
Automatic Derivation of Loop Bounds and Infeasible Paths for
WCET Analysis using Abstract Execution

Jan Gustafsson, Andreas Ermedahl, Christer Sandberg, and Björn Lisper
Department of Computer Science and Electronics, Mälardalen University

Box 883, S-721 23 Väster̊as, Sweden
{jan.gustafsson,andreas.ermedahl,christer.sandberg,bjorn.lisper}@mdh.se

Abstract

Static Worst-Case Execution Time (WCET) ana-
lysis is a technique to derive upper bounds for the ex-
ecution times of programs. Such bounds are crucial
when designing and verifying real-time systems. A key
component for statically deriving safe and tight WCET
bounds is information on the possible program flow
through the program. Such flow information can be pro-
vided manually by user annotations, or automatically
by a flow analysis. To make WCET analysis as simple
and safe as possible, it should preferably be automati-
cally derived, with no or very limited user interaction.

In this paper we present a method for deriving
such flow information called abstract execution. This
method can automatically calculate loop bounds, bounds
for including nested loops, as well as many types of in-
feasible paths. Our evaluations show that it can calcu-
late WCET estimates automatically, without any user
annotations, for a range of benchmark programs, and
that our techniques for nested loops and infeasible paths
sometimes can give substantially better WCET esti-
mates than using loop bounds analysis only.

1 Introduction

The worst-case execution time (WCET) is an im-
portant parameter when verifying real-time properties.
A static WCET analysis finds an upper bound to the
WCET of a program from mathematical models of the
hard- and software involved. If the models are correct,
the analysis will derive a timing estimate that is safe,
i.e., greater than or equal to the WCET.

To statically derive a timing bound for a program,
information on both the hardware timing characteris-
tics, such as the execution time of individual instruc-
tions, as well as the program’s possible execution flows,
to bound the number of times the instructions can be

This research is supported by the KK-foundation through
grant 2005/0271.

executed, needs to be derived. The latter includes in-
formation about the maximum number of times loops
are iterated, which paths through the program that are
feasible, execution frequencies of code parts, etc.

The goal of flow analysis is to calculate such flow
information as automatically as possible. Flow analy-
sis research has mostly focused on loop bound analysis,
since upper bounds on the number of loop iterations
must be known in order to derive WCET estimates.

Flow analysis can also identify infeasible paths, i.e.,
paths which are executable according to the control-
flow graph structure, but not feasible when considering
the semantics of the program and possible input data
values. In contrast to loop bounds, infeasible path in-
formation is not required to find a WCET estimate,
but may tighten the resulting WCET estimate.

Recent industrial WCET case studies [3, 7, 20], have
shown that it is important to develop good support for
both loop bound and infeasible path analyses, thereby
reducing the need for manual annotations.

This article presents methods to automatically cal-
culate loop bounds and infeasible paths. The methods
have all been implemented in our prototype WCET
tool SWEET (SWEdish Execution time Tool). The
concrete contributions of this article are:

• We present our analysis method, abstract execution,
which calculates various kinds of flow information,
and which is the basis of the methods below.

• We present several methods to calculate loop bounds
and different types of infeasible paths, allowing us
to trade analysis time for WCET estimate precision.

• We evaluate the effects of our different methods,
in terms of analysis time, generated flow informa-
tion and impact on WCET estimate for a number of
WCET benchmarks.

The rest of this paper is organized as follows: Section 2
discusses different types of loop bounds and infeasible
paths, and describes related work. Sections 3 and 4

present our representation for program flow and the
basic flow analysis, while Section 5 describes how the
analysis is adapted to derive loop bounds and infeasi-
ble paths. Section 6 gives an illustrating example. Sec-
tion 7 presents SWEET, and Section 8 gives analysis
results and evaluations. In Section 9 we draw conclu-
sions and point out directions for further work.

2 Flow Analysis and Related Work

Any WCET analysis must deal with the fact that
most computer programs do not have a fixed execution
time. Variations in the execution time occur due to
different input data, and the hard- and software char-
acteristics. Thus, both inputs as well as hard- and
software properties must be considered.

Consequently, static WCET analysis is usually di-
vided into three phases: a flow analysis, a low-level
analysis where the execution times for sequences of in-
structions are decided from a performance model for
the hardware, and a final calculation phase where the
flow and timing information is combined to yield a
WCET estimate.

The purpose of the flow analysis is to derive infor-
mation about the possible execution paths through the
program. To find exact flow information is in general
undecidable1: thus, any flow analysis must be approx-
imate. To ensure a safe WCET estimate, the flow in-
formation must include all feasible program paths.

In low-level analysis, researchers have studied effects
of various hardware enhancing features, like caches,
branch predictors and pipelines [6, 17, 21]. A fre-
quently used calculation method is IPET (Implicit
Path Enumeration Technique), using arithmetical con-
straints to model the program structure, the program
flow and low-level execution times [8, 15, 21].

2.1 Loop Bounds

Upper bounds on the number of loop iterations are
needed in order to derive a WCET estimate at all. Sim-
ilarly, recursion depth must also be upper bounded.
Since these bounds are not explicitly given in the pro-
gram code, WCET analysis tools provide ways to give
them manually [22, 10, 8]. However, this is often labo-
rious, and a source of possible errors.

Consequently, flow analysis research has mostly fo-
cused on automatic loop bound analysis. The aiT
WCET tool [21] has a loop-bound analysis using a com-
bination of an interval-based abstract interpretation
and pattern-matching. The loop-bound analysis of the
Bound-T WCET tool [22] is based on Presburger arith-
metics. The loop bounds can be derived in a context

1A perfect flow analysis would solve the halting problem.

sensitive manner, which may yield different bounds for
the same loop depending on the calling context. Whal-
ley et al. [13] use data flow analysis and specialized al-
gorithms to calculate loop bounds for both single and
some special types of nested, triangular loops.

