+ |b− d|

8.3 Comparison of sampled time distributions 127

As the other samples are optimally paired, it follows that X = Y , which yields:

|a− d|+ |b− c| < |a− c|+ |b− d|

Dividing this into the possible cases yields three alternatives:

1. if a < c < b < d, then

−a + d + b− c < −a + c− b + d → 2b < 2c, but 2b 6< 2c

2. If a < c < d < b, then

−a + d + b− c < −a + c + b− d → 2d < 2c, but 2d 6< 2c

3. If a ≤ b ≤ c ≤ d, then

−a + d− b + c < −a + c− b + d → 0 < 0, but 0 6< 0

Thus, since all three alternatives are falsified, proposition P1 is false, and it
follows that Lemma 3 holds.

We then prove two base cases:

Lemma 4. For two distributions A and B where both distributions contain
exactly one element each such that a ∈ A and b ∈ B, the algorithm will find
the match that yields the sum of divergence as per Definition 11.

Proof. The algorithm will find the only feasible match 〈a, b〉, which yields
[∆A,B] = |a− b|.

Lemma 5. For two distributions A and B where each distribution contains
exactly two elements such that a, b ∈ A; c, d ∈ B; a ≤ b; and c ≤ d, the
algorithm will find the pairing that yields the sum of divergence as per Defini-
tion 11.

Proof. There are two possible matches:

1. 〈a, c〉 and 〈b, d〉, which yields [∆A,B] = |a− c|+ |b− d|, or

2. 〈a, d〉 and 〈b, c〉, which yields [∆A,B] = |a− d|+ |b− c|.

As given by the proof to Lemma 3, the first match will never yield a higher
divergence than the second. As the algorithm will choose the first match,
Lemma 5 holds.

128 Chapter 8. Quality assessment

Using the general step and the two base steps, we then prove the correctness
of the algorithm by induction:

Lemma 6. There is no other match such that the resulting sum of divergence
is smaller than in the match found by Algorithm 1.

Proof. The algorithm iteratively pairs and removes the smallest samples in
both distributions, and terminates when both distributions are empty. The proof
of that the algorithm will provide the sum of divergence as per Definition 11
is then given by induction over the distribution size n with lemmas 4 and 5 as
base cases for n = 1 and n = 2, for odd and even number of elements in the
distribution respectively, and Lemma 3 as the general case.

The intuition of Lemma 6 is that, for the smallest unpaired sample of A, if
that is not paired with the smallest unpaired sample of B, some other sample
of A will be. That case would then lead to a suboptimal pairing that contradicts
Lemma 3.

Theorem 1. Algorithm 1 calculates the sum of divergence between two distri-
butions.

Proof. Given by lemmas 1, 2, and 6, since Lemma 1 proves that the algo-
rithm will terminate, Lemma 2 proves that the algorithm yields a match, and
Lemma 6 proves that the match yields the sum of divergence.

8.3.4 Discussion

In contrast to the Euclidean distance metric and the χ2 test, the compari-
son measure introduced here is not categorical. Further, in difference to the
Kolmogorov-Smirnov test, the comparison measure is not dependent on math-
ematical modeling of the compared distributions.

In the case of performing this measurement on response times, the observ-
ability problem [95] must be respected: Take the example of a system with a
set of strictly periodic tasks. Here, especially if the system load is high, it is
likely that jobs of tasks are ready to execute long before they receive their first
quanta of processing time. According to our definition of response time (see
Section 8.2), the time of the triggering of the task must be known. Thus, probes
that can access the ready queue of the operating system must be used to obtain
a truthful measure of the response time.

8.4 Evaluation 129

8.4 Evaluation
We have performed evaluation of all the archetypes and PIC combinations de-
tailed in Section 8.1.2. Details of this evaluation and its resulting data are
presented in this section.

We performed model extraction on all archetype-PIC combinations de-
scribed above. For each combination, models were extracted using 2, 4, 8,
16, and 32 simulations for model generation and equally many for the model
validation. The intention was to evaluate if there was a significant improvement
in the quality of the generated model as the set of input grew.

8.4.1 Generality evaluation data
Data from the generality evaluation are in the following sets: From model val-
idation (see Section 6), we observe the leeway (or precision parameter) and
the accuracy measure in the form of h(n, G, V). From comparing the simu-
lation of the model with the recording of the system, we obtain the likeness
measure defined in Section 8.3. These sets of data are obtained for each model
extraction.

As models for Archetype 1 were extracted, the process of model validation
reported accuracy measure h(n, G, V) < 0.2% for all tasks, the leeway was 0
for all PICs. The data of the comparison is presented in Table 8.3.

Tasks T1 T2

Files 2 4 8 16 32 2 4 8 16 32
PIC 1 2 2 2 2 2 0 0 0 0 0
PIC 2 6 6 6 6 6 0 0 0 0 0
PIC 3 6 5 5 5 5 1 1 1 1 1
PIC 4 22 21 22 21 22 1 1 1 1 1

Table 8.3: Sum of divergence between system and model response times
in tests for tasks T1 and T2 of Archetype 1 [%].

As models for Archetype 2 were extracted, model validation reported accu-
racy measure h(n, G, V) < 6.2% for all tasks, the leeway was 0 for PICs 1,2
and 3, and 34 for PIC 4 . The data of the comparison is presented in Table 8.4.

130 Chapter 8. Quality assessment

Tasks T1 T2

Files 2 4 8 16 32 2 4 8 16 32
PIC 1 6 1 0 0 2 0 0 0 0 0
PIC 2 2 7 2 3 5 2 7 2 3 5
PIC 3 0 1 2 5 1 0 1 1 5 1
PIC 4 4 3 3 4 2 4 3 2 4 2

Table 8.4: Sum of divergence between system and model response times
in tests for tasks T1 and T2 of Archetype 2 [%].

As models for Archetype 3 were extracted, model validation reported accu-
racy measure h(n, G, V) < 0.0% for all tasks, the leeway was 0 for all PICs.
The data of the comparison is presented in Table 8.5.

Tasks T1 T2

Files 2 4 8 16 32 2 4 8 16 32
PIC 1 - - - - - - - - - -
PIC 2 - - - - - - - - - -
PIC 3 31 27 35 31 29 - - - - -
PIC 4 31 29 32 30 29 5 5 6 6 6
Tasks T3 T4

Files 2 4 8 16 32 2 4 8 16 32
PIC 1 - - - - - 24 22 24 22 27
PIC 2 21 21 21 21 17 3 4 4 4 5
PIC 3 14 43 19 42 19 5 4 7 5 6
PIC 4 21 21 22 21 21 14 15 16 14 16
Tasks T5 T6

Files 2 4 8 16 32 2 4 8 16 32
PIC 1 4 6 5 5 5 19 18 18 18 19
PIC 2 4 5 5 5 4 9 10 9 9 15
PIC 3 5 5 4 3 5 13 12 13 12 14
PIC 4 4 4 5 3 5 5 6 7 7 6
Tasks T7

Files 2 4 8 16 32
PIC 1 22 19 21 23 22
PIC 2 16 12 14 12 15

8.4 Evaluation 131

PIC 3 9 7 7 6 10
PIC 4 30 28 31 26 27

Table 8.5: Sum of divergence between system and model response times
in tests for tasks T1 to T7 of Archetype 3 [%].

As models for Archetype 4 were extracted, model validation reported accu-
racy measure h(n, G, V) < 0.3% for all tasks, the leeway was 0 for all PICs.
The data of the comparison is presented in Table 8.6.

Tasks T1 T2

Files 2 4 8 16 32 2 4 8 16 32
PIC 1 1 1 1 1 1 2 2 2 2 2
PIC 2 6 7 7 7 7 11 11 10 9 10
PIC 3 6 6 6 5 6 10 9 11 11 10
PIC 4 6 6 6 6 6 10 10 9 11 11
Tasks T3 T4

Files 2 4 8 16 32 2 4 8 16 32
PIC 1 2 0 0 1 0 0 0 0 0 0
PIC 2 1 0 1 0 0 10 11 9 8 9
PIC 3 1 0 0 0 1 9 9 9 9 9
PIC 4 4 2 2 2 3 9 10 10 9 9
Tasks T5 T6

Files 2 4 8 16 32 2 4 8 16 32
PIC 1 - - - - - - - - - -
PIC 2 16 16 17 17 15 0 0 0 0 0
PIC 3 18 16 19 17 15 0 0 0 0 0
PIC 4 18 15 16 18 16 0 0 0 0 0
Tasks T7

Files - - - - -
PIC 1 - - - - -
PIC 2 - - - - -
PIC 3 38 38 39 38 38
PIC 4 38 38 38 38 38

Table 8.6: Sum of divergence between system and model response times
in tests for tasks T1 to T7 of Archetype 4 [%].

132 Chapter 8. Quality assessment

As models for Archetype 5 were extracted, model validation reported ac-
curacy measure h(n, G, V) < 0.6% for all tasks, the leeway was 31 for PICs
1 and 2, 71 for PICs 3 and 4. The data of the comparison is presented in Ta-
ble 8.7.

Tasks T1 T2

Files 2 4 8 16 32 2 4 8 16 32
PIC 1 5 12 8 7 7 5 5 2 8 7
PIC 2 10 7 4 4 13 7 2 8 6 10
PIC 3 7 7 9 7 9 2 1 2 1 1
PIC 4 6 6 6 6 6 1 2 2 1 1
Tasks T3 T4

Files 2 4 8 16 32 2 4 8 16 32
PIC 1 - - - - - - - - - -
PIC 2 - - - - - - - - - -
PIC 3 16 18 14 15 15 0 0 0 0 0
PIC 4 16 17 15 16 17 0 0 0 0 0
Tasks T5

Files 2 4 8 16 32
PIC 1 - - - - -
PIC 2 2 3 20 18 2
PIC 3 3 4 3 4 2
PIC 4 5 3 4 4 3

Table 8.7: Sum of divergence between system and model response times
in tests for tasks T1 to T5 of Archetype 5 [%].

8.4.2 Visual inspection of the generality evaluation data

Since the comparison that we have used in the evaluations is previously untried
and therefore not validated, we manually observed plots of the generated dis-
tributions that were input to the comparison. The intention was to confirm that
the comparison measure performed according to our intuition.

According to our subjective comprehension, there were three categories
of results; either, the comparison measure was in the interval (0%, 10%), in
the interval [10%, 20%), or in the interval [20%, 100%). These categories are
labeled I, II, and III respectively. Intuitively, a measure in Category I signifies
a high correlation between the compared distributions, Category II signifies a

8.4 Evaluation 133

System Model

RT RT
-

6
samples samples

-

6

Figure 8.5: Response times for Archetype 1, T1, 32 files, sum_divergence =
68, 467, 416, distributions_size = 705, 720, and max_divergence = 440,
divergence sum normalization is 22%.

medium correlation, while Category III signifies a low correlation.
Regarding Archetype 1, most measures where in Category I. On visual in-

spection on the generated distributions, these measures where deemed to con-
form relatively well to the intention of the measure. Apart from these, measures
for T1 at PIC 4 where in Category III, these where indeed found to display sig-
nificant differences. As an example, observe Figure 8.5.

For Archetype 2, all measures where in Category I. This was validated on
visual inspection.

