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Abstract

This paper presents a protocol for resource sharing in a hierarchical real-time scheduling framework. Together, the
protocol and the scheduling framework significantly reduce the efforts and errors associated with integrating multiple semi-
independent subsystems on a single processor. Thus, our proposed techniques facilitate modern software development pro-
cesses, where subsystems are developed by independent teams (or subcontractors) and at a later stage integrated into a
single product. Using our solution, a subsystem need not know, and is not dependent on, the timing behaviour of other sub-
systems; even though they share mutually exclusive resources. In this paper we also prove the correctness of our approach
and evaluate its efficiency.

1 Introduction

In many industrial sectors integration of electronic and software subsystems (to form an integrated hardware and software
system), is one of the activities that is most difficult, time consuming, and error prone [3, 12]. Almost any system, with
some level of complexity, is today developed as a set of semi-independent subsystems. For example, cars consist of multiple
subsystems such as antilock braking systems, airbag systems and engine control systems. In the later development stages,
these subsystems are integrated to produce the final product. Product domains where this approach is the norm include
automotive, aerospace, automation and consumer electronics.

It is not uncommon that these subsystems are more or less dependent on each other, introducing complications when
subsystems are to be integrated. This is especially apparent when integrating multiple software subsystems on a single
processor. Due to these difficulties inherent in the integration process, many projects run over their estimated budget and
deadlines during the integration phase. Here, a large source of problems when integrating real-time systems stems from
subsystem interference in the time domain.

To provide remedy to these problems we propose the usage of a real-time scheduling framework that allows for an easier
integration process. The framework will preserve the essential temporal properties of the subsystem both when the subsystem
is executed in isolation (unit testing) and when it is integrated together with other subsystems (integration testing and deploy-
ment). Most importantly, the deviation in the temporal behaviour will be bounded, hence allowing for predictable integration
of hard real-time subsystems.

In this paper we present the Subsystem Integration and Resource Allocation Policy (SIRAP), that makes it possible to
develop subsystems individually without knowledge of the temporal behaviour of other subsystems. One key issue addressed
by SIRAP is the resource sharing between subsystems that are only semi-independent, i.e., they use one or more shared
logical resources.

Problem description A software system S consists of one or more subsystems to be executed on one single processor.
Each subsystem Ss ∈ S, in turn, consists of a number of tasks. These subsystems can be developed independently and they
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have their own local scheduler (scheduling the subsystem’s tasks). This approach by isolation of tasks within subsystems,
and allowing for their own local scheduler, has several advantages [17]. For example, by keeping a subsystem isolated
from other subsystems, and by keeping the subsystem local scheduler, it is possible to re-use a complete subsystem in a
different application from where it was originally developed. However, as subsystems are likely to share logical resources, an
appropriate resource sharing protocol must be used. In order to facilitate independent subsystem development, this protocol
should not require information from all other subsystems in the system. It should be enough with only the information of the
subsystem under development in isolation.

Contributions The main contributions of this paper include the presentation of SIRAP, a novel approach to subsystem
integration in the presence of shared resources. Moreover, the paper presents the deduction of bounds on the timing behaviour
of SIRAP together with accompanying formal proofs. In addition, the cost of using this protocol is thoroughly evaluated.
The cost is investigated as a function of various parameters including: cost as a function of the length of a critical section,
cost depending on the priority of the task sharing a resource, and cost depending on the periodicity of the subsystem.

Organisation of the paper Firstly, related work on hierarchical scheduling and resource sharing is presented in Section 2.
Then, the system model is presented in Section 3. Section 4 presents some general issues of resource sharing in hierarchical
scheduled systems. SIRAP is presented in Section 5 and formally evaluated in Section 6. In Section 7 schedulability analysis
is presented, and SIRAP is evaluated in Section 8. Finally, the paper is summarised in Section 9.

2 Related work

Hierarchical scheduling For real-time systems, there has been a growing attention to hierarchical scheduling frame-
works [2, 6, 8, 9, 13, 14, 15, 19, 22, 24, 25].

Deng and Liu [8] proposed a two-level hierarchical scheduling framework for open systems, where subsystems may
be developed and validated independently in different environments. Kuo and Li [13] presented schedulability analysis
techniques for such a two-level framework with the fixed-priority global scheduler. Lipari and Baruah [14, 16] presented
schedulability analysis techniques for the EDF global scheduler, using the Constant bandwidth Server (CBS) [1] and the
Bandwidth Sharing Server (BSS) [27], respectively.