2.2 Infeasible Paths

Infeasible path information is not required to find
a WCET bound, but may tighten the estimate. An
extreme case of an infeasible path is dead code. Infea-
sible paths can be caused by semantic dependencies, as
illustrated by the following code fragment:

if (x<0) A else B; if (x>2) then C else D

Here, both true-branches for the if statements are
in conflict2, and the corresponding path A-C can never
be taken. This type of infeasible path can be found
using some kind of semantic analysis.

Limitations of input data values may yield more in-
feasible paths. For instance, if we know that x>5 when
the above code fragment is executed, then we can con-
clude that the paths A-C, A-D, and B-D are all in-
feasible. This kind of infeasible path can be found by
an input-sensitive semantic analysis.

There has been some work on automatic detection
of infeasible paths for WCET analysis. Altenbernd [2]
uses a combination of path enumeration, path pruning,
and symbolic evaluation to find infeasible paths. Koun-
touris [16] studies detection of infeasible paths in the
synchronous real-time language SIGNAL. Healy et al.
[14] use value-dependent constraints to find infeasible
paths. Aljifri et al. [1] generate only the feasible paths
using the concept of partially-known variables. Chen
et al. [4] finds infeasible paths by identifying conflicts
between variable assignments and branch conditions.
The symbolic simulation method of Lundqvist [17] also
detects some infeasible paths.

The abstract execution, which is the basis for our
flow analysis methods, has some similarities with the
method of Lundqvist [17]. However, our abstract exe-
cution uses a more detailed value domain (see e.g., [12])
and is based on an abstract interpretation framework.

3 Scope Graphs and Flow Facts

The flow analysis presented here uses a scope-
graph [8]. Each scope is a program part which may
be repeated, such as a function or a loop. For each
scope, there is a subset of its CFG3 nodes of which ex-
actly one node must be executed for each iteration of
the scope: typically, this subset consists of the header
node of a well-structured loop, or the entry node of

2We assume that x is not updated in A and B.
3CFG = Control Flow Graph

i = INPUT; // i = [1..4]

while (i < 10) {
// point p

...

i=i+2;

}
// point q

(a) Example

iter i at p

1 [1..4]
2 [3..6]
3 [5..8]
4 [7..9]
5 [9..9]
6 impossible

(b) Analysis

min.
#iter: 3

max.
#iter: 5

(c) Result

Figure 1. Example of abstract execution

a function. For each scope, some flow information is
collected during the analysis: see Section 5.

A scope graph describes how scopes are invoking
other scopes. Our current scope-graph representation
is context-sensitive, i.e., a scope is statically created for
each call site to a function, or loop. This means that
calls to a function at different call sites are analysed
separately, which may yield higher precision but also
a costlier analysis. The scope graph is acyclic, and
expresses a “containment” relation between scopes: for
instance, a loop nest will be represented by a chain of
scopes where scopes for inner loops are below scopes
for outer loops (see Figure 6 for an example).

The purpose of scope graphs is to structure the flow
analysis, and the generated flow constraints, such that
the execution of repeating constructs can be analyzed
and constrained. Flow information for scopes can be
expressed as flow facts [8]. Flow facts constrain virtual
execution counters for the CFG nodes in a scope: for
each node B, its counter #B is initialized to zero each
time a scope is entered from above, and incremented
at each execution of B.

The current flow fact language allows linear inequal-
ities on the counters, as well as constructs to restrict
constraints to certain scope iterations. Flow facts have
the format scope : context : linear constraint . Here,
context is either a forall context [range], specifying
that for all iterations of scope, linear constraint should
hold, or a foreach context <range>, specifying that
for each individual iteration of scope, linear constraint
should hold. If range is left out, then the constraint
should hold for all possible iterations. Loop bound and
infeasible path constraints are easily expressed as flow
facts: for a loop “loop” with header node H and nodes
B1,. . . , Bn the flow fact

loop : [] : #H < k

restricts the number of loop iterations to at most k−1,
whereas the flow fact

loop : <3..7> : #B1 + ... + #Bn < n

states that for each of the individual loop iterations 3
to 7, all the nodes B1,. . . , Bn cannot be executed during
the same iteration.

4 Abstract Execution

Abstract execution is a form of symbolic execu-
tion [11, 12], which is based on abstract interpreta-
tion. Abstract execution executes the program in the
abstract domain, with abstract values for the program
variables, and abstract versions of the operators in the
language: thus, For instance, the abstract domain can
be the domain of intervals: each numeric variable will
then hold an interval rather than a number, and each
assignment will calculate a new interval from the cur-
rent intervals held by the variables. As usual in ab-
stract interpretation, the abstract value held by a vari-
able, at some point, represents a set containing the
actual concrete values that the variable can hold at
that point. Figure 1 illustrates how abstract execution
works for a loop, by iterating, and counting the num-
ber of iterations, until the abstract version of the loop
condition surely returns false for the back edge.

Abstract execution analyzes all executions in a cer-
tain program point separately. This is different from
traditional abstract interpretation, where the abstract
state for a program point typically covers all concrete
states in that program point, for all executions [5].

The abstract interpretation framework guarantees
that a calculated abstract value always represents a
set including the possible concrete values. Thus, no
execution paths will be missed by the analysis. On the
other hand, an abstract value may overestimate this
set, which means that the analysis may yield program
flow constraints that are not tight. For the infeasible
path analyses this means that some infeasible paths
might be reported as feasible. However, this is safe,
since a larger set of feasible paths only gives a possibly
less tight WCET estimate.