In Archetype 3, we find measures in all three categories, which may indi-
cate varied sucess for model extraction. Here, only observing the measure, it
would seem that the model extraction was not successful. However, for many
tasks, the response times are in a relatively narrow interval. The response times
of T1 is in the interval (3, 4), response times for T3 is in the interval (5, 46),
and response times for T4 is in the interval (4, 67). As a result of the normaliza-
tion, this yields a large percentage even for small divergences. As an example,
observe Figure 8.6.

In Archetype 4, we also find measures in all three categories. Though we
do find examples of the same problem as described above, the measure gener-
ally corresponds well to the intuition. Especially the poor correlation between
model and system of T7 is confirmed (see Figure 8.7).

The measures on distributions from Archetype 5 are in all three categories.

134 Chapter 8. Quality assessment

System Model

RT RT
-

6
samples samples

-

6

Figure 8.6: Response times for Archetype 3, T6, 32 files, sum_divergence =
8, 376, 772, distributions_size = 798, 534, and max_divergence = 54,
divergence sum normalization is 19%.

System Model

RT RT
-

6
samples samples

-

6

Figure 8.7: Response times for Archetype 4, T7, 16 files, sum_divergence =
32, 335, 951, distributions_size = 391, 419, and max_divergence = 214,
divergence sum normalization is 38%.

Most notably, T3 has all measures in Category II. On examination however,
the largest max_divergence was 8, which is very low in comparison with
other tasks. It turned out that this too was a result of a narrow interval in
the execution time distribution. The measures of T1 in Category II and T5 in

8.4 Evaluation 135

System Model

RT RT
-

6
samples samples

-

6

Figure 8.8: Response times for Archetype 5, T2, 32 files, sum_divergence =
3, 972, 608, distributions_size = 60, 386, and max_divergence = 623,
divergence sum normalization is 10%.

Category III however, where deemed to coincide with intuition. We find an
interesting example in T2 with PIC 2 and 32 files (see Figure 8.8). Here, the
distributions clearly differ in small ways, but the measure is able to abstract
from these and determine that the distributions are relatively similar.

8.4.3 Stability evaluation data

The stability evaluations are performed on the same recordings that were used
in the generality evaluation. Thus, data from the model validation presented
above applies to this evaluation too.

We present data of comparisons in the following tables: Archetype 1 in
Table 8.8, Archetype 2 in Table 8.9, Archetype 3 in Table 8.10, Archetype 4 in
Table 8.11, and Archetype 5 in Table 8.12.

Data is presented as two values for each task and each combination of PIC
(e.g., 32-31 for Archetype 1, Task T1, PICs 1 and 2 in Table 8.8). The first
value concerns the comparison between the response times for two systems of
Archetype 1, the first with PIC 1 and the second of PIC 2. The second value
concerns the corresponding comparison for models of the same Archetype and
the same PICs. If stability exists, the two values should be similar.

Note that, due to the abstractions introduced in the models, we cannot ex-
pect a perfect match between the values, but expect deviations which are less

136 Chapter 8. Quality assessment

than 10. This limit seems intuitive since we used it in the above test of gener-
ality as the limit for Category I measures.

Task PICs:
1 vs. 2 1 vs. 4 2 vs. 3 2 vs. 4 3 vs. 4 3 vs. 1

T1 32-31 43-15 21-19 21-11 1-22 43-38
T2 0-0 43-44 42-44 42-44 1-0 43-44

Table 8.8: Stability test results for tasks T1 and T2 of Archetype 1 [%].

Task PICs:
1 vs. 2 1 vs. 4 2 vs. 3 2 vs. 4 3 vs. 4 3 vs. 1

T1 1-1 20-20 3-2 19-22 21-20 2-1
T2 31-25 43-42 3-2 18-22 21-20 28-28

Table 8.9: Stability test results for tasks T1 and T2 of Archetype 2 [%].

Task PICs:
1 vs. 2 1 vs. 4 2 vs. 3 2 vs. 4 3 vs. 4 3 vs. 1

T1 - - - - 0-0 -
T2 - - - - - -
T3 - - 64-68 43-17 26-22 -
T4 0-10 35-17 10-4 32-12 27-10 17-10
T5 13-7 35-21 12-7 29-18 22-14 22-13
T6 9-8 23-17 13-9 21-25 16-21 21-16
T7 21-10 51-44 21-17 46-43 39-40 33-25

Table 8.10: Stability test results for tasks T1 to T7 of Archetype 3 [%].

Task PICs:
1 vs. 2 1 vs. 4 2 vs. 3 2 vs. 4 3 vs. 4 3 vs. 1

T1 11-8 11-9 0-1 0-1 0-0 11-9
T2 0-11 0-11 0-0 0-0 0-0 0-10
T3 0-0 0-2 0-0 0-2 0-1 0-0
T4 0-9 0-9 0-0 0-0 0-0 0-9
T5 - - 1-0 1-0 1-0 -

8.5 Discussion 137

T6 - - 0-0 0-0 0-0 -
T7 - - - - 0-0 -

Table 8.11: Stability test results for tasks T1 to T7 of Archetype 4 [%].

Task PICs:
1 vs. 2 1 vs. 4 2 vs. 3 2 vs. 4 3 vs. 4 3 vs. 1

T1 2-15 23-16 19-15 23-15 1-3 20-16
T2 1-2 1-9 2-12 2-10 1-1 1-10
T3 - - - - 2-3 -
T4 - - - - 0-0 -
T5 - - 4-0 8-3 0-1 -

Table 8.12: Stability test results for tasks T1 to T5 of Archetype 5 [%].

8.4.4 Visual inspection of the stability evaluation data

For Archetype 1, the stability evaluation is reported in Table 8.8. Results for
task T1 between PICs 1 and 4, between PICs 2 and 4, and between PICs 3 and
4, suggest instability. On visual inspection, we could indeed tell differences in
both cases. It seemed that the poor model extraction for task T4 inflicted this
loss in stability (see Table 8.3).

For Archetype 2, all model comparisons followed their respective system
comparison.

For Archetype 3, a multitude of comparisons differed significantly. This
follows from the performance of the normalized comparison measure in this
archetype (see Section 8.4.2).

For archetypes 4 and 5, the indications of poor stability is related to prob-
lems discussed in Section 8.4.2.

A conclusion that we can draw from this is that model stability can only be
evaluated in those cases where model extraction has been successful and where
the comparison measure is able to assess similarity correctly.

8.5 Discussion
Based on the above evaluation, we can conclude that our method of model ex-
traction is indeed general with respect to the archetypes that we have examined,

138 Chapter 8. Quality assessment

and that stability exists in the cases where generality applies.
The following cases where found to contradict the generality of model ex-

traction:

1. Archetype 1, PIC 4, Task T1.

2. Archetype 4, PICs 3 and 4, Task T7.

3. Archetype 5, PIC 2, Task T5, PIC 1 and 2, tasks T1.

We examine these three cases with the aid of the archetype and PIC defini-
tions in Section 8.1.2:

In Case 1, the PIC applied leads to that the recording of data state is dis-
abled. As the data state has a significant impact on the execution time in the
system, the failure to perform model extraction is consistent with our under-
standing of the requirements on observability (see Section 2.4.3 on the observ-
ability problem).

In Case 2, Task T7 has the lowest priority. Together with the high system
load and smaller errors in other tasks due to their abstraction, this lead to the
poor performance of the task. Thus, model extraction was not unsuccessful in
the specific case of Task T7, the error is rather a result of precision problems
in other tasks. It seems that the more influence3 a task has on its environment,
the more detail is required in modeling of the task. This points to an important
aspect in modeling using probabilistic modeling languages: influential tasks
should only contain a minimal amount of probabilistic elements. This follows
the intuition that important parts must be carefully investigated, while less im-
portant parts can be sketched.

In Case 3, problems in both tasks are due to the same issues as in Case 2.
For Task T5 however, these problems are only visible for some recording set
sizes, which may indicate that more extensive recording is needed.

We found no cases that contradict the stability of model extraction.
This was the first application of the measure of comparison introduced in

Section 8.3. We have found that the measure works as intended under ideal
conditions, but when the spread of the distributions is narrow, the normalization
of the measure is affected. It is likely that this is true also for distributions with
wide spread. Thus, we can recommend the use of the measure, but please be
advised to use the spread of distributions as a sanity check.

3Here, an influential task has high priority and/or relatively large amount of interaction through
communication with other tasks.

8.5 Discussion 139

The five archetypes used in this study are by no means a complete set,
it is straightforward to specify and construct many more. We have let our
understanding of industrial embedded systems stand as model for designing
these archetypes and PIC; other individuals will most likely have other ideas for
archetypes and PIC to include. Our aim has been to evaluate model extraction
with respect to a set of general patterns that are commonly used in industrial
applications. For each of these archetypes, we have then applied PIC as a form
of noise to obtain instantiations of the general archetype. In this way, we were
able to investigate a set of differing but still similar systems and obtain a higher
degree of confidence that model extraction is indeed capable of modeling a
given archetype.

Chapter 9

Conclusions

In this last chapter of the thesis, we will discuss contributions, limitations,
validity, and future work of the thesis.

9.1 Results
The first few paragraphs in this thesis concerned abstraction and its role in
software development and other fields. With this in mind, it feels appropriate
to start this last chapter of the thesis with a form of abstraction of the previous
chapters.

This thesis has seen the introduction of new methods for model extraction,
a.k.a. automatic modeling. In the first chapter of this thesis, we formulated the
following problems under the assumption that such methods could be devel-
oped:

Can the validity and accuracy of extracted models be quantified? This qu-
estion has been addressed by the introduction of model validation in
Chapter 6, which is integrated in the model extraction presented in Chap-
ter 4. Our solution to model validity increases the confidence in the
model by comparing the behavior of the system to that of the model.
Several issues are investigated in this process: that the model can repli-
cate any behavior that the system can exhibit, that the timing of the model
is sufficiently similar to the timing of the system, and that the distribution
of behaviors in the model resembles that of the system. As the solution
is based on testing of the system, it is not able to determine whether

141

142 Chapter 9. Conclusions

the model can express behavior that the system cannot. Our conclusion
is that it is indeed possible to quantify the validity and accuracy of ex-
tracted models.

Are the overheads of model extraction acceptable? The case study present-
ed in Chapter 7 shows that the overheads of introducing model extraction
in this specific case are indeed acceptable. In the study, a perturbation
of approximately 0.88%, generating 66, 000 bytes of data each second,
was observed. Regarding preparations for model extraction, we spent an
approximate total of 20 hours to find and implement the final probing of
the system (an engineer more accustom to the system would probably
perform this task significantly faster). Whether these numbers are gen-
erally acceptable, or not, or whether the case-study is representable, is
difficult to answer; a significant amount of data was generated, but the
run-time overhead and the overhead for implementing probing is low. In
the specific system that we observed, the amount of data generated did
not present a problem. Also, because we can perform model generation
on a set of recordings, we are not ultimately dependent on the lengths
of individual recordings; the recording length can be reduced if more
recordings are generated. Our conclusion is that there are evidence indi-
cating that the overhead of model extraction could be acceptable, though
a more general conclusion would require further studies.