Mok et al. [20] proposed the bounded-delay resource partition model for a hierarchical scheduling framework. Their
model can specify the real-time guarantees that a parent component provides to its child components, where the parent and
child components have different schedulers. Feng and Mok [9] and Shin and Lee [25] presented schedulability analysis
techniques for the hierarchical scheduling framework that employs the bounded-delay resource partition model.

There have been studies on the schedulability analysis with the periodic resource model. This periodic resource model
can specify the periodic resource allocation guarantees provided to a component from its parent component [24]. Saewong
et al. [22] and Lipari and Bini [15] introduced schedulability conditions for fixed-priority local scheduling, and Shin and
Lee [24] presented a schedulability condition for EDF local scheduling. Davis and Burns [6] evaluated different periodic
servers (Polling, Deferrable, and Sporadic Servers) for fixed-priority local scheduling.

Resource sharing When several tasks are sharing a logical resource, typically only one task is allowed to use the resource
at a time. Thus the logical resource requires mutual exclusion of tasks that uses it. To achieve this a mutual exclusion protocol
is used. The protocol provides rules about how to gain access to the resource, and specifies which tasks should be blocked
when trying to access the resource.

To achieve predictable real-time behaviour, several protocols have been proposed including the Priority Inheritance Pro-
tocol (PIP) [23], the Priority Ceiling Protocol (PCP) [21], and the Stack Resource Policy (SRP) [4].

When using SRP, a task may not preempt any other tasks until its priority is the highest among all tasks that are ready to
run, and its preemption level is higher than the system ceiling. The preemption level of a task is a static parameter assigned
to the task at its creation, and associated with all instances of that task. A task can only preempt another task if its preemption
level is higher than the task that it is to preempt. Each resource in the system is associated with a resource ceiling and based
on these resource ceilings, a system ceiling can be calculated. The system ceiling is a dynamic parameter that changes during
system execution.

The work by Kuo and Li [13] used SRP and they showed that it is very suitable for sharing of local resources in a
hierarchical scheduling framework. However, SRP is not very good for sharing global resources. This was addressed by
introducing a common server for all globally shared resource accesses. However, having such a server can be very costly [7].



Deng and Liu [8] proposed the usage of non-preemptive global resource access, which bounds the maximum blocking
time that a task might be subject to. However, as resource access is non-preemptive, all tasks in a subsystem are affected by
blocking.

Almeidia and Pedreiras [2] considered the issue of supporting mutually exclusive resource sharing within a subsystem.
Matic and Henzinger [19] considered supporting interacting tasks with data dependency within a subsystem and between
subsystems, respectively.

More recently, Davis and Burns [7] presented the Hierarchical Stack Resource Policy (HSRP), allowing their work on
hierarchical scheduling [6] to be extended with sharing of logical resources. However, using HSRP, information on all tasks
in the system must be available at the time of subsystem integration, which is avoided by the SIRAP protocol presented in
this paper.

3 System model

3.1 Hierarchical scheduling framework

A hierarchical scheduling framework is introduced to support CPU time sharing among applications (subsystems) under
different scheduling services. Hence, a system S consists of one or more subsystems S s ∈ S. The hierarchical scheduling
framework can be generally represented as a two-level tree of nodes, where each node represents a subsystem with its own
scheduler for scheduling internal tasks (threads), and CPU time is allocated from a parent node to its children nodes, as
illustrated in Figure 1.

Global scheduler

Subsystem1

Local
scheduler

Subsystem2

Local
scheduler

Subsystemn

Local
scheduler

Figure 1. Two-level hierarchical scheduling framework.

The hierarchical scheduling framework provides partitioning of the CPU between different subsystems. Thus, subsystems
can be isolated from each other for, e.g., fault containment, compositional verification, validation and certification and unit
testing.

The hierarchical scheduling framework is also useful in the domain of open systems [8], where subsystems may be
developed and validated independently in different environments. For example, the hierarchical scheduling framework allows
a subsystem to be developed with its own scheduling algorithm internal to the subsystem and then later included in a system
that has a different global level scheduler for scheduling subsystems.

3.2 Shared resources

For the purpose of this paper a shared (logical) resource is a shared memory area to which only one task at a time may
have access. To access the resource a task must first lock the resource, and when the task no longer needs the resource it
is unlocked. The time during which a task holds a lock is called a critical section. Only one task at a time may lock each
resource.