Sometimes, abstract execution of a condition node
will yield possible execution paths for both the true-
and false-branch. In Figure 1 this occurs for the test
of the loop condition before iteration 4 and 5, where
i = [7..10] and [9..11], respectively. Two abstract
states will then be created, one for each outcome of
the test. This means that abstract execution may have
to handle many abstract states, representing different
possible execution paths, concurrently. The number of
possible abstract states may grow exponentially with
the length of these paths: thus, any algorithm for ab-
stract execution must be able to merge abstract states,
which is typically done at program points where differ-
ent paths join. If the states are merged using the least
upper bound operator “t” on the abstract domain of
states, then the result is an abstract state safely repre-
senting all possible concrete states, but possibly with
some loss of precision. Different strategies for merging
will thus yield different tradeoffs beween analysis time

FOREACH sc in scopes DO

init(sc.c); /* initialize collector */

wlist <- {init state};
merge list <- empty;

final list <- empty;

REPEAT

WHILE wlist /= empty DO {
s <- select from(wlist);

wlist <- wlist \ {s};
new states <- ae(s);

FOREACH s’ in new states DO

IF update point(s’)

THEN sc(s’).c <- update(s’.r,sc(s’).c);

CASE merge point(s’): merge list <-

merge list U {s’}
final state(s’): final states <-

final states U {s’}
otherwise: wlist <- wlist U {s’};

}
WHILE merge list /= empty DO {

s <- select from(merge list);

merge list <- merge list \ {s};
FOREACH s’ in merge list DO

IF same merge point(s,s’) THEN

s <- merge(s,s’);

merge list <- merge list \ {s’};
wlist <- wlist U {s};

}
UNTIL wlist = empty

Figure 2. Algorithm for abstract execution.

and precision.
We have designed and implemented an algorithm

for abstract execution, which can generate different
kinds of flow facts. The algorithm is described in Fig-
ure 2. It is a quite straightforward worklist algorithm,
which iterates over a set of abstract states, generating
new abstract states from old ones. Abstract states at
merge points are moved to a special merge list, and
final states are removed. When the worklist is empty,
all states in the merge list which are at the same merge
point are merged, and the resulting states are inserted
in the worklist. The algorithm terminates when both
the merge list and the worklist are empty. This algo-
rithm is not guaranteed to terminate for all programs,
so in practice it is augmented with a timeout mecha-
nism which gives the user information on the currently
analysed loop. This may be useful, e.g., to find loops
that overruns the number of iterations.

An abstract state s is a 4-tuple (s.i, s.r, s.p, s.σ). s.i
is a stack of current iteration counts for the current
and all surrounding scopes. For each new iteration of
the current scope, the top element is incremented. If a
scope is exited, then the top element is popped, and if
a scope is entered then 1 is pushed onto the stack. s.r

is a recorder which is used to collect information for
generating flow constraints: see Section 5. s.p is the
current program point, and s.σ is an abstract store de-
scribing the possible memory contents. Our abstract
stores are mappings from addresses to intervals, but
other abstract domains can also be used. The function
ae performs a step of abstract execution, and updates
the components of the abstract state accordingly. Note
that for abstract execution of a condition, more than
one new state may be generated. The abstract execu-
tion starts with a single initial state, whose abstract
store may specify restrictions on the inputs to the an-
alyzed program: thus, the algorithm is input-sensitive.

Each scope sc has a collector sc.c, which collects in-
formation from the abstract states for generating flow
constraints, see Section 5. When an abstract state
s reaches an update point, the collector of the scope
sc(s) for s is updated using the recorder of s. Typi-
cally, update points occur at new iterations, and scope
exits. The algorithm is asynchronous since that up-
dates may occur in different order, depending on when
abstract states to execute are drawn from the work-
list. Also, states at merge points may be “released”
before all states to merge have arrived to the point:
this is a deliberate design decision to keep the average
size of the merge list down, but it means that the al-
gorithm sometimes might return more precise results
by avoiding some merges, at the expense of exploring
more paths. The result will however always be safe.

The worklist algorithm allows merge between arbi-
trary states. However, in our algorithms in Section 5,
merging takes place only for abstract states at the same
scope iteration and program point. For such states,
merging is defined as:

(i, r, p, σ) t (i, r′, p, σ′) = (i, r t r′, p, σ t σ′)

5 Calculation of Flow Information

We now present our methods to calculate loop
bounds and infeasible paths. All the methods are vari-
ations of the abstract execution described in Section 4,
with different recorders, collectors, update points, and
update operations. The abstract state transition func-
tion ae also differs in its handling of recorders depend-
ing on which method is used. The methods can be
combined in any combination. At the end of the anal-
ysis, each collector is used to generate flow facts for its
scope. The resulting flow facts can be merged freely.

5.1 Loop Bound Calculation

This analysis finds safe lower and upper bounds to
the total number of iterations of a scope (typically a
loop). The collector is a pair (l, u) which is initialized
to (∞, 0). The recorder is a number, which is a virtual

execution counter for the header node(s) of the scope:
this counter is set to one at entry to the scope, and is
incremented by one for each new iteration. The update
points are the exits from the scope, and the collector
is updated as

update(r,(l,u)) = (min(r,l),max(r,u))

A recorder is incremented exactly when the scope
iteration count is. Since we only merge states with the
same iteration count, we thus only need to perform the
trivial merge r t r = r of recorders.

For the abstract execution example in Figure 1, ab-
stract states with loop header execution counters 3, 4,
and 5 will appear at the loop exit point, which yields
the final value of (3, 5) for the computed loop bound.

5.2 Loop Bounds for Inner Loops

The analysis in Section 5.1 calculates maximal and
minimal iteration counts for a loop. For nested loops
like triangular loops, where the iteration count of the
inner loop varies with the iteration number of the outer
loop, this leads to overestimations for the total number
of iterations of the inner loop. For such an inner loop,
it is better to accumulate the total sum of the number
of iterations in the context of the outer loop.