Can the method of model extraction be evaluated? We have performed both
a case study and an experiment to evaluate the appropriateness of our
model extraction. With the framework for quality assessment presented
in Chapter 8, we can evaluate individual methods of model extraction
as well as compare several different methods to evaluate differences in
the behavior of the final models. The comparison that we propose is a
novel instrument for measuring the likeness between sampled time dis-
tributions, but the framework for quality assessment can use any other
method of comparison. Our conclusion is that the method of model ex-
traction can, as we have demonstrated, indeed be evaluated.

Thus, we have answered the questions postulated in the beginning of the
thesis. Among the advantages of our method of model extraction are that it
allows modeling without intruding on continuous software evolution, and that
it allows modeling of a system without extensive system knowledge. That
said, there are still issues to resolve as far as the presented method of model

9.1 Results 143

extraction is concerned. There is a set of disadvantages of model extraction as
it is presented here (though some of these are probably solvable):

The fruits of effort. Some times, enduring a trialling experience is the most
efficient way to gain enlightenment. As a model can be obtained without
being understood, it is likely that the pedagogic value of the model is re-
duced. Therefore, it is possible that an interactive or completely manual
method would prove more efficient in the sense that the engineer making
the model actually gains insight into how the system is functioning.

The lost link. Use of recordings as the only significant input to model extrac-
tion may present a problem: If the recording does not contain informa-
tion to what part of the code that an event originates from, the link from
the model back to the source code is effectively broken. Depending on
the details of the use of the model, this can be cumbersome (it may be
difficult to associate a part of the model to a part of the implementation
and vice versa). This problem could possibly be resolved by introducing
more information into the recordings, but such a change also requires
alterations to model generation.

Unutilized capacity. As stated previously, the method presented here cannot
model task-level loops within a job. This is a general and crippling defi-
ciency, but it is solvable by other methods (e.g. Angluin’s algorithm [7]).
Also, it may be possible to analyze the recordings even further, to find
implicit causal dependencies not covered by the state-probes.

Context dependency. The set of test-cases used to extract the model limits the
context in which the model is meaningful. Functionality not triggered by
any of the test-cases cannot be observed, and will hence not be included
in the generated model.

Apart from these disadvantages, under the assumptions stipulated in the
thesis, our evaluations present evidence to suggest that model extraction as pre-
sented here can generate models whose temporal and functional behavior are
comparable to that of the modeled system. Furthermore, the evidence suggest
that these models can be used in model-based impact analysis. The argumen-
tation for these conclusions are as follows: The industrial case-study indicate
that our assumptions are viable from an industrial perspective, and the differ-
ent overheads to perform manual probing and execution time increase due to
probing are acceptable. Also, the case-study show no evidence or indication

144 Chapter 9. Conclusions

of fundamental flaws to the approach. Given the results of the controlled ex-
periment, we were not able to find any evidence or indication to suggest that
the generality or the stability of model extraction is questionable, provided that
recording and probing of data state is thorough enough given the complexity
of the modeled system.

9.2 Faithfulness of the generated models
For the discussion of faithfulness we will informally introduce the following
concepts:

• A behavior of a system is an execution of the system (including both
events and timing); note that behaviors are defined on some level of
granularity, e.g., an event on one level could correspond to a sequence
of events on another level; hence there is an element of abstraction in
how executions are defined. We will not further discuss this aspect here,
rather we assume models to be at the same level of granularity.

• A faithful model is a model whose executions are all valid executions of
the modeled system.

• An abstract model is a model that includes at least all executions of the
modeled system; hence, a faithful and abstract model (an exact model)
includes exactly the behaviors of the modeled system.

• An inventive model is a model that is neither faithful, nor abstract, i.e.
typically such models contain some (but not all) behaviors of the mod-
eled system, together with some behaviors that are not included in the
modeled system.

Figure 9.1 presents a Venn diagram illustrating the relations between the
sets of behaviors of faithful models (II in the figure), abstract models (V),
inventive models (III), and exact models (IV). The figure additionally shows
how the set of observed behaviors (I) could be related to the introduced types
of models.

The set of observed behaviors is the basis for our model generation. In fact,
these behaviors are the only knowledge about the system that is available. With
respect to these behaviors, model generation will produce an abstract model,
or more specifically a model containing all observed behaviors and (due to the
approximations made in the model generation) also behaviors that have not

9.2 Faithfulness of the generated models 145

Figure 9.1: The behavior of the model compared to the behavior of the system
and the observations on the system.

been observed. Unfortunately, since complete knowledge of the behaviors of
the system is lacking, the generated model will (in the general case) be an in-
ventive model relative to the system. However, by the introduced methods for
model validation we gain confidence in that the majority of behaviors of the
model are also valid behaviors of the system. Note also that, since the gener-
ated model remains abstract with respect to the observed behaviors when the
number of observations are increased, the generated model will be an abstract
model of the system if all system behaviors are observed. This is an important
property, though it in most cases is impractical (and practically impossible) to
observe all behaviors.

The differences between the observed behavior and the behavior of the
model is due to abstractions in the model in relation to the system. During sim-
ulation of the model, these abstractions give rise to visible differences between
the models and the system at three distinctly different levels:

• At system level, in terms of response times and preemption patterns (e.g.,
in the model, task A could preempt task B, though this will never happen
in the system).

• At task level, in terms of ordering of the event sequences that are jobs of
tasks (similarly to ordering of SECs as seen on Page 6.4).

• At job level, in terms of execution time distributions (e.g., the model has
execution times that the system hasn’t).

146 Chapter 9. Conclusions

The abstractions in the model are mainly on the form that variables con-
trolling the execution of a task are excluded from the model, leading to that
causal rules depending on these variables are not expressed by the model. In
more detail, relating to the three levels of differences, we note the following:

• At job level in the system, causality may dictate the execution time re-
quirement for segments of code. If the data variables that control this
causality are excluded from the recording, the model cannot capture the
relation, and simulation of a job may yield shorter or longer execution
times than seen in the recordings. For example, assume a job consisting
of an execution E1, followed by and event X , followed by an execution
E2; say that the system exhibits a long execution time for E2, if E1 is
short, and vice versa; if that relation is not included in the model, the
model may have a long E1 execution time in the same job as a long E2

execution time, in which case the total execution time of the job in the
model will be longer than the execution time of any job in the system.

• At task level, for the same reasons as above, the model’s event sequences,
which are jobs of a task, may be performed in orders that are not seen
in the recordings. Given three jobs A, B, and C; say that the system will
iterate deterministically between these in the order A,B,C, A,B,C, . . .;
if that relation is not included in the model, the model may, e.g., execute
in the order B,A,C, C, B. . . .

• At system level, the model’s preemption patterns differ from the system
due to the differences at the other levels, and/or due to abstractions in
the environment modeling, or in the modeling of task properties (e.g.,
periodicity). For example, due to the above differences, the interactions
between tasks in the system may be affected as execution times change,
or as expected communication is postponed due to task level differences.
If so, the faithfulness of the model may be in jeopardy - after all, what
conclusions can be drawn from a model that does not behave like the
system?

In order to determine the degree of faithfulness of an inventive model, we
need methods to (automatically) validate the model at the different levels of
difference. In this thesis, we introduce one such method in the form of the
evaluation framework in Chapter 8, which evaluates the model at system level.
Additional methods of model validation are however needed at all three levels.

9.3 Reproducibility 147

9.3 Reproducibility
Regarding repeatability/reproducibility of the research, we present detailed al-
gorithms for model extraction in appendices of the thesis, and the controlled
experiment is performed in a simple and understandable framework. Model ex-
traction follows a well-defined, traceable, and structured algorithm where the
elements of subjectiveness have been restricted to a few sub-steps in the prob-
ing of the system and parameterization of model validation. Regarding the
case-study, the implementation of the studied system is proprietary; hence, the
exact reproducibility is limited, though the information provided could serve
as a basis for similar studies.

9.4 Future work
During this work, a list of topics for future work has been identified:

9.4.1 Improving model generation

The method of comparing two sampled time distributions presented in Sec-
tion 8.3 (or any other method that solves the same problem) can be used to
make model generation produce more efficient models.

In the model produced by model generation, execution statements may be
distinguished by a branch. The implicit assumption has been that if the sub-
sequent behavior differs, the execution time represented by the statements is
likely to differ too. A branch has therefore been introduced to separate the be-
haviors even before they have been shown to differ. By comparing the sampled
time distributions of the execution statements in the branch, it is possible to test
if this assumption is correct or not. If not, the execution statements can indeed
be joined, and the branch introduced later in the model.

This method is also applicable for analyzing the model with the intent to
introduce loops in the model. Such a method should check jobs to find any
repeating patterns within the job; if so, there may be incentive to introduce a
loop in the model. In this case, a hypothesis is formed: the loop is assumed
to be feasible, and is introduced in the model, the hypothesis is then tested by
model validation. In this context, comparing sampled time distributions is used
in searching for repeating patterns within each job.

In addition to these improvements to model generation, we would also like
to construct methods for environmental modeling; that is, for the method to

148 Chapter 9. Conclusions

reach its full potential as a tool for active use in industry, also environmental
models need to be constructed. We believe that a method similar to model
generation could be used to achieve this. The main obstacles are: identifying
the equivalent of tasks in the environment (i.e. identifying the separate phys-
ical processes that form the environment), finding repeating patterns in these
environmental processes corresponding to that of identifying the start and end
of jobs, and using other primitives than execution time distributions to model
the passing of time in the environment.

9.4.2 Improving model validation

As explained above in this chapter, we need more methods for automated
model validation.

9.4.3 Improving probing analysis

We need tools to support (semi-)automatic probing analysis and probing im-
plementation.

As described earlier (see Section 4.6.3), one possibility is to use for exam-
ple techniques of memory excluding checkpoints [86] to determine the vari-
ables that are likely to yield good models; the search for appropriate probe
settings should then focus on this set of variables.

9.4.4 Continued evaluation

Though evaluation is a significant part of this thesis, there is still much work
to do in this area. We need to continue and deepen the evaluation as presented
here even further. In addition, we would also like to perform more industrial
case-studies to validate the method further, and ultimately evaluate the possi-
bility of using model extraction as an active tool in system development.

9.4.5 Comparing automatic modeling techniques

Using the evaluation framework presented in Section 8.1, it is possible to com-
pare different methods of automatic modeling. We are primarily interested in
comparing the work presented here to the work of Andersson et al. presented
in [5], but also other work could be included in a future comparison.

9.4 Future work 149

9.4.6 Using classification to compare sampled time distribu-
tions

In Section 8.3, we introduced a method for comparing two sampled time dis-
tributions. In the following evaluation using the method, we found that the
normalization of the measure in the method could lead to unintuitive results
(see e.g., Page 133). Therefore, we are interested in seeking alternative meth-
ods.

Another option, orthogonal to the presented comparison, is to use tech-
niques of classification [25, 48, 58] (i.e., techniques to summarize large popu-
lations of objects in terms of a small number of classes of objects). Alternative
approaches to classification include cluster analysis [48] and pattern recogni-
tion [58]. We do not know of any applied results of classification that solve our
specific problem, but believe that such an applied method could be designed.