A resource that is used by tasks in more than one subsystem is denoted a global shared resource. A resource only used
within a single subsystem is a local shared resource. In this paper we are concerned only with global shared resources and



will simply denote them by shared resources. Management of local shared resources is a matter of the local scheduler of each
subsystem.

3.3 Virtual processor model

The notion of real-time virtual processor (resource) model was fist introduced Mok et al. [20] to characterize the CPU
allocations that a parent node provides to a child node in a hierarchical scheduling framework. The CPU supply of a virtual
processor model refers to the amounts of CPU allocations that the virtual processor model can provides. The supply bound
function of a virtual processor model calculates the minimum possible CPU supply of the virtual processor model for a time
interval length t.

Shin and Lee [24] proposed the periodic virtual processor model Γ(Π, Θ), where Π is a period (Π > 0) and Θ is a
periodic allocation time (0 < Θ ≤ Π). The capacity UΓ of a periodic virtual processor model Γ(Π, Θ) is defined as Θ/Π.
The periodic virtual processor model Γ(Π, Θ) is defined to characterize the following property:

supplyΓ

(
kΠ, (k + 1)Π

)
= Θ, where k = 0, 1, 2, . . . , (1)

where the supply function supplyR(t1, t2) computes the amount of CPU allocations that the virtual processor model R
provides during the interval [t1, t2).
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Figure 2. The supply bound function of a periodic virtual processor model Γ(Π, Θ) for k = 3.

For the periodic model Γ(Π, Θ), its supply bound function sbfΓ(t) is defined to compute the minimum possible CPU
supply for every interval length t as follows:

sbfΓ(t) =

⎧⎨
⎩

t − (k + 1)(Π − Θ) if t ∈ [(k + 1)Π − 2Θ,
(k + 1)Π − Θ],

(k − 1)Θ otherwise,
(2)

where k = max
(⌈(

t − (Π − Θ)
)
/Π

⌉
, 1

)
. Here, we first note that an interval of length t may not start synchronously with

the beginning of period Π. That is, as shown in Figure 2, the interval of length t can start in the middle of the period of a
periodic model Γ(Π, Θ). We also note that the intuition of k in Eq. (2) basically indicates how many periods of a periodic
model can overlap the interval of length t, more precisely speaking, the interval of length t − (Π − Θ). Figure 2 illustrates
the intuition of k and how the supply bound function sbfΓ(t) is defined for k = 3.



3.4 Subsystem model

A subsystem Ss ∈ S, whereS is the whole system of subsystems, consists of a task set and a scheduler. Each subsystem S s

follows the periodic resouce model and are represented by a corresponding Γ s(Πs, Θs), where Πs and Θs are the subsystem
period and budget respectively.

Task model We consider a periodic task model τi(Ti, Ci, Xi)1, where Ti is a period, Ci is a worst-case execution time
requirement (WCET), and Xi is a WCET within a critical section; Ci includes Xi. We only consider properly nested shared
resource accesses, and Xi is the length of the outer critical section.

Scheduler In this paper, we assume that each subsystem has a fixed-priority preemptive scheduler for scheduling its internal
tasks.

4 Synchronization and hierarchical scheduling

In this section we present the implications of introducing shared logical resources in the context of a hierarchical schedul-
ing framework. First, we define the terminology (also depicted in Figure 3) used throughout the remainder of paper as
follows:

(Shared) Resource Access Time

Blocking Time Critical Section Period

Semaphore
Request Instant

Critical Section
Entering Instant

Critical Section
Exiting Instant

Figure 3. Shared resource access time.

• Semaphore request instant: an instant at which a job tries to enter a critical section guarded by a semaphore.

• Critical section entering (exiting) instant: an instant at which a job enters (exits) a critical section.

• Blocking time: a duration from a semaphore request time to a critical section entering time.

• Critical section period: a duration from a critical section entering instant to a critical section exiting instant.

• (Shared) resource access time: a duration from a semaphore request instant to a critical section exiting time.

Also, we refer task-level context switch to the context switch that happens between tasks within a subsystem and subsystem-
level context switch to the context switch that happens between subsystems.

Critical section period In a priority scheduled system we can calculate an upper bound for the interference a job J i (with
priority i) may experience from other higher priority jobs J k (where k < i) during an interval t. We denote this worst case
interference by I(i, t), given by

I(i, t) =
i−1∑
k=1

⌈
t

Tk

⌉
Ck (3)

1The task model is refined to include multiple shared resource accesses in Section 7.4.