This can be done by a simple variation of the loop
bounds analysis above. Consider an outer loop with
scope l outer, containing, at some nesting level, an
inner loop with scope l inner. The method works al-
most exactly as the analysis in Section 5.1 applied to
l outer: the only difference is that the recorder is in-
cremented at each iteration of l inner. This will com-
pute minimum and maximum of the total number of
iterations of the inner loop, for any single iteration of
the outer loop. The analysis in Section 5.1 can be seen
as a special case, with l inner = l outer.

5.3 Detecting Infeasible Nodes

Infeasible nodes are never visited in any execution of
a certain scope. For this analysis, the recorder is a bit
array with one bit per node in the scope. These bits
are all set to zero when entering the scope, and the bit
of a node is set to one at each abstract execution of
the node. Thus, a value of zero means “definitely not
executed” and one means “may have been executed”.

The collector object is a similar bit array, similarly
initialized. The update points are the scope exits. The
update operation, as well as merge of recorders, is bit-
wise or of bit arrays. At termination, if the collector
holds a zero for a node, then it is surely never exe-
cuted in that scope, and a corresponding “infeasible
node flow fact” can be generated. An example is:

scope : [] : #BB82 = 0;

specifying that basic block BB82 is not executed in any
execution of the scope scope. An infeasible node is not
necessarily the same as dead code, since it is infeasible
only w.r.t. a certain scope, and there may be other
scopes, for the same code, where the node is executed.

5.4 Upper Bounds for Node Executions

This analysis generalizes the method in Section 5.3.
Recorders and collectors are arrays which hold one nat-
ural number per node in the scope. The recorder ar-
ray elements are now execution counters for the nodes:
they are all initialized to zero, and incremented at each
abstract execution of the node in question. The col-
lector is also initialized to all zeroes, and merge and
update is elementwise maximum on arrays.

At termination, if the collector holds a number n for
a node, then the node is surely never executed more
than n times for each entry of the scope, and a cor-
responding “upper execution bound flow fact” can be
generated. An example is:

loop : [] : #BB91 <= 7;

specifying that basic block BB91 is never executed more
than 7 times in any execution of the scope loop.

To avoid unnecessary flow facts, our current imple-
mentation generates only such flow facts where the up-
per bound n is less than the loop bound of the scope.
Then, the node has surely been infeasible for some it-
eration(s).

5.5 Detecting Infeasible Pairs of Nodes

This analysis finds pairs of nodes where both never
execute in the same iteration of a scope. Recorders
are sets of paths taken through the scope body during
an iteration. They are initialized to the set containing
the empty list, and nodes are appended to each path
in the set when abstractly executed. To limit the size
only nodes after conditionals are appended: this still
yields unique path representations. Merge of recorders
is set union, and the recorders are re-initialized for each
new iteration of the scope.

Collectors are triangular N ×N -matrices, where N
is the number of successor nodes to condition nodes
in the scope. The matrix elements can be ⊥, 0, or 1,
corresponding to “Not visited pair”, “Excluding pair”,
and “Not excluding pair”, respectively. Initially, all
elements are ⊥. The update points are immediately
before new iterations of the scope, before the recorders
are re-initialized, as well as at scope exits. Update of
a collector matrix with a recorder set is defined in Fig-
ure 3. The assignment using OR gives a safe approxi-
mation of the matrix element.

If a position in the final collector holds 0, then the
corresponding two nodes can never both be executed in

update(S,M) =

M ′ := M;

FOREACH path RL in S do

FOREACH node n1 in RL do

FOREACH subsequent node n2 to n1 in RL do

M ′[n1, n2] := 1
FOREACH alternative branch node n3 to n2 do

if M ′[n1, n3] = ⊥ then M ′[n1, n3] := 0
else M ′[n1, n3] := M ′[n1, n3] OR 0

return M ′

Figure 3. Infeasible pairs collector update

the same iteration, and we can generate an “excluding
pair flow fact”, like:

scope : < > : (#BB33 + #BB57) < 2;

meaning that the two nodes cannot be executed to-
gether in the directly surrounding loop scope scope.

The same can be done for positions where the ele-
ment is ⊥. However, some of those positions are for
pairs of nodes which can never both be executed in an
iteration due to the structure of the CFG for the scope
body. These flow facts will then be superfluous: the el-
ement ⊥ yields a simple way to avoid their generation
without making a reachability analysis in the CFG.

5.6 Detecting Infeasible Paths

This analysis finds sequences of nodes which are
never executed together during the same iteration of
a scope. The method uses the fact that many infea-
sible paths can be efficiently represented by allowing
them to share a common prefix. As for the infeasi-
ble pairs analysis, collectors are updated and recorders
re-initialized at new scope iterations and scope exits.

The recorder is now a tree of CFG nodes. Like
for the infeasible pairs analysis, we only keep track
of nodes taken after branches. However, the tree ad-
ditionally keeps track of branch outcomes not taken,
through a boolean tag for each leaf node. Every path
through the tree represents the set of paths for which it
is a prefix. For simplicity, we assume that all scope iter-
ations start from the same CFG node (e.g., the header
node of a well-structured loop): if not, an artificial root
node can be added.

Figure 4 illustrates how the recorder tree works. Fig-
ure 4(a) gives a CFG with 23 = 8 structurally possi-
ble execution paths. Figure 4(b) shows the tree for
the path A-B-D-F-G-H-J through the CFG. In this
tree, the paths A-C, A-B-D-E and A-B-D-F-G-I
are marked as infeasible. Similarly, Figure 4(c) shows
the tree for the path A-B-D-E-G-H-J. Note that the
path A-C actually represents 22 = 4 paths through the
CFG, for which it is a prefix.

Merge of recorders is merge of trees: Figure 4(d)

!

"

$

%

&

'

()

*+

)

,--.