If samples are the objects that are classified, solving a particular classifica-
tion problem provides an abstraction of the sampled time distribution. Com-
paring the abstractions of two or more distributions expresses the similarity of
the distributions. We may optionally introduce differential weighting of classes
of objects in order to increase the abstraction from the complexity of the sam-
pled time distributions (for example, we could remove classes with few objects
from the abstraction to reduce the noise in the comparison).

One drawback of this type of approach is that it may require extensive
parameterization, which requires that the user is familiar with the classification
technique and with the application domain of the comparison.

9.4.7 Using automatic modeling to achieve a design para-
digm shift

As the methods of automatic modeling become more sophisticated, we would
like to investigate the possibility of using automatic modeling in order to trans-
form a code-oriented project into a model-based development project. Apart
from significant advances in automatic modeling, a new set of methodologies
are needed to make the transformation and to validate that the transformation
has been completed.

9.4.8 Avoiding the probe effect
In many cases, the probe effect [23] hinders removal of probes from the im-
plementation because it (in the general case) cannot be determined that the

150 Chapter 9. Conclusions

presence of the probes, and the perturbation that this inflicts on the system,
does not effect the behavior of the implementation. This is of interest as, if the
behavior is affected, the performed testing of the implementation is invalidated
by adjusting the perturbation of the probes (i.e., modifying the probe setup). In
the case of model extraction however, an exception could be motivated.

We present the following argumentation for the existence of this exception:
As the probes are auxiliary to the system (i.e., they are not explicitly cooperat-
ing with the implementation) the architecture of the implementation does not
change with the addition or removal of probes. As long as the temporal behav-
ior of the model that has been extracted from recorded executions is modified
accordingly (i.e., the execution time of the removed probes is subtracted from
the measured execution time), some probes can be removed as the architecture
of the implementation will not change based solely on the number of probes.

This remains true, and can be performed, as long as we can determine that
the presence of the probes did not disturb the functionality of the system such
that it triggers some extraordinary behavior (e.g., the probes are the source of
some fault). If the recording was affected by extraordinary behavior, the model
created from that recording is erroneous with respect to the implementation
without probes. In that case, the probe setup must be kept until the system can
be fully re-tested.

Assuming an implementation with two different probe setups, where one
of the setups is a subset of the other, the following method can be used to
determine whether the presence of the additional probes changed the behavior
of the system.

1. First, the records from probes not available in both the probe configu-
rations are removed from the recordings. This step includes modifying
time-stamps by subtracting the time spent to execute the probes that are
not available in both recordings. As motivated in other work, the ex-
ecution time of probes should (for reasons of testability etc.) be con-
stant [35].

2. Second, models are generated from each of the recordings.

3. Third, the two models are compared; if they are deemed to be equal, the
probe effect had no impact.

Thus, if it is concluded that probes could be removed, the smaller of the two
probe configurations must be kept, but the additional probes can be removed.
In this way, we can use the probe setups used in previous iterations of the

9.4 Future work 151

model extraction to remove subsequent additions to the probe setup. In the
optimal case, the only probing that need to remain in the implementation is the
minimal requirement of the model generation. The minimal probing is to probe
the events task preemptions and performed system calls.

If the probe effect has no impact on the system, it has been avoided suc-
cessfully in this case even if the probe setup is altered. The observation that is
important to emphasize here is that if the overhead of task-level recording is
low, the chance of avoiding the probe effect increases.

Appendix A

Algorithms for model
generation

In this appendix, we present algorithms for model generation as described in
Chapter 5. We make use of a set of functions, described by Table A.1, to add
recseq events with the observed actions, add branches to a modset, etc.

Function Description

addExecute Adds a recseq event with action Exe-
cute.

addEnd Adds a recseq event with action End.
addStateAssignment Adds a recseq event with action Vari-

able assignment.
addWriteToIPC Adds a recseq event with action Write

to IPC.
addReadFromIPC Adds a recseq event with action Read

from IPC.
makeMdlBranch Makes a modtree from a given recseq

event.
distinguishingParameters Returns the distinguishing parameters

for a modtree.
adjustStateToStateAssignments Applies a set of Variable assignments

to an existing state.

153

154 Appendix A. Algorithms for model generation

updateStateAssignments Adds one Variable assignment to a set
of Variable assignments, replacing any
existing updates to that variable.

makeBeginIfSelection Starts an ART-ML if-selection for a
given set of TaskModelDataStates.

makeEndIfSelection Ends an ART-ML if-selection.
makeBeginChanceSelection Starts an ART-ML chance-selection for

a given probability.
makeEndChanceSelection Ends an ART-ML chance-selection.
makeActionStatement Produces an ART-ML statement from a

given modtree.
makeTaskHead Produces the preamble of an ART-ML

model
makeTaskFoot Produces the postamble of an ART-ML

model
Table A.1: Functions used in the algorithms for model generation.

A.1 Extraction of task executions (jobs) from rec-
ordings

Algorithm 2 The algorithm prepareStateOfTask finds the initial data state
state ∈ TaskModelDataStates of the first job to base the recseq on.
Require: Input: a recording E
Require: Input: a unique task identifier t
Require: There is a vector state ∈ TaskModelDataStates
Require: The vector found has domain {defined,undefined}
Require: The variable active has domain {true,false}
Require: There is a set of integer variables i,j,v,id

1: active := false, i := 0, v := 0
2: all elements of the vector found are set to undefined
3: for i < |E| do
4: if Ei.e is a Context switch event such that t is now executing then
5: active := true
6: else if Ei.e is a Context switch event such that t is preempted then
7: active := false
8: end if
9: if active = true ∧ Ei.e is a Variable assignment event then

A.1 Extraction of task executions (jobs) from recordings 155

10: id := a unique identifier for the parameter “variable name” of Ei.e
11: if foundid = undefined then
12: foundid := defined
13: v := v + 1
14: end if
15: end if
16: i := i + 1
17: end for
18: i := 0, j := 0
19: for j < v do
20: if Ei.e is a Context switch event such that t is now executing then
21: active := true
22: else if Ei.e is a Context switch event such that t is preempted then
23: active := false
24: end if
25: if active = true ∧ Ei.e is a Variable assignment event then
26: id := a unique identifier for the parameter “variable name” of Ei.e
27: stateid := the parameter “value” of Ei.e
28: j := j + 1
29: end if
30: i := i + 1
31: end for
32: return {i, state}

Algorithm 3 The algorithm recording2recseq extracts a recseq for one task
from one recording.
Require: Input: a recording E
Require: Input: a unique task identifier t
Require: There is a recseq labeled R
Require: The variables active,start have domain {true,false}
Require: There are two vectors state, nextState ∈ TaskModelDataStates
Require: There is a set of integer variables i,j,e,id,save,time,last

1: active := true, state := false, j := 0, e := 0, time := 0, last := 0
2: offsetAndState := prepareStateOfTask(E, t)
3: ∃offset : offset ∈ offsetAndState ∧ offset ∈ Z∗
4: ∃state : state ∈ offsetAndState ∧ state ∈ TaskModelDataStates
5: nextState := state
6: for offset < |E| do
7: if Ei.e is a Context switch event such that t is now executing then

156 Appendix A. Algorithms for model generation

8: last := e
9: active := true

10: else if Ei.e is a Context switch event such that t is preempted then
11: time := time + Eoffset.t− Elast.t
12: active := false
13: if t is triggered periodically & the OS state is “suspended” then
14: if start := true then
15: if time > 0 then
16: Rj,e := addExecute(Eoffset, t, time, state)
17: time := 0, e := e + 1
18: end if
19: Rj,e := addEnd(Eoffset, t, state)
20: j := j + 1, e := 0
21: state := nextState
22: end if
23: start := true
24: end if
25: else if t is event triggered & Ei.e is receive on the triggering queue then
26: if start := true then
27: if time > 0 then
28: Rj,e := addExecute(Eoffset, t, time, state)
29: time := 0, e := e + 1
30: end if
31: Rj,e := addEnd(Eoffset, t, state)
32: j := j + 1, e := 0
33: state := nextState
34: end if
35: start := true
36: end if
37: if active = true ∧ start = true then
38: time := time + Eoffset.t− Elast.t
39: last := e
40: if time > 0 then
41: Rj,e := addExecute(Eoffset, t, time, state)
42: time := 0, e := e + 1
43: end if
44: if Ei.e is a Variable assignment event then
45: id := a unique identifier for the parameter “variable name” of Ei.e
46: nextStateid := the parameter “value” of Ei.e

A.2 Generation of a tree-representation of the task from the jobs 157

47: Rj,e := addStateAssignment(Eoffset, t, state)
48: e := e + 1
49: else if Ei.e is a Send to IPC queue: initialize event then
50: save := i
51: else if Ei.e is a Send to IPC queue: finalize event then
52: Rj,e := addWriteToIPC(Eoffset, Esave, t, state)
53: e := e + 1
54: else if Ei.e is a Read from IPC queue: initialize event then
55: save := i
56: else if Ei.e is a Read from IPC queue: finalize event then
57: Rj,e := addReadFromIPC(Eoffset, Esave, t, state)
58: e := e + 1
59: end if
60: end if
61: offset := offset + 1
62: end for
63: return R

A.2 Generation of a tree-representation of the task
from the jobs

Algorithm 4 The algorithm recseq2modset uses distinguishing parameters to
make a modset from a recseq.
Require: Input: a recseq labeled R
Require: Input: an integer variable j that denotes the current job in R
Require: Input: an integer variable e that denotes the current event in Rj

Require: Input: a set of modtrees labeled M
Require: There are two modtree variables labeled mb,m

1: m := makeMdlBranch(Rj,e)
2: if j ≥ |R| ∨ e ≥ |Rj| then
3: return M
4: end if
5: mb ∈ M : distinguishingParameters(mb) = distinguishingParameters(m)
6: if mb is defined then
7: M = M\{mb}
8: mb.c = mb.c + 1
9: mb.S = mb.S ∪ m.S

10: if mb.a is an execute action then

158 Appendix A. Algorithms for model generation

11: Add the execution time distribution of m.a to that of mb.a
12: end if
13: if mb.a is an end action then
14: Add the suspension time distribution of m.a to that of mb.a
15: end if
16: m = mb
17: end if
18: if m.a is an end action then
19: m.T = recseq2modset(R, j + 1, 0, m.T)
20: else
21: m.T = recseq2modset(R, j, e + 1, m.T)
22: end if
23: return M ∪ {m}

A.3 Generation of ART-ML code from the tree-
representation

Definition 12 (StateAssignment). An assignment to a variable is represented
by tuple labeled StateAssignment: 〈unique identifier, value〉. The semantics is
that the value is assigned to the variable with the unique identifier.