For a subsystem that runs over a virtual processor model Γ in a hierarchical scheduling framework, we present a method
csp(Ji) that can compute the worst-case critical section period of a job J i within the subsystem as follows:

csp(Ji) = min
{
t|I(i, t) + Xi ≤ sbfΓ(t)

}
(4)

Note that, as given by Eq. (3), the worst case critical section period csp(J i) is relying on the number of higher priority
tasks and their execution times, and might be potentially much larger that the length of the critical section in isolation.
This is an important observation, as it complicates logical resource sharing among subsystems in a hierarchical scheduling
framework. Specifically, if a subsystem is allowed to be preempted, the interference among subsystems sharing a logical
resource must be bounded. This can be achieved by the usage of a synchronization protocol such as SIRAP, described in
Section 5.

Blocking time Looking at Figure 3, we now consider how to compute the blocking time of a job J i on a semaphore φ. Let
Jφ denote the job that is currently within the critical section guarded by φ and Q(φ) denote a set of jobs that are supposed to
enter the critical section ahead of Ji.

bt(Ji, φ) = csp(Jφ) +
∑

Jk∈Q(φ)

csp(Jk) (5)

What is expressed by Equation 5 is that the blocking time, i.e., the time before the job is allowed to enter the critical
section, might be potentially large. Here, appropriate mechanisms could improve the blocking time of a job substantially.
Issues that a synchronization protocol for a hierarchical scheduling framework must deal with include (1) bounding the
critical section period and (2) bounding the blocking time. In the next section, we propose a resource access protocol that
minimizes the critical section time and bounds the maximum blocking time of each task.

5 SIRAP: Protocol description

Recalling the problem description in the introduction of this paper, it is desirable that a synchronization protocol for
hierarchical scheduling allows for independent development of subsystems. In this section, we describe the protocol proposed
in this paper: SIRAP (Subsystem Integration and Resource Allocation Policy).

Assumptions SIRAP relies on the following assumptions:

A1 The global scheduler can inform the local scheduler about how much time its has to execute. More precisely, the
global scheduler must be able to answer questions of the form “can I be guaranteed to get at least t more time-units of
execution before the next system-level context switch?”. Fulfilling this assumption is trivial when the global scheduler
is a non-preemptive scheduler or a TDMA scheduler, but many other schedulers can be used as well.

A2 Each local scheduler knows when its internal task tries to enter a critical section and exits the critical section respec-
tively.

A3 The unit of CPU-time allocation, with which the global scheduler provides subsystems, is no smaller than the maximum
of Xi for all jobs Ji across subsystems.

The reason for A1 and A2 is to allow for run-time checking whether or not a job can potentially enter and execute a
whole critical section before a subsystem-level context switch. This is useful when allowing for independent subsystem
development. Assumption A3 is needed to make sure that any critical section actually fits within the duration of execution of
a subsystem before its corresponding subsystem-level context switch. Moreover, a runtime mechanism is required to enforce
that a job Ji does not spend more time than specified by X i inside a critical section. However, the implementation of such a
runtime mechanism is beyond the scope of this paper.

Preemption level As introduced in [4], we use the notion of preemption level. Each job J i is associated with its own
preemption level π(Ji), which is defined as a positive integer. A job Ji is said to have a higher preemption level than another
job Jk if π(Jk) < π(Ji). A job Ji is not allowed to preempt another job Jk unless π(Jk) < π(Ji). In this paper, let π∗

denote the highest preemption level of the current subsystem.



Protocol outline SIRAP aims at minimizing the critical section period and bounding the blocking time at the same time as
allowing for independent subsystem development. To achieve this goal, the protocol has two key rules as follows:

R1 When a job tries to enter a critical section, its preemption level becomes the highest preemption level within the same
subsystem. The job has the highest preemption level until it exits the critical section. This way guarantees that the job
does not get interfered by higher-priority jobs within the same subsystem during a resource access time.

R2 After trying to enter the critical section, the job enters the critical section at the earliest instant such that it can complete
the critical section prior to the earliest subsystem-level context switch.

The first rule R1 allows avoiding a task-level preemption caused by the local scheduler, and the second rule R2 allows to
avoid that any task are within a critical section during a subsystem-level context switch.

As the second rule R2 prevents subsystem-level context switches from occurring while a job is within a critical section, it
guarantees that every lock is always free whenever a subsystem-level context switch happens.

SIRAP : preemption level management SIRAP requires a simple preemption level management. It just requires modifi-
cation of the preemption level of a job when it tries to enter a critical section and exits the critical section.