(

$#

)

,--.

(

$#

)

,--.

(

$#

+& +& +& +&

!"#$%&' !(#$)"*+$*,-- !.#$)"*+$*,-- !/#$%011-.*0,$*,--

Figure 4. CFG and path tree examples

shows the merge of the trees in Figures 4(b) and 4(c).
Collectors are the same kind of trees as recorders,
and update is the same as merge. We define the set
of trees, and merge operation “t” on trees, more
formally as follows. A tree is either: the empty tree Λ,
a leaf leaf (n, I) or leaf (n, F), where n is a CFG node,
I represents an infeasible path and F a feasible path,
or an internal node int(n, t, t′) where n is a CFG node
and t, t′ are trees. We then define t as a commutative
operator which also satisfies the following equations:

t t Λ = t

leaf (n, I) t leaf (n, I) = leaf (n, I)
leaf (n, F) t leaf (n, x) = leaf (n, F), x = I, F

int(n, t, t′) t leaf (n, x) = int(n, t, t′), x = I, F

int(n, t1, t
′
1) t int(n, t2, t

′
2) = int(n, t1 t t2, t

′
1 t t′2)

Note that we can represent all sets of paths by trees
built in such a way that we never have to merge trees
with different header nodes: thus, we need not define
merge of such trees.

Flow facts can be generated for the infeasible paths
in the final collector tree, like:

scope : < > : (#BB33 + #BB57 + #BB82) < 3;

specifying that for no iteration of scope, all the basic
blocks BB33, BB57, and BB82 are executed.

6 An Illustrative Example

The example code in Figure 5 contains several types
of infeasible paths. The program contains eight scopes;
main, foo1, foo2 (the two calls to foo) and their cor-
responding loop scopes, foo1 L and foo2 L, and bar
and its two nested loops, bar L and bar L L, as shown
in Figure 6. We assume that neither x nor y is changed
in the code.

Due to mutually exclusive conditions, independently
of data and context, we can detect:

1. Infeasible nodes: none.
2. Infeasible pairs: B-C, B-E, D-E, G-I, and H-J.
3. Infeasible paths: A-D-E, B-C-E, B-D-E,

B-C-F, G-I, and H-J.
Due to given input data constraints we also detect:

// x = [0..100]

void main(int x) {
if (x<10) A
else B
if (x<5) C
else D
foo(x);

if (x<0) E
else F
foo(x+50);

bar(x);

return 1;

}

void foo(int y) {
for (int i=0; i<10; i++) {

if (y>=50) G
else H
if (y<50) I
else J

}
}
void bar(int n) {

for (int i=0; i<n; i++)

for (int j=i; j<n; j++)

K
}

Figure 5. Code with several infeasible paths

!"#$
!"#"$"%"&"'

%"&'('(
(

%"&

%"&'()**+'(
)"*"+",

)**,'(
)"*"+",

)**,)**+

Figure 6. Scopes

1. Infeasible nodes: E.
2. Infeasible pairs: A-E, C-E.
3. Infeasible paths: A-C-E.

Furthermore, we can identify some context depen-
dent infeasible nodes; H and I are infeasible in foo2 L.

bar holds a triangular loop nest. The loop bounds
analysis of Section 5.1 gives an upper iteration bound
of 100 ∗ 100 = 10000 for M, whereas the analysis in
Section 5.2 yields an upper bound of 5050.

7 The SWEET WCET Analysis Tool

SWEET [8, 12] is a WCET analysis research pro-
totype tool developed at Mälardalen University [18].
SWEET can handle full ANSI-C programs including
pointers, unstructured code, and recursion. SWEET
accepts input data specifications for integers, floats,
strings, structs and arrays. The basic analysis steps of
SWEET are shown in Figure 7.

Unlike most WCET analysis tools, SWEET is inte-
grated with a compiler and performs its flow analysis
on the intermediate representation (IR) of the com-
piler, after structural optimizations. Thus, the con-
trol structure of the IR and the object code is similar,
and the flow analysis for the IR is valid for the object
code as well. The low-level analysis of SWEET [6] cur-
rently supports the NECV850E and ARM9 processors.
The tool currently supports three different calculation
methods: a fast path-based method, a global IPET

Program Description #LC #S #BB
bs Binary search in an array of 15 integer

elements.
114 3 34

cover Program for testing many paths. 640 7 1298
crc Cyclic redundancy check computation

on 40 bytes of data.
128 11 115

edn Finite Impulse Response (FIR) filter
calculations.

285 21 328

fac Recursive program to calculate facto-
rials.

21 4 31

fdct Fast Discrete Cosine Transform. 239 4 143
fibcall Iterative Fibonacci, used to calculate

fib(30).
72 3 26

inssort Insertion sort on a reversed array of
size 10.

92 3 35

jcomplex Nested loop program. 64 4 41
lcdnum Read ten values, output half to LCD. 64 3 130
minmax Small program with min and max cal-

culations.
32 7 97

ndes Complex embedded code. A lot of bit
manipulation, shifts, array and matrix
calculations.

231 25 409

ns Search in a multi-dimensional array. 535 6 39
nsichneu Simulates an extended Petri net. Au-

tomatically generated code with more
than 250 if-statements.

4253 2 2686

Table 1. Benchmark programs used

method, and a hybrid clustered method [8, 9]. For
the evaluations in Section 8 we used the ARM9 timing
model and the IPET calculation method. This timing
model has not been validated against real hardware.
However, we consider it to be a sufficiently realistic
“abstract architecture” for the purpose of evaluating
flow analysis methods.

SWEET currently uses abstract execution with in-
tervals, as described in Sections 4 and 5, for the flow
analysis. It allows the user explicit control over the
placement of merge points, to control the tradeoff be-
tween precision and analysis time. The implementa-
tion also uses a number of techniques to speed up the
analysis. One example is program slicing, which is an
automatic method to restrict the abstract execution to
only those program parts that may affect the program
flow [19]. It is used in all analyses below to reduce the
analysis time.