Algorithm 5 The algorithm modset2ART-ML produces the body of ART-ML
code from a modset.
Require: Input: a set of modtrees labeled M
Require: Input: a set of StateAssignments labeled SA
Require: A set of StateAssignments labeled SA’
Require: The variables S’,SameBranchS are sets of TaskModelDataStates
Require: The variables SP,SingleStateSP,SameBranchSP are sets of state-pairs
Require: The variables a,b are state-pairs
Require: The variable m is a modtree

1: SingleStateSP := {∀sp ∈ 2TaskModelDataStates×M : ∀m ∈ sp.M →
sp.S ⊆ m.S}

2: SP := ∅
3: for ∀a ∈ SingleStateSP do
4: SameBranchSP := {∀b ∈ SingleStateSP : b.M ≡ a.M}
5: SameBranchS := ∅
6: for ∀b ∈ SameBranchSP do
7: SameBranchS := SameBranchS ∪ b.S

A.4 Producing models for a set of tasks 159

8: end for
9: SP := SP ∪ {〈SameBranchS, a.M〉}

10: end for
11: for ∀a ∈ SP do
12: S’ := adjustStateToStateAssignments(a.S, SA)
13: makeBeginIfSelection(S’)
14: for ∀m ∈ a.M do
15: if |a.M| > 1 then
16: makeBeginChanceSelection(m, a.M)
17: end if
18: makeActionStatement(m)
19: if m.a is a Variable assignment then
20: SA’ := updateStateAssignments(SA, m.a)
21: end if
22: modset2ART-ML(m.T, SA’)
23: if |a.M| > 1 then
24: makeEndChanceSelection()
25: end if
26: end for
27: makeEndIfSelection()
28: end for

A.4 Producing models for a set of tasks

Algorithm 6 The algorithm modelGeneration makes an ART-ML model from
a set of recordings.
Require: Input: a set of recordings REC
Require: Input: a set of task identifiers Tasks
Require: The variables R, R′ are recseqs
Require: The variable M is a modset

1: for All t ∈ Tasks do
2: R := ∅
3: for All E ∈ REC do
4: R′ := recording2recseq(E, t)
5: R := R + R′

6: end for
7: Mrecseq2modset(R, 0, 0, ∅)
8: makeTaskHead()

160 Appendix A. Algorithms for model generation

9: modset2ART-ML(M, ∅)
10: makeTaskFoot()
11: end for

Appendix B

Algorithms for model
validation

In this chapter, we present algorithms for transforming recseqs and modsets
into timed automata.

B.1 Architecture for automata translation
In Figure B.1, we show the architecture of the solution presented here. There
are, all in all, ten functions in the solution to obtain automata for the modset
and recseq. Some of these (Model Get Edges, Model Event Count, Trace Get
Edges, Trace Event Count, Trace Get Next) are recursive.

The calling of functions is conditional and there are seven different kinds
of conditions, which are also indicated in the figure:

1. Always.

2. The type of the action is Execute.

3. The type of the action is Variable assignment.

4. The type of the action is either Send to IPC queue, Read from IPC queue,
Variable assignment.

5. The type of the action is either Send to IPC queue, Read from IPC queue,
Variable assignment, or End of job.

161

162 Appendix B. Algorithms for model validation

Figure B.1: Call graphs for the functions to obtain automata.

B.2 General definitions and functions 163

6. The type of the edge is either Send to IPC queue, Read from IPC queue,
Variable assignment, or End of job.

7. For each action in the modset/recseq.

B.2 General definitions and functions
In the following sections, we introduce the translation of recseqs and modsets
into timed automata. The translation requires the following definitions:

Definition 13 (Actions). To represent both functional and temporal behavior,
there is a set of actions Actions ≡ {snd, rcv, upd, exe, end} ranged over by a.
Each action in the set has a set of associated attributes as follows:

• Each inter task communication send (snd) has an associated pid ∈ Z∗
identifying the queue upon which a value was sent, a p ∈ Z∗ identifying
the value sent, and msg ∈ Z∗ ∪ {z} identifying a value received by an
immediately preceding action of type rcv.

• Each inter task communication receive (rcv) has an associated pid ∈ Z∗,
a to ∈ Z∗ ∪ {∞} identifying the timeout, and msg ∈ Z∗ ∪ {z}.

• Each variable update (upd) has an associated pid ∈ Z∗ identifying the
variable, a value p ∈ Z∗ assigned to the variable, and msg ∈ Z∗ ∪ {z}.

• Each execute action (exe) has an associated time interval tt represented
as a set of two integers that describe the duration of the execution, and
msg ∈ Z∗ ∪ {z}.

• Each end action (end) has an associated msg ∈ Z∗ ∪ {z} and a time in-
terval tt represented as a set of two integers that describe the periodicity
of the task should it be periodically triggered, otherwise, both integers
are zero.

We use the definition of timed automata from Section 6.3.1. There are two
subsets of clocks in the pair of automata: the modset-automaton has a set of
local clocks CT ≡ {cT } and the recseq-automaton has a set of local clocks
CR ≡ {cR}. Thus, the set of clocks in a pair of modset-recseq-automata is
C ≡ CT ∪ CR.

164 Appendix B. Algorithms for model validation

There are three sets of variables in the system of automata, where n is
the size of the set of state variables: the modset-automaton has a set of local
variables WT ≡ {s1...sn}, the recseq-automaton has a set of local variables
WR ≡ ∅, and there is a set of global variables WG ≡ {msg, id, value, to}.
The variables inWG will be used to communicate properties of actions between
the pair of automata that are co-simulated (see Section 4.5). Thus, the set of
variables in a pair of modset-recseq-automata is W ≡WT ∪WR ∪WG .

Definition 14 (Updates). A set Updates of pairs 〈type, value〉 ranged over by
u denotes the set of updates in an automaton, where type is a variable or clock
that the update concerns, and value is the new value with which the variable is
updated.

We use the notation u.type to denote the variable or clock that the update
concerns. Thus, u.type ∈ W ∪ C.

The function in Definition 15 adds two time intervals and adjusts them ac-
cording to the precision parameter pp. This function is used to add the precision
parameter to edges in an automaton, thus implementing the leeway introduced
in Section 6.2. The function is called by algorithms 7 and 10 when reaching
execute-actions.

Definition 15 (New Time Interval). nti : 2Z∗×Z∗ × 2Z∗×Z∗ × Z∗ → 2Z∗×Z∗

nti(tt1, tt2, pp) = {min(tt1) + min(tt2 − pp),
max(tt1) + max(tt2 + pp)}

The function in Definition 16 is called by the function in Definition 19 and
by Algorithm 8 to determine which of two possible msg values that will be
used in an edge (i.e. the value received by an immediately preceding action of
type rcv). There are two mutually exclusive options: either a value originating
from a previous execute event immediately prior to the current event, or from
the current event. At least one of these is undefined, and the function will
ensure that a defined value is used, if it exists.

Definition 16 (Which of two Integers is Defined). wid : Z∗∪{z}×Z∗∪{z} →
Z∗ ∪ {z}

wid(msg1,msg2) =
{

msg2 when msg1 = z
msg1 otherwise

B.3 The modset-automaton transformation functions and automaton
definition 165

B.3 The modset-automaton transformation func-
tions and automaton definition

In this section, we present the transformation of a modset to a timed automaton.
The guards of edges in the modset-automaton are composed in a given

structure: There is a time-span in which the guard is valid if the automaton is in
the correct state, the msg-property has a given value, and the properties id and
value of the action have been updated as required by the recseq-automaton.

Definition 17 (Guard). A guard g ∈ Guards for an edge in an automaton can
be represented as a tuple of values 〈tl, tm, v1, v2, . . . , vn, vmsg, vid, vvalue, vto〉,
where:

• tl is the minimum time for the local clock of the automaton for which
the guard evaluates to true,

• tm is the maximum time for the local clock of the automaton for which
the guard evaluates to true,

• vx is the value of local state variable sx, x ∈ {1, . . . , n} when the state
is built of n variables,

• vmsg is the value of a received message msg ∈ WG in an immediately
preceding receive action,

• vid is an evaluation of an attribute id ∈ WG of the current action, which
is the unique identifier of, for example, an IPC-queue or a variable,

• vvalue is an evaluation of an attribute value ∈ WG of the current action,
and

• vto is an evaluation of an attribute to ∈ WG of the current action, which
is a timeout of a rcv-action.

Thus, in an automaton with a state of size 2, we could represent a guard
as the tuple 〈100, 200, 5, 3, z, z, z〉, which is equivalent to the representation
B(C) ∪ B(W) ≡ {cT > 100, cT < 200, s1 = 5, s2 = 3}, when C ≡ {cT }
and W ≡ {s1, s2,msg, id, value}. This particular guard would allow the
time-span (100, 200) if the first state variable has the value 5, the second state
variable has the value 3, and msg, id, and value are all undefined.

166 Appendix B. Algorithms for model validation

We recall the definitions of modtrees and of modset from Section 5.3.
Intuitively, by finding the size of the modset, the function in Definition 18,

counts the number of locations required to construct the automaton for the
modset by calculating the collected size of the tree.

Definition 18 (Model Event Count). mec : modset× Z∗ → Z∗

mec(T) =

0 when T ≡ ∅
|T.T|
max
p=0

(mec(T.Tp), T.id)) otherwise

The function in Definition 19 produces a new edge to add in the automa-
ton. The function is called with information about the source and destination
labels, the action, and the guard for the edge. The guard (see Definition 17)
is comprised from a time interval, a data state, and four properties. The time
interval specifies the minimum and maximum clock values between which the
edge is valid. The data state is the tasks data state accumulated from a series
of previous update actions. The properties are used to distinguish between dif-
ferent instances of the same action. For example, the variable identifier and
the variable value are distinguishing properties of the update action. Indepen-
dently of the type of the current action, if the previous action was a receive
action, the msg-property specifies the value that was received. As execute ac-
tions are represented as a time interval rather than an edge, one edge may find
a msg-property inherited from a previous execute action. In that case, msg1

will be defined. If msg1 is undefined, the current action may hold a defined
msg-property. By construction, the two alternatives are mutually exclusive,
that is, they cannot both be defined at the same time.

Definition 19 (Model New Edge). mne : 2Z∗×Z∗×TaskModelDataStates×
Z∗ ∪{z}×Z∗ ∪{z}×Z∗×Z∗×Z∗×Locations×Actions×Locations×
2Updates → Edges

mne(tt, s, msg1,msg2, pid, p, to, l, a, l′, U) =
〈l, 〈min(tt),max(tt), s1, s2 . . . s|s|, wid(msg1,msg2), pid, p, to〉, a, U, l′〉

To perform updates to the data-state, a set of updates is maintained through-
out the traversal of the modset. The collected updates for a path in the modset

B.4 The recseq-automaton transformation functions and automaton
definition 167

will be added to an edge that represents the end of the job in that path. If an
update-action is encountered during the traversal, the function in Definition 20
is called by Algorithm 7 to add an update to the set. A special construct is
employed to avoid the set to contain more than one update to the same state
variable. The intention is to replace any old update with the new, thus the state
that the updates represent will respect the precedence order of the updates.

Definition 20 (Model New Update). mnu : modset × 2Updates × 2W →
2Updates

mnu(T,U,W) = U\{∀s∈W∀v∈Z∗〈s, v〉|s = sT.a.pid
}∪

{∀s∈W∀v∈Z∗〈s, v〉|s = sT.a.pid
∧ v = T.a.p}

Algorithm 7 is the main function for producing the modset-automaton, it
creates a set of edges for the automaton. A modtree is iterated and the actions
encountered determine the action taken.

Model Get Edges; mge : modset×Locations×TaskModelDataStates×
2Updates × 2Z∗×Z∗ × Z∗ ∪ {z} × 2W × 2CT → 2Edges.

We are now able to define the modset-automata as Definition 21 shows,
using the definitions and algorithms formulated above.