• When a job J is released, its preemption level π(J) is initialized to its priority p(J), i.e., π(J) = p(J).

• When the job J tries to enter a critical section, its preemption level is raised to the highest preemption level, i.e.,
π(J) = π∗.

• When the job J exits the critical section, its preemption level goes down back to its priority p(J), i.e., π(J) = p(J).

Note that a more refined preemption level management could be used. However, for globally shared logical resources this
simple approach has been used before [7], and it significantly decreases predictability complexity.

SIRAP : self-blocking When a job Ji tries to enter a critical section, SIRAP requires each local scheduler to perform the
following action. Let t0 denote the semaphore request instant of J i and t1 denote the earliest instant at which a subsystem-
level context switch occurs such that t0 < t1.

• If Xi ≤ t1 − t0, the local scheduler executes the job Ji. The job Ji enters a critical section at time t0.

• Otherwise, i.e., if Xi > t1 − t0, the local scheduler delays the critical section entering of the job J i until t1. This is
defined as self-blocking, which means that the subsystem is running the CPU idle 2. Note that the preemption level of
the job Ji is raised to the highest preemption level at time t0, but its execution is delayed until t1. This guarantees that
when the subsystem of Ji receives the next resource allocation, the job J i still has the highest preemption level and the
local scheduler executes the job Ji so that it can enter the critical section.

The implication of this approach is that a job J i will in the worst case spend 2Xi time units for shared resource access
time, i.e., looking at Figure 3, both blocking time and critical section period have each a duration of X i.

6 Properties of the protocol

In this section, we present the main properties of SIRAP. These properties are then used to analyze the schedulability of a
subsystem.

Lemma 1 No job will be preempted by other jobs within the same subsystem for the duration in between the time when it
tries to enter a critical section until the time when it exits the critical section.

Proof. When a job tries to enter a critical section, its preemption level becomes the highest preemption level of its belonging
subsystem until it exits the critical section. The lemma follows. �

2One can think of utilizing this idle time by executing other jobs within the same component or by yielding the processor. However, this is off the point
of this paper.



Lemma 2 (No within-subsystem blocking) Whenever a job Ji tries to enter a critical section, no job within the same
subsystem is inside the critical section.

Proof. If another job Jk is inside the critical section it will have the highest preemtion level, hence preventing J i from
executing. When Ji tries to enter a critical section it is executing, hence no other job is inside the critical section. �

Lemma 3 No subsystem-level context switch happens inside a critical section.

Proof. A job can enter a critical section only if it can complete its critical section prior to the earliest subsystem-level context
switch. The lemma follows. �

Lemma 4 (No between-subsystems blocking) Whenever a job tries to enter a critical section, no job in another subsystem
is inside the critical section.

Proof. The lemma follows from Lemma 3. �

Theorem 5 Whenever a job tries to enter a critical section, no job is inside the critical section.

Proof. The theorem follows from Lemma 2 and Lemma 4. �

Lemma 6 SIRAP is deadlock-free.

Proof. Since a job does not get preempted while it is inside a critical section, there can be no deadlock. �

Timing properties

Lemma 7 The critical section period of a job Ji is the same as the duration of its critical section Xi.

Proof. Since there are no task-level and subsystem-level context switches while the job is inside critical section, it takes as
much as Xi to complete the critical section even in a hierarchical scheduling framework. �

Lemma 8 Self-blocking imposes to a job Ji an extra processor demand of at most Xi.

Proof. When the job Ji self-blocks itself, it consume the processor of at most X i units being idle. �

Lemma 9 Self-blocking can increase the resource access time of a job J i by at most Xi.

Proof. The lemma immediately follows from Lemma 8. �

Lemma 10 In a duration of t time units, a job Ji can be interfered by a higher-priority job Jk for a duration of at most
� t

Tk
�(Ck + Xk) time units.

Proof. Similar to classical response time analysis [10], the lemma follows. �

Lemma 11 A job Ji can be interfered by only one lower-priority job Jk by at most 2Xk.