8 Evaluation

We have used programs from the Mälardalen WCET
Benchmark suite [18] to test our flow analyses. The
benchmarks are a diverse collection of test programs
differing in types of flows, code structure and instruc-
tions, intended to thoroughly test different aspects of
WCET analysis including flow analysis. We only use
benchmarks without floating point calculations, since
ARM9 lacks hardware support for these; however, the
analysis as such can handle floating point calculations.
All analyses were done on a PC with a 3 GHz Intel Pen-
tium 4 CPU and 1 GB memory, running Linux 2.6.9-11.

Table 1 gives some basic data about the programs,
including lines of C code (#LC), number of scopes

!"#"$%
"$&'(#)*"'$

+,-.#'/01

23456

789:

;+6!

+)1<=1)*"'$

,)*>?@)A0/

6B*0$/0/.C,6!

+1=A*0(0/

!"##$D@E0<*
<'/0

F1'G.)$)1HA"A

,('%()#.A1"<"$%

7@A*()<*.6B0<=*"'$

I<'J0.%()J>
G"*>.&1'G.&)<*A ,"J01"$0

)$)1HA"A

+'#J"10(.K
"$*0(#L.<'/0

9)$=)1
"$J=*./)*)

AJ0<"&"<)*"'$

+
J('%()#

<'/0

Figure 7. The SWEET WCET analysis tool

Program #L #N LB LBI
Time WCET Time +% WCET −%

bs 1 0 0.02 1009 0.02 0 1009 0
cover 3 0 3.65 73128 3.68 1 73128 0

crc 6 0 1.17 834159 1.19 2 834159 0
edn 2 3 0.94 1425085 1.00 6 1425085 0
fac 1 0 0.02 4658 0.02 0 4571 0

fdct 2 0 0.10 40856 0.11 10 40856 0
fibcall 1 0 0.02 3064 0.02 0 3064 0
inssort 2 1 0.07 31163 0.08 14 18167 42

jcomplex 2 1 0.03 12039 0.03 0 2586 79
lcdnum 1 0 0.07 5507 0.09 13 5507 0
minmax 0 0 0.05 563 0.07 17 563 0

ndes 12 0 4.43 795425 4.47 0 795425 0
ns 4 1 0.48 130733 0.48 0 130733 0

nsichneu 2 0 32.37 119707 23.08 -28 119707 0

Table 2. Loop bound analysis results

(#S) and basic blocks in the ARM9 code (#BB). The
analysis times include flow analysis, low-level analy-
sis and WCET calculation. Compilation and parsing
times are not included.

Loop bound analysis. Table 2 shows the results of
our basic loop bound analysis (LB, see Section 5.1),
and our loop bound analysis for nested loops (LBI,
see Section 5.2). The table shows the relation be-
tween the type of loop analysis, the analysis time in
seconds (Time), and the resulting WCET estimate in
cycles (WCET). The table also shows the number of
(context-dependent) loops (#L) and loop nests (#N)
in the program. The column +% shows the extra time
in % needed for the LBI analysis, and −% gives the sav-
ings in % compared to the WCET for LB. All WCET
estimates are calculated for single-path executions of
the programs, i.e., using input data corresponding to
one execution.

SWEET correctly calculates the maximal number of
iterations for all loops in the benchmarks, without us-
ing any annotations. This means that our methods can
perform a fully automatic WCET analysis for these.

As we can expect, there is no difference between LB
and LBI for programs with no nested loops, or when the
inner loop bounds are independent of the iteration of
the outer as in edn and ns. In inssort and jcomplex
there are such dependencies, and for these programs
the WCET estimate is reduced when LBI is used. This
extra tightness is achieved at practically no extra cost

in analysis time.

Infeasible path analysis. Table 3 shows the infea-
sible path analysis results. We have separate tables to
show the results for infeasible node analysis (IN, see
Section 5.3), upper bounds for node executions (UN,
see Section 5.4), exclusive node pairs (EP, see Sec-
tion 5.5), and infeasible paths (IP, see Section 5.6).
The tables show the trade-off between the analysis time
for different infeasible path analysis algorithms and the
size of the WCET estimate.

The columns show the WCET estimate for LBI
(WCET orig., see Table 2), analysis time in seconds
(Time), extra time in % compared to the analysis time
for LBI (+%), number of flow facts generated (#FF),
calculated WCET in ARM 9 clock cycles (WCET), and
savings (−%) in % compared to the WCET estimate
in column 2. The WCET is calculated for single-path
executions of the programs.

The infeasible path analysis yields a reduction in cal-
culated WCET up to around 50% for some programs.
The extra analysis time is typically below 50%, with a
few exceptions. The EP and IP analyses of nsichneu
are extreme outliers. The long analysis time is mainly
spent in the calculation phase, which obviously is sen-
sitive to the high number and type of flow facts gen-
erated. It should be noted, however, that nsichneu is
a program with extremely many (2250 ≈ 1075) poten-
tially possible paths.

All analyses yield some WCET estimate reduction
for some, but not always the same, programs. For some
programs, no improvements are achieved. How much
improvement, and for which programs, is dependent
on the program control logic: programs where some
infeasible path analysis yields a large reduction, like
lcdnum and nsichneu, have a control structure with
many if-statements and many possible paths.