Definition 21 (Timed automata for modset). Assume Σ ≡ {snd, rcv, upd, end},
C ≡ {cm}, and W ≡ {msg, id, value, to, s0, s1, . . . , s|guard|−1}. Then, the
automata AT for modset T , is defined as follows:

• L ⊆ {l0, l1, . . . , ln : n = max
T∈modset

mec(T)},

• l0

• E ≡
⋃

T∈modset

⋃
s∈T.S

mge(T,L, s, ∅, {0, 0}, 0,W, CT).

B.4 The recseq-automaton transformation func-
tions and automaton definition

In this section, we present the translation of a recseq in to a timed automata.
We recall the definition of recseq from the previous chapter.

168 Appendix B. Algorithms for model validation

Algorithm 7 mge(T, l, s, U, tt,msg,W, CT), where: T is the current modtree,
l is the current location in the automaton, s is the state with respect to which the
modset is traversed, U is the set of pending updates found in the traversal, tt is
the accumulated execution time from a previous exe-action (if applicable), msg
is the message received from a previous rcv-action (if applicable), W is the set
of variables in the automaton, and CT is the set of clocks in the automaton.

1: nE := ∅
2: cU := {〈cT ∈ CT , 0〉}
3: ntt := {0, 0}
4: if s ∈ T.G then
5: if T.a = snd then
6: nE := mne(tt, s, msg, T.msg, T.a.pid, T.a.p, z, l, snd, lT.id, cU)
7: nE := ∪V ∈T.Tmge(V, lT.id, s, U, ntt, z,W, CT) ∪ nE
8: else if T.a = rcv then
9: nE := mne(tt, s, msg, T.msg, T.a.pid, z, T.a.to, l, rcv, lT.id, cU)

10: nE := ∪V ∈T.Tmge(V, lT.id, s, U, ntt, z,W, CT) ∪ nE
11: else if T.a = upd then
12: nE := mne(tt, s, msg, T.msg, T.a.pid, T.a.p, z, l, upd, lT.id, cU)
13: nE := ∪V ∈T.Tmge(V, lT.id, s, mnu(T,U,W), ntt, z,W, CT) ∪ nE
14: else if T.a = exe then
15: nE := ∪V ∈T.Tmge(V, lT.id, s, U, nti(tt, T.a.tt, 0), T.msg,W, CT)
16: else if T.a = end then
17: nE := mne(tt, s, msg, T.msg, z, z, z, l, end, lT.id, cU)
18: nE := mne(T.a.tt, s, msg, T.msg, z, z, z, lT.id, end, l0, U∪cU)∪nE
19: end if
20: end if
21: return nE

B.4 The recseq-automaton transformation functions and automaton
definition 169

We use the following notations: Rp refers to job p in recording R, Rp,q

refers to event q in job p in recording R, and o.a refers to the action of event
o ∈ Events.

A new edge in the recseq-automaton is created by a call to Algorithm 8.
The possible actions on the edges are send (snd), receive (rcv), update (upd),
end (end), and epsilon (ε). Updates in the edge are configured depending on the
type of action on the closest subsequent edge that is not an execute-action. For
example, checking a subsequent receive will require that the queue identifier
and the timeout are updated in this edge.

Trace New Edge; tne : 2Z∗×Z∗×Locations×Actions∪{ε}×Locations×
Events× Z∗ ∪ {z} × 2WG × 2CR → Edges.

Algorithm 8 tne(tt, l, a, l′, o, msg,WG , CR), where: tt is the accumulated ex-
ecution time from a previous exe-action (if applicable), l is the source location
for the edge, a is the current action, l′ is the destination location for the edge, o
is the closest subsequent action which is not an exe-action, msg is the message
received from a previous rcv-action (if applicable), WG is the set of variables
manipulated in the automaton, and CR is the set of clocks in the automaton.

1: updates := {〈cR ∈ CR, 0〉}
2: if o.a = snd ∨ o.a = upd then
3: updates := {〈msg ∈ WG , wid(msg, o.msg)〉} ∪ updates
4: updates := {〈id ∈ WG , o.pid〉} ∪ updates
5: updates := {〈value ∈ WG , o.p〉} ∪ updates
6: return {〈l, l′, 〈min(tt),max(tt)〉, a, updates〉}
7: else if o.a = rcv then
8: updates := {〈msg ∈ WG , wid(msg, o.msg)〉} ∪ updates
9: updates := {〈id ∈ WG , o.pid〉} ∪ updates

10: updates := {〈value ∈ WG , o.to〉} ∪ updates
11: return {〈l, l′, 〈min(tt),max(tt)〉, a, updates〉}
12: else if o.a = end then
13: updates := {〈msg ∈ WG , wid(msg, o.msg)〉} ∪ updates
14: return {〈l, l′, 〈min(tt),max(tt)〉, a, updates〉}
15: else if o.a = ε then
16: return {〈l, l′, 〈min(tt),max(tt)〉, a, updates〉}
17: end if
18: return ∅

In order to find the closest subsequent event that is not an execute-action,
Algorithm 9 will traverse the trace until the current job ends or an event with

170 Appendix B. Algorithms for model validation

another action than execute is encountered.
Trace Get Next; tgn : recseq × Z∗ × Z∗ → Events ∪ {z}

Algorithm 9 tgn(R, p, q), where: R is the recseq, p is the index for the current
job, and q is the index for the current event in the job.

1: if p ≥ |R| ∨ p < |R| ∧ q ≥ |Rp| then
2: return z
3: else if Rp,q.a = exe then
4: return tgn(R, p, q + 1)
5: else
6: return Rp,q

7: end if

Algorithm 10 constructs edges for the recseq-automaton. The function it-
erates the collected trace and calls Algorithm 8 on all encountered events ex-
cept those with execute-actions. On encountering events with end-actions, two
edges with end-actions are created. A precision parameter pp is set by the
initiator of the automata translation, its thoroughly described in Section 6.2.

Trace Get Edges; tge : recseq × Z∗ × Z∗ × Z∗ × 2Z∗×Z∗ × Z∗ × Z∗ ×
2WG × 2CR → 2Edges

Intuitively, by counting the events of the recseq save all exe-actions, the
function in Definition 22 (Trace Event Count) calculates the number of loca-
tions required to construct the recseq-automaton.

Definition 22 (Trace Event Count, tec : recseq × Z∗ × Z∗ → Z∗).

tec(R, p, q) =

0 when p ≥ |R|
tec(R, p + 1, 0) when q ≥ |Rp|
tec(R, p, q + 1) when Rp,q.a = exe
tec(R, p, q + 1) + 1 otherwise

We are able to define the recseq-automata as in Definition 23, using the
functions formulated above.

Definition 23 (timed automata for recseq). Assume Σ ≡ {ε, snd, rcv, upd,
end}, C ≡ {ct}, and WG ≡ {msg, id, value}. Let pp denote the validity
property as specified by the user. Then, the automata Arecseq , representing
recseq, is then defined as:

B.4 The recseq-automaton transformation functions and automaton
definition 171

Algorithm 10 tge(R, p, q, i, tt, pp, msg,WG , CR) where: R is the recseq, p is
the index for the current job, q is the index for the current event in the job,
i is the current location counter, tt is the accumulated execution time from
a previous exe-action (if applicable), pp is the precision parameter, msg is
the message received from a previous rcv-action (if applicable), WG is the set
of variables manipulated in the automaton, and CR is the set of clocks in the
automaton.

1: if p ≥ |R| then
2: return ∅
3: else if p < |R| ∧ q ≥ |Rp| then
4: return tge(R, p + 1, 0, i + 1, tt, pp, z,WG , CR)
5: else if Rp,q.a = snd ∨Rp,q.a = rcv ∨Rp,q.a = upd then
6: nE := tne(tt, li, Rp,q.a, li+1, tgn(R, p, q + 1),msg,WG)
7: return tge(R, p, q + 1, i + 1, {0, 0}, pp, z,WG , CR) ∪ nE
8: else if Rp,q.a = exe then
9: return tge(R, p, q + 1, i + 1, nti(tt, Rp,q.a.t, pp), pp,msg,WG , CR)

10: else if Rp,q.a = end then
11: nE := tne(tt, li, end, li+1, z, msg,WG)
12: nE := tne(nti(Rp,q.a.tt, {0, 0}, pp), li+1, end, li+2, tgn(R, p +

1, 0),msg,WG) ∪ nE
13: return tge(R, p, q + 1, i + 2, {0, 0}, pp, z,WG , CR) ∪ nE
14: else
15: return ∅
16: end if

172 Appendix B. Algorithms for model validation

• L ≡ {l0, l1, . . . ltec(recseq,0,0)+1}

• l0

• E ≡ tge(recseq, 0, 0, 0, {0, 0}, pp, z,WG , CR)

We let the state ltec(recseq,0,0)+1 be labeled “last”.

Bibliography

[1] Gregory Abowd, Ashok Goel, Dean Jerding, Michael McCracken, Melody
Moore, William Murdock, Colin Potts, Spencer Rugaber, and Linda Wills.
MORALE. mission oriented architectural legacy evolution. In Proceedings of In-
ternational Conference on Software Maintenance, pages 150–159, October 1997.

[2] Rajeev Alur, Costas Courcoubetis, and David L. Dill. Model-checking in dense
real-time. Information and Computation, 104(1):2–34, May 1993.

[3] Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Com-
puter Science, 126(2):183–235, April 1994.

[4] Johan Andersson. Modelling the temporal behavior of complex embedded sys-
tems: A reverse engineering approach. Licentiate Thesis, Mälardalen University,
Sweden, June 2005. ISSN 1651-9256, ISBN 91-88834-71-9.

[5] Johan Andersson, Joel Huselius, Christer Norström, and Anders Wall. Extracting
simulation models from complex industrial real-time systems. In Proceedings of
the International Conference on Software Engineering Advances, October 2006.

[6] Johan Andersson, Anders Wall, and Christer Norström. Decreasing maintenance
costs by introducing formal analysis of real-time behavior in industrial settings.
In Proceedings of the 1st International Symposium on Leveraging Applications
of Formal Methods, October 2004.

[7] Dana Angluin. Learning regular sets from queries and counterexamples. Infor-
mation and Computation, 75(2):87–106, November 1987.

[8] Osman Balci. Guidelines for successful simulation studies. In Proceedings of
the Winter Simulation Conference, pages 25–32, December 1990.

[9] Silvino José Silva Bastos and Maria Luiza D´Almeida Sanchez. Modelling real-
time systems from object oriented methods. In Real-Time Embedded System
Workshop. IEEE, December 2001.

[10] Johan Bengtsson, Willem Otto David Griffioen, Kåre J. Kristoffersen, Kim G.
Larsen, Fredrik Larsson, Paul Pettersson, and Wang Yi. Automated analysis of

173

174 Bibliography

an audio control protocol using uppaal. Journal of Logic and Algebraic Program-
ming, 52-53:163–181, July-August 2002.

[11] Johan Bengtsson, Kim G. Larsen, Fredrik Larsson, Paul Pettersson, and Wang
Yi. UPPAAL – a tool suite for automatic verification of real-time systems. In
Proceedings of the 4th DIMACS Workshop on Verification and Control of Hybrid
Systems III, number 1066 in Lecture Notes in Computer Science, pages 232–
243. Springer–Verlag, October 1995.

[12] Per-Olof Bengtsson, Nico Lassing, Jan Bosch, and Hans van Vliet. Architecture-
level modifyability analysis (ALMA). The Journal of Systems and Software,
69:129–147, 2004.

[13] Lionel C. Briand, Yvan Labiche, and Yucong Miao. Towards the reverse engi-
neering of uml sequence diagrams. In Proceedings of the 10th Working Confer-
ence on Reverse Engineering, pages 57–66, November 2003.

[14] Ed Brinksma and Angelika Mader. On verification modelling of embedded sys-
tems. Technical Report TR-CTIT-04-03, Centre for Telematics and Information
Technology, University of Twente, the Netherlands, January 2004. ISSN 1381-
3625.

[15] Eric J. Byrne. A conceptual foundation for software re-engineering. In Proceed-
ings of the Conference on Software Maintenance, pages 226–235. IEEE Com-
puter Society Press, November 1992.

[16] Elliot J. Chikofsky and James H. Cross II. Reverse engineering and design re-
covery: A taxonomy. IEEE Software, 7(1):13–17, January 1990.

[17] Alexander Clark and Franck Thollard. Pac-learnability of probabilistic determin-
istic finite state automata. Journal of Machine Learning Research, 5:473–497,
December 2004.

[18] Conrado Daws and Sergio Yovine. Two examples of verification of multirate
timed automata with kronos. In Proceedings of the 16th IEEE Real-Time Systems
Symposium, pages 66–75. IEEE Computer Society, December 1995.

[19] Edsger Wybe Dijkstra. Notes on structured programming. EWD249, circulated
privately, April 1970.

[20] Ivonne Erfurth and Wilhelm R. Rossak. A look at typical difficulties in prac-
tical software development from the developer perspective–a field study and a
first solution proposal with upex. In Proceedings of the 14th Annual IEEE In-
ternational Conference and Workshop on the Engineering of Computer Based
Systems, pages 241–248, March 2007.

[21] Colin Fidge. Fundamentals of distributed system observation. IEEE Software,
13(6):77–83, November 1996.

[22] David Freedman, Robert Pisani, and Roger Purves. Statistics. W. W. Norton &
Company, 3rd edition, 1998.

Bibliography 175

[23] Jason Gait. A probe effect in concurrent programs. Software - Practice and
Experience, 16(3):225–233, March 1986.

[24] Virginia R. Gibson and James A. Senn. System structure and software mainte-
nance. Communications of the ACM, 32(3):347–358, 1989.

[25] Allan D. Gordon. Classification, volume 82 of Monographs on statistics and
applied probability. CRC Press, 1999.

[26] Olga Grinchtein, Bengt Jonsson, and Martin Leucker. Learning of event-
recording automata. In Proceedings of the International Conference on Formal
Modeling and Analysis of Timed Systmes, pages 379–396, September 2004.

[27] Olga Grinchtein, Bengt Jonsson, and Paul Pettersson. Inference of event-
recording automata using timed decision trees. Lecture Notes in Computer Sci-
ence, 4137:435–449, 2006. In Proceedings of the 17th International Conference
on Concurrency Theory.

[28] Anders Hessel. Model-based test case selection and generation for real-time
systems. Licentiate Thesis, Uppsala University, Sweden, March 2006. ISSN
1404-5117.

[29] Anders Hessel and Paul Pettersson. A test case generation algorithm for real-time
systems. In Proceedings of the 4th International Conference on Quality Software,
pages 268–273, September 2004.

[30] Gerard Johan Holzmann and Margaret H. Smith. Software model checking: ex-
tracting verification models from source code. Software Testing, Verification
and Reliability, 11(2):65–79, May 2001. Special Issue: The First International
Workshop on Automated Program Analysis, Testing and Verification.

[31] Gerard Johan Holzmann and Margaret H. Smith. An automated verification
method for distributed systems software based on model extraction. Transac-
tions on Software Engineering, 28(4):364–377, April 2002.

[32] Hyong Seok Hong, Insup Lee, Oleg Sokolsky, and Hasan Ural. A temporal logic
based theory of test coverage and generation. In Proceedings of the International
Conference on Tools and Algorithms for Construction and Analysis of Systems,
volume 2280 of Lecture Notes in Computer Science, pages 327–341. Springer,
April 2002.

[33] Scott Howard. A background debugging mode driver package for
modular microcontrollers. Technical Report Motorola Semiconduc-
tor Application Note AN1230/D, Motorola Inc., 1996. Available at
http://www.freescale.com/files/microcontrollers/doc/app_note/AN1230.pdf,
November 2006.

[34] Hardi Hungar, Tiziana Margaria, and Bernhard Steffen. Test-based model gen-
eration for legacy systems. In Proceedings of the International Test Conference,
pages 971–980, September 2003.

176 Bibliography

[35] Joel Huselius. Preparing for replay. Licentiate Thesis, Mälardalen University,
Sweden, November 2003. ISSN 1651-9256, ISBN 91-88834-15-8.

[36] Joel Huselius and Johan Andersson. Model synthesis for real-time systems.
In Proceedings of the 9th European Conference on Software Maintenance and
Reengineering, pages 52–60. IEEE Computer Society, March 2005.

[37] Joel Huselius, Johan Andersson, Hans Hansson, and Sasikumar Punnekkat. Au-
tomatic generation and validation of models of legacy software. In Proceed-
ings of the 12th International Conference on Embedded and Real-Time Comput-
ing Systems and Applications, pages 342–349. IEEE Computer Society, August
2006.

[38] Joel Huselius, Johan Kraft, Hans Hansson, and Sasikumar Punnekkat. Evaluat-
ing the quality of models extracted from embedded real-time software. In Pro-
ceedings of the 14th Annual IEEE International Conference and Workshop on the
Engineering of Computer Based Systems, pages 577–585. IEEE Computer So-
ciety, March 2007. Presented at the 5th Workshop and Session on Model-Based
Development of Computer Based Systems.

[39] Joel Huselius, Daniel Sundmark, and Henrik Thane. Starting conditions for post-
mortem debugging using deterministic replay of real-time systems. In Proceed-
ings of the 15th Euromicro Conference on Real-Time Systems, pages 177–184.
IEEE Computer Society, July 2003.

[40] Joel Huselius and Henrik Thane. Constant execution time recording for replay
of sporadic real-time systems. In Proceedings of the 2nd Workshop on Compilers
and Tools for Constrained Embedded Systems, pages 39–47, September 2004.

[41] Joel Huselius, Henrik Thane, and Daniel Sundmark. Availability guarantee for
deterministic replay starting points in real-time systems. In Proceedings of the 5th

International Workshop on Automated Debugging, pages 261–264, September
2003.

[42] IEEE. IEEE Standard Glossary of Software Engineering Terminology. IEEE,
December 1990. IEEE Std. 610.12-1990.

[43] IEEE. IEEE Standard Test Access Port and Boundary-Scan Architecture. IEEE,
2001. IEEE Std. 1149.1-2001.

[44] IEEE Computer Society. Proceedings of the Fourth Workshop on Model-Based
Development of Computer-Based Systems and Third International Workshop
on Model-Based Methodologies for Pervasive and Embedded Software, March
2006.

[45] IEEE-ISTO. The Nexus 5001 Forum Standard for a Global Embedded Debug
Interface. IEEE, 1999. IEEE-ISTO 5001 1999.

[46] Tauseef A. Israr, Danny H. Lau, Greg Franks, and Murray Woodside. Auto-
matic generation of layered queuing software performance models from com-

Bibliography 177

monly available traces. In Proceedings of the 5th International Workshop on
Software and Performance, pages 147–158, July 2005.

[47] Ivar Jacobson and Fredrik Lindström. Re-engineering of an old system to an
object-oriented architecture. In Proceedings of the ACM Conference on Object
Oriented Programming Systems Languages and Applications, pages 340–350,
October 1992.

[48] Anil K. Jain and Richard C. Dubes. Algorithms for clustering data. Prentice
Hall, 1988.

[49] Peter Krogsgaard Jensen. Reliable Real-Time Applications. And How to Use
Tests to Model and Understand. PhD thesis, Aalborg University, Denmark, Feb-
ruary 2001.

[50] Gabor Karsai, Janos Sztipanovits, Akos Ledeczi, and Theodore Bapty. Model-
integrated development of embedded software. Proceedings of the IEEE,
91(1):145–164, January 2003.

[51] Donald E. Knuth. The Art of Computer Programming, volume 3. Sorting and
searching. Addison-Wesley, 1st edition, 1973.

[52] Donald E. Knuth. The Art of Computer Programming, volume 2. Seminumerical
algorithms. Addison-Wesley, 2nd edition, 1981.

[53] Harry Koehnemann and Timothy Lindquist. Towards target-level testing and
debugging tools for embedded software. In Conference Proceedings on TRI-
Ada, pages 288–298. ACM, September 1993.

[54] Hermann Kopetz. The time-triggered model of computation. In Proceedings of
the 19th IEEE Real-Time Systems Symposium, pages 168–177, December 1998.

[55] Hermann Kopetz and Wilhelm Ochsenreiter. Clock synchronization in distrib-
uted real-time systems. Transactions on Computers, 36(8):933–940, August
1987.

[56] Kai Koskimies and Erkki Mäkinen. Automatic synthesis of state machines from
trace diagrams. Software - Practice and Experience, 24(7):643–658, July 1994.

[57] Dieter Kranzlmüller. Event Graph Analysis for Debugging Massively Parallel
Programs. PhD thesis, Johannes Kepler University of Linz, Austria, September
2000.

[58] Ludmila I. Kuncheva. Combining pattern classifiers: Methods and algorithms.
Wiley, 2004.

[59] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM, 21(7):558–565, July 1978.

[60] Carol LeDoux and Stott Parker. Saving traces for ada debugging. In Proceedings
of the Ada International Conference on Ada in Use, pages 97–108. ACM, May
1985.

178 Bibliography

[61] Meir Manny Lehman. Programs, life cycles and the laws of software evolution.
Proceedings of the IEEE, 68(9):1060–1076, September 1980.

[62] Meir Manny Lehman. Laws of software evolution revisited. In Proceedings of
the 5th European Workshop on Software Process Technology, pages 108–124,
October 1996.

[63] Nancy Leveson. Safeware - System, Safety and Computers. Addison Wesley,
1995.

[64] Jun Li and Peter Hermann Feiler. Impact analysis in real-time control systems.
In Proceedings of the IEEE International Conference on Software Maintenance,
pages 443–452, August 1999.

[65] Bennet P. Lientz, E. Burton Swanson, and Gerry Edward Tompkins. Charac-
teristics of application software maintenance. Communications of the ACM,
21(6):466–471, June 1978.

[66] Lennart Lindh, Johan Stärner, Johan Furunäs, Joakim Adomat, and Mo-
hammed El Shobaki. Hardware accelerator for single and multiprocessor real-
time operating systems. In the Seventh Swedish Workshop on Computer Systems
Architecture, June 1998.

[67] Kenneth Littlejohn, Michael V. DelPrincipe, and Jonathan D. Preston. Embedded
information system re-engineering. IEEE Aerospace and Electronic Systems
Magazine, 15(11):3–7, November 2000.