Analysis of multi-path programs. In Table 4, we
show the result of multi-path analysis using all algo-
rithms for loop bounds and infeasible paths. We want
to show the results of our algorithms for more com-
plex test cases, therefore we have selected a number of

Program WCET IN
orig. Time +% #FF WCET −%

bs 1009 0.02 0 0 1009 0
cover 73128 4.70 28 114 72588 1

crc 834159 1.29 8 18 830278 0
edn 1425085 1.00 0 0 1425085 0
fac 4571 0.02 0 0 4571 0

fdct 40856 0.13 18 0 40856 0
fibcall 3064 0.02 0 0 3064 0
inssort 18167 0.08 0 0 18167 0

jcomplex 2586 0.03 0 1 2586 0
lcdnum 5507 0.09 0 41 4907 11
minmax 563 0.07 0 15 562 0

ndes 795425 4.95 11 11 794145 0
ns 130733 0.48 6 1 130671 0

nsichneu 119707 23.79 1 126 57247 52

Program WCET UN
orig. Time +% #FF WCET −%

bs 1009 0.02 0 8 1002 1
cover 73128 5.57 51 576 63563 13

crc 834159 1.22 3 36 830278 0
edn 1425085 1.04 4 17 1425085 0
fac 4571 0.02 0 30 4292 6

fdct 40856 0.11 17 2 40856 0
fibcall 3064 0.03 0 2 3064 0
inssort 18167 0.08 0 4 18167 0

jcomplex 2586 0.03 0 10 2523 2
lcdnum 5507 0.09 0 53 2902 47
minmax 563 0.07 0 6 563 0

ndes 795425 4.68 5 139 793905 0
ns 130733 0.49 2 7 130671 0

nsichneu 119707 22.54 -4 877 57247 52

Program WCET EP
orig. Time +% #FF WCET −%

bs 1009 0.03 50 0 1009 0
cover 73128 5.29 44 1061 73119 0

crc 834159 1.35 0 6 833301 0
edn 1425085 1.18 0 0 1425085 0
fac 4571 0.02 0 0 4571 0

fdct 40856 0.12 0 0 40856 0
fibcall 3064 0.02 0 0 3064 0
inssort 18167 0.08 0 0 18167 0

jcomplex 2586 0.03 50 4 2586 0
lcdnum 5507 0.11 38 21 5450 1
minmax 563 0.07 0 4 455 19

ndes 795425 4.74 0 3 791980 0
ns 130733 0.51 0 0 130733 0

nsichneu 119707 574.68 2351 78150 119707 0

Program WCET IP
orig. Time +% #FF WCET −%

bs 1009 0.02 0 0 1009 0
cover 73128 4.82 31 102 73128 0

crc 834159 1.24 4 4 833301 0
edn 1425085 1.01 1 0 1425085 0
fac 4571 0.02 0 0 4571 0

fdct 40856 0.12 9 0 40856 0
fibcall 3064 0.02 0 0 3064 0
inssort 18167 0.08 0 0 18167 0

jcomplex 2586 0.03 0 0 2586 0
lcdnum 5507 0.10 11 6 4907 11
minmax 563 0.07 0 3 455 19

ndes 795425 4.57 2 1 791980 0
ns 130733 0.51 0 0 130733 0

nsichneu 119707 357.31 1424 623 118923 1

Table 3. Infeasible path analysis results

benchmark programs for which it is possible to create
multi-path input data, i.e., data forcing the analysis
to take many paths through the program. This input
data is given to our tool as interval annotations for
variables at certain program points. Column #I shows

Program #I Orig. LBI+IN+UN+EP+IP
Time WCET Time +% #FF WCET −%

crc 16 4.90 834159 6.65 36 56 833730 0
edn 40 2.29 1425085 3.86 69 41 1425085 0

fibcall 100 0.09 10134 0.13 44 4 10134 0

inssort 1093 0.16 31163 0.17 6 7 18167 42
jcomplex 100 0.30 22020 0.39 30 19 9640 56

lcdnum 16 0.21 5507 0.36 71 71 3187 42
minmax 27 0.08 563 0.08 0 2 563 0

ns 2 6.09 130733 6.81 8 15 130733 0
nsichneu 91 36.88 119707 435.70 1081 65280 41303 65

Table 4. Results for multi-path programs

the number of input data combinations of the given
input data, i.e., the number of single-path executions
this analysis corresponds to. For inssort, this input
data represents all possible inputs to the program, and
the WCET therefore is the WCET for all executions
of the program.

The other columns in the table show analysis
time in seconds (Time) and resulting WCET with
only basic (necessary) loop analysis. The last five
columns show the result of the additional analyses
(LBI+IN+UN+EP+IP), and have the same contents
as in Table 3. The analyses used merging of states after
function and loop termination (see Section 4). We did
not use merging after if statements or loop iterations,
since this erases some information for the recorders,
and could yield less precision.

With a reasonable analysis time in most cases, we
obtain up to 65% reduction of WCET estimates. As for
the single-path case, the WCET estimates for different
programs are improved by different analyses: LBI is
beneficial for nested loops with iteration-dependent in-
ner loop bounds, whereas infeasible path analyses im-
prove the WCET estimates for programs with many
if-statements. Clearly, a range of different analyses
are necessary to find tight flow constraints for different
kinds of programs. The long analysis time of nsichneu
is mainly due to the calculation phase.

9 Conclusions and Future Work

We have shown that abstract execution is able to
automatically derive loop bounds and infeasible paths
for a set of WCET benchmarks. In particular, we were
able to derive WCET estimates fully automatically for
all the benchmarks. This is important, since the man-
ual calculation of program flow constraints can be both
tedious and error-prone. Our analyses for improved
nested loop bounds and infeasible paths were in ad-
dition able to improve the resulting WCET estimate
with up to 65%. Not surprisingly, the improvements
were very dependent on the type of analysis and the
control structure of the program.

The times for the analyses are reasonably short for
most of our benchmarks, also when multi-path analysis

is performed. For one program the calculation phase
took a long time, mainly due to the large number of
generated flow constraints.

The next step is to try out the algorithms on in-
dustrial real-time codes. In a previous case study [20],
we were able to obtain considerably better WCET es-
timates for some industrial real-time code by adding
infeasible path constraints by hand. We plan to run
our infeasible path analyses on the same code to see if
we can derive these constraints automatically.

Clearly, it is important to avoid generating unnec-
essarily many flow facts: we have seen a large increase
in calculation time in one case, and in other cases the
additional flow facts did not yield an improvement in
the WCET estimate. Our current implementation has
only some rudimentary mechanisms to avoid generat-
ing useless constraints. There are ways to improve this:
for instance, when different infeasible path analyses are
run together, they will often generate redundant con-
straints, which should be quite straightforward to elim-
inate. We plan to investigate this further.

References

[1] H. Aljifri, A. Pons, and M. Tapia. Tighten the compu-
tation of worst-case execution-time by detecting feasi-
ble paths. In Proc. 19th IEEE International Perfor-
mance, Computing, and Communications Conference
(IPCCC2000). IEEE, February 2000.

[2] P. Altenbernd. On the false path problem in hard real-
time programs. In Proc. 8th Euromicro Workshop of
Real-Time Systems, pages 102–107, June 1996.

[3] S. Byhlin, A. Ermedahl, J. Gustafsson, and B. Lisper.
Applying static WCET analysis to automotive com-
munication software. In Proc. 17th Euromicro Confer-
ence of Real-Time Systems, (ECRTS’05), July 2005.

[4] T. Chen, T. Mitra, A. Roychoudhury, and V. Suhen-
dra. Exploiting branch constraints without exhaus-
tive path enumeration. In Proc. 5th International
Workshop on Worst-Case Execution Time Analysis,
(WCET’2005), pages 40–43, July 2005.

[5] P. Cousot and R. Cousot. Abstract interpretation: A
unified lattice model for static analysis of programs by
construction or approximation of fixpoints. In Proc.
4th ACM Symposium on Principles of Programming
Languages, pages 238–252, Los Angeles, Jan. 1977.

[6] J. Engblom. Processor Pipelines and Static Worst-
Case Execution Time Analysis. PhD thesis, Uppsala
University, Dept. of Information Technology, Uppsala,
Sweden, Apr. 2002. ISBN 91-554-5228-0.

[7] O. Eriksson. Evaluation of static time analysis
for CC systems. Master’s thesis, Mälardalen Uni-
versity, Väster̊as, Sweden, Aug. 2005. 63 pages,
www.mrtc.mdh.se/publications/0978.pdf.

[8] A. Ermedahl. A Modular Tool Architecture for Worst-
Case Execution Time Analysis. PhD thesis, Uppsala

University, Dept. of Information Technology, Uppsala
University, Sweden, June 2003.

[9] A. Ermedahl, F. Stappert, and J. Engblom. Clustered
worst-case execution-time calculation. IEEE Transac-
tion on Computers, 54(9):1104–1122, Sept 2005.

[10] C. Ferdinand, R. Heckmann, and H. Theiling. Con-
venient user annotations for a WCET tool. In Proc.
3rd International Workshop on Worst-Case Execution
Time Analysis, (WCET’2003), 2003.

[11] J. Gustafsson. Analyzing Execution-Time of Object-
Oriented Programs Using Abstract Interpretation.
PhD thesis, Dept. of Information Technology, Uppsala
University, Sweden, May 2000.

[12] J. Gustafsson, A. Ermedahl, and B. Lisper. To-
wards a flow analysis for embedded system C pro-
grams. In Proc. 10th IEEE International Work-
shop on Object-oriented Real-time Dependable Systems
(WORDS 2005), Feb. 2005.

[13] C. Healy, M. Sjödin, V. Rustagi, D. Whalley, and
R. van Engelen. Supporting timing analysis by au-
tomatic bounding of loop iterations. Journal of Real-
Time Systems, 18(2-3):129–156, May 2000.

[14] C. Healy and D. Whalley. Tighter timing predic-
tions by automatic detection and exploitation of value-
dependent constraints. In Proc. 5th IEEE Real-Time
Technology and Applications Symposium (RTAS’99),
June 1999.

[15] N. Holsti, T. L̊angbacka, and S. Saarinen. Worst-case
execution-time analysis for digital signal processors. In
Proc. EUSIPCO 2000 Conference (X European Signal
Processing Conference), 2000.

[16] A. A. Kountouris. Safe and efficient elimination of in-
feasible execution paths in WCET estimation. In Proc.
3rd International Conference on Real-Time Comput-
ing Systems and Applications (RTCSA’96). IEEE,
IEEE Computer Society Press, 1996.

[17] T. Lundqvist. A WCET Analysis Method for Pipelined
Microprocessors with Cache Memories. PhD thesis,
Chalmers University of Technology, Göteborg, Swe-
den, June 2002.

[18] Mälardalen University. WCET project homepage,
2007.
www.mrtc.mdh.se/projects/wcet.

[19] C. Sandberg, A. Ermedahl, J. Gustafsson, and
B. Lisper. Faster WCET flow analysis by program
slicing. In Proc. ACM SIGPLAN Conference on Lan-
guages, Compilers and Tools for Embedded Systems
(LCTES’06), pages 103–112, June 2006.

[20] D. Sehlberg, A. Ermedahl, J. Gustafsson, B. Lisper,
and S. Wiegratz. Static WCET analysis of real-time
task-oriented code in vehicle control systems. In Proc.
2nd International Symposium on Leveraging Applica-
tions of Formal Methods (ISOLA’06), Nov. 2006.

[21] S. Thesing. Safe and Precise WCET Determination
by Abstract Interpretation of Pipeline Models. PhD
thesis, Saarland University, 2004.

[22] Tidorum. Bound-T tool homepage, 2006.
www.tidorum.fi/bound-t.