[68] Chung L. Liu and James W. Layland. Scheduling algorithms for multiprogram-
ming in a hard-real-time environment. Journal of the ACM, 20(1):46–61, January
1973.

[69] George Logothetis and Klaus Schneider. Extending synchronous languages for
generating abstract real-time models. In Proceedings of the 2002 Conference and
Exhibition on Design, Automation and Test in Europe, pages 795–802, March
2002.

[70] George Logothetis, Klaus Schneider, and Christian Metzler. Generating formal
models for real-time verification by exact low-level analysis of synchronous pro-
grams. In Proceedings of the 24th IEEE International Real-Time Systems Sym-
posium, pages 256–265. IEEE, December 2003.

[71] Jacob Rubin Lorch. Operating Systems Techniques for Reducing Processor En-
ergy Consumption. PhD thesis, University of California at Berkeley, USA, 2001.

[72] Ciaran MacNamee and Donal Heffernan. Emerging on-chip debugging tech-
niques for real-time embedded systems. Computing & Control Engineering Jour-
nal, 11(6):295–303, December 2000.

[73] Dino Mandrioli, Sandro Morasca, and Angelo Morzenti. Generating test cases
for real-time systems from logic specifications. ACM Transactions on Computer
Systems, 13(4):365–398, November 1995.

Bibliography 179

[74] John Marciniak, editor. Encyclopedia of Software Engineering. Wiley-
Interscience, 2nd edition, December 2001.

[75] Frank J. Massey, Jr. The Kolmogorov-Smirnov test for goodness of fit. Journal
of the American Statistical Association, 46(253):68–78, March 1951.

[76] Charles McDowell and David Helmbold. Debugging concurrent programs. ACM
Computing Surveys, 21(4):593–622, December 1989.

[77] John Mellor-Crummey and Thomas LeBlanc. A software instruction counter.
In Proceedings of the Third International Conference on Architectural Support
for Programming Languages and Operating Systems, pages 78–86. ACM, April
1989.

[78] Micro Digital. SMX User’s Guide, 3.7, 2005.

[79] Robin Milner. Communication and Concurrency. International Series in Com-
puter Science. Prentice Hall, 1989.

[80] Johan Moe and David Carr. Using execution trace data to improve distributed
systems. Software - Practice and Experience, 32(9):889–906, July 2002.

[81] NIST/SEMATECH. e-handbook of statistical methods. Internet URL
http://www.itl.nist.gov/div898/handbook/, November 2006.

[82] Dag Nyström. Data Management in Vehicle Control-Systems. PhD thesis,
Mälardalen University, Sweden, October 2005.

[83] OSE Systems. OSEck Kernel Reference Manual, 2006.

[84] Santanu Paul, Atul Prakash, Erich Buss, and John Henshaw. Theories and tech-
niques of program understanding. In Proceedings of the 1991 Conference of
the Centre for Advanced Studies on Collaborative Research, pages 37–53. IBM
Press, 1991.

[85] Walter Piegorsch. Sample sizes for improved binomial confidence intervals.
Computational Statistics & Data Analysis, 46(2):309–316, June 2004.

[86] James Plank, Yuqun Chen, Kai Li, Micah Beck, and Gerry Kingsley. Memory
exclusion: Optimizing the performance of checkpointing systems. Software -
Practice and Experience, 29(2):125–142, February 1999.

[87] Stefan Poledna. Replica Determinism in Fault-Tolerant Real-Time Systems. PhD
thesis, Technishe Universität Wien, Austria, April 1994.

[88] Tamar Richner and Stéphane Ducasse. Recovering high-level views of object-
oriented applications from static and dynamic information. In Proceedings of the
International Conference on Software Maintenance, pages 13–22, August 1999.

[89] Tamar Richner-Hanna. Recovering Behavioral Design Views: a Query-Based
Approach. PhD thesis, Universität Bern, Switzerland, May 2002.

180 Bibliography

[90] Matthias Riebisch and Sven Wohlfarth. Introducing impact analysis for architec-
tural decisions. In Proceedings of the 14th Annual IEEE International Conference
and Workshop on the Engineering of Computer Based Systems, pages 381–390,
March 2007.

[91] Michiel Ronsse, Mark Christiaens, and Koenraad De Bosschere. Cyclic debug-
ging using execution replay. In International Conference on Computational Sci-
ence, volume 2074 of LNCS, pages 851–860, May 2001.

[92] Robert G. Sargent. Verification and validation of simulation models. In Proceed-
ings of the Winter Simulation Conference, pages 130–143, December 2005.

[93] Bradley Schmerl, Jonathan Aldrich, David Garlan, Rick Kazman, and Hong Yan.
Discovering architectures from running systems. IEEE Transactions on Software
Engineering, 32(7):454–466, July 2006.

[94] Bernhard Schätz. Model-based engineering of embedded control software.
In Proceedings of the Fourth Workshop on Model-Based Development of
Computer-Based Systems and Third International Workshop on Model-Based
Methodologies for Pervasive and Embedded Software, pages 53–62, March
2006.

[95] Werner Schütz. Fundamental issues in testing distributed real-time systems.
Real-Time Systems, 7(2):129–157, September 1994.

[96] Mohammed El Shobaki and Lennart Lindh. A hardware and software monitor for
high-level system-on-chip verification. In Proceedings of the IEEE International
Symposium on Quality Electronic Design, pages 56–61, March 2001.

[97] Guoqiang Shu, Chao Li, Qing Wang, and Mingshu Li. Validating objected-
oriented prototype of real-time systems with timed automata. In Proceedings
of the 13th IEEE International Workshop on Rapid System Prototyping, pages
99–106, July 2002.

[98] Joseph Sifakis, Stavros Tripakis, and Sergio Yovine. Building models of real-
time systems from application software. Proceedings of the IEEE, 91(1):100–
111, January 2003.

[99] David Snelling and Geerd-R. Hoffmann. A comparative study of libraries for
parallel processing. Parallel Computing, 8(1-3):255–266, 1988.

[100] Joseph L. Sowers and Paul E. Rubin. Reversing course: Issues in modeling
legacy systems. Telecommunication Systems, 16(1,2):147–157, 2001.

[101] Jack Stankovic. Misconceptions about real-time computing: a serious problem
for next-generation systems. IEEE Computer, 21(10):10–19, 1988.

[102] Darlene Stewart and Morven Gentleman. Non-stop monitoring and debugging on
shared-memory multiprocessors. In Proceedings of the 2nd International Work-
shop on Software Engineering for Parallel and Distributed Systems, pages 263–
269. IEEE Computer Society, May 1997.

Bibliography 181

[103] Sun Microsystems. Solaris Dynamic Tracing Guide, 2005.

[104] Daniel Sundmark, Henrik Thane, Joel Huselius, Anders Pettersson, Roger Mel-
lander, Ingemar Reiyer, and Mattias Kallvi. Replay debugging of complex real-
time systems: Experiences from two industrial case studies. In Proceedings of
the 5th International Workshop on Automated Debugging, pages 211–222, Sep-
tember 2003.

[105] Tarja Systä and Kai Koskimies. Extracting state diagrams from legacy systems.
In Proceedings of the Workshops on Object-Oriented Technology, pages 272–
273, 1997. LNCS 1357.

[106] Tivadar Szemethy and Gabor Karsai. Platform modeling and model transforma-
tions for analysis. Journal of Universal Computer Science, 10(10):1383–1407,
October 2004.

[107] Tivadar Szemethy, Gabor Karsai, and Daniel Balasubramanian. Model transfor-
mations in the model-based development of real-time systems. In Proceedings of
the 13th Annual IEEE International Symposium and Workshop on Engineering
of Computer Based Systems, pages 177–186, March 2006.

[108] Henrik Thane. Monitoring, Testing and Debugging of Distributed Real-Time
Systems. PhD thesis, Kungliga Tekniska Högskolan, Sweden, May 2000.

[109] Henrik Thane and Hans Hansson. Testing distributed real-time systems. Journal
of Microprocessors and Microsystems, Elsevier, 24(9):463–478, February 2001.

[110] Henrik Thane, Daniel Sundmark, Joel Huselius, and Anders Pettersson. Replay
debugging of real-time systems using time machines. In Proceedings of the Inter-
national Parallel and Distributed Processing Symposium, pages 288–295. IEEE
Computer Society, April 2003. Presented at the First International Workshop on
Parallel and Distributed Systems: Testing and Debugging.

[111] Jeffrey Tsai, Yaodong Bi, Steve Yang, and Ross Smith. Distributed Real-
Time Systems: Monitoring Visualization and Debugging and Analysis. Wiley-
Interscience, 1996.

[112] Jeffrey Tsai, Kwang-Ya Fang, and Horng-Yuan Chen. A replay mechanism for
non-interference real-time software testing and debugging. In Proceedings of the
Conference on Software Maintenance, pages 209–218, October 1989.

[113] Jeffrey Tsai, Kwang-Ya Fang, Horng-Yuan Chen, and Yao-Dong Bi. A nonin-
terference monitoring and replay mechanism for real-time software testing and
debugging. IEEE Transactions on Software Engineering, 16(8):897–916, August
1990.

[114] Sebastian Uchitel and Jeff Kramer. A workbench for synthesising behaviour
models from scenarios. In Proceedings of the 23rd International Conference on
Software Engineering, pages 188–197, May 2001.

182 Bibliography

[115] Sebastian Uchitel, Jeff Kramer, and Jeff Magee. Synthesis of behavioral models
from scenarios. Transactions on Software Engineering, 29(2):99–115, February
2003.

[116] Anders Wall. Architectural Modeling and Analysis of Complex Real-Time Sys-
tems. Phd thesis no. 5, Mälardalen University, Sweden, September 2003. Avail-
able at: www.mrtc.mdh.se.

[117] Peter Wegner. Research paradigms in computer science. In Proceedings of the
2nd International Conference on Software Engineering, pages 322–330. IEEE
Computer Society Press, October 1976.

[118] Wind River Systems, Inc. VxWorks Programmer’s Guide, 5.5, 2003.

[119] Hong Yan, David Garlan, Bradley Schmerl, Jonathan Aldrich, and Rick Kazman.
Discotect: A system for discovering architectures from running systems. In Pro-
ceedings of the 2004 International Conference on Software Engineering, pages
470–479, May 2004.

[120] Stephen W. L. Yip, Tom Lam, and Stephen K. M. Chan. A software maintenance
survey. In Proceedings of the First Asia-Pacific Software Engineering Confer-
ence, pages 70–79, December 1994.

[121] Hong Zhu, Patrik A. V. Hall, and John H. R. May. Software unit test coverage
and adequacy. ACM Computing Surveys, 29(4):366–427, December 1997.

Jag spillde ut en kopp hett te över tangentbordet på min första
laptop. Det förorsakade ett fullständigt elektroniskt haveri. Skär-
men såg ut som ett tropiskt åskväder, och sedan gick det inte att
få kontakt med hårddisken. [...] Egendomligt nog blev jag mycket
upprymd och greps av den löjeväckande illusionen att jag aldrig
skulle behöva skriva en rad mer.

(Horace Engdahl, Dagens Teknik, Nr 1 2007)