Proof. A higher-priority job Ji can be interfered by a lower-priority job Jk when Jk has a higher preemption level than Ji,
i.e., π(Ji) < π(Jk). This occurs only if Ji is released after Jk tries to enter a critical section but before Jk exits the critical
section. When Ji is released, only one job can try to enter or be inside a critical section. That is, a higher-priority job J i

can then be interfered by at most a single lower-priority job. The processor demand of J k during a critical section period is
bounded by 2Xk. The lemma follows. �



7 Schedulability analysis

7.1 Local schedulability analysis

From Lemma 10, we present a method IH(i, t) that can compute the maximum possible interference imposed by a set of
higher-priority tasks to a task τi during an interval of length t, as follows:

IH(i, t) =
i−1∑
k=1

⌈ t

Tk

⌉
(Ck + Xk) (6)

From Lemma 11, we also present another method IL(i) that can compute the maximum possible interference imposed by
a set of lower-priority tasks to a task τi, as follows:

IL(i) = max(2 · Xk), where k = i + 1, . . . , n (7)

From Lemma 8, it follows that the maximum possible processor demand of a task τ i imposed by itself is Ci + Xi.
Based on Eq. (6) and Eq. (7), we now present a schedulability condition as follows:

Theorem 12 Consider a subsystem Ss that consists of a periodic task set and a fixed-priority scheduler and receives CPU
allocations from a virtual processor model Γs(Πs, Θs). This subsystem is schedulable in using SIRAP if

∀τi, 0 < ∃t ≤ Ti dbfFP(i, t) ≤ sbfΓ(t), (8)

where

dbfFP(i, t) = Ci + Xi + IH(i, t) + IL(i). (9)

Proof. The demand bound function dbfFP(i, t) is immediately derived from Lemma 11 and 8. The condition in Eq. (8) then
follows from [24]. �

7.2 Global schedulability analysis

Here, issues for global scheduling of multiple subsystems are dealt with. For a subsystem S s, it is possible to derive a
periodic virtual processor model Γs(Πs, Θs) that guarantees the schedulability of the subsystem Ss according to Theorem 12.

Looking at a system with a non-preemptive EDF or RM global scheduler, the schedulability condition for non-preemptive
EDF scheduling [11] can be extended for SIRAP as follows:

Theorem 13 A set of subsystems Ss, each of which is schedulable with a periodic virtual processor model Γs(Πs, Θs), is
schedulable under a non-preemptive EDF global scheduler, if

• ∑
UΓs ≤ 1

• ∀t > 0 dbf′EDF(t) + maxi{Θs} ≤ t,

where

dbf′EDF(t) =
∑ ⌊ t

Πi

⌋
· Θi. (10)

Moreover, the schedulability condition for non-preemptive fixed-priority scheduling [26] can be extended for SIRAP as
follows:



Theorem 14 A set of subsystems Ss, each of which is schedulable with a periodic virtual processor model Γs(Πs, Θs), is
schedulable under a non-preemptive fixed-priority global scheduler, if

∀s ∃ts ∈ [0, Πs] dbf′FP(ts, s) + max
Sk∈LP(s)

{Θk} ≤ ts,

where

dbf′FP(t, s) = Θs +
∑

Sk∈HP(s)

⌈ t

Πk

⌉
· Θk, (11)

where HP(s) is the set of subsystems with priority higher than that of Ss, and LP(s) denotes a set of subsystems with priority
lower than that of Ss.

Now consider TDMA scheduling as global scheduling. Here, the schedulability of subsystems can be ckecked by simu-
lating TDMA scheduling up to the least common multiplier of all subsystem periods. For a special case where all subsystem
periods are harmonic, the schedulability condition is

∑
UΓs ≤ 1.

7.3 Local resource sharing

So far, only the problem of sharing global resource between subsystems has been considered. However, many real time
applications may have local resource sharing within subsystem as well. Almeida and Pedreiras [2] showed that some tradi-
tional synchronization protocols such as PCP and SRP can be used for supporting local resource sharing in a hierarchical
scheduling framework by including the effect of local resource sharing in the calculation of dbf FP . That is, to combine
SRP/PCP and the SIRAP protocol for synchronizing both local and global resources sharing, Eq. (7) should be modified to

IL(i) = max(max(2 · Xk), Bi), where k = i + 1, . . . , n. (12)

and Bi is the maximum duration for which a task i can be blocked by its lower-priority tasks in critical sections from local
resource sharing.

7.4 Supporting multiple shared resource accesses of a single task

Up until now, it has been an assumption that a single task accesses only a single global shared resource. Here this
assumption is relaxed. We now consider an extended periodic task model τ ∗

i (Ti, Ci, X
∗
i ), where X∗

i is a set of WCET’s
within critical sections, i.e., X∗

i = {Xi,1, . . . , Xi,k}, where τ∗
i has accesses to k different global shared resources. The

following discusses how this extended task model can be supported by SIRAP.
Firstly I∗H(i, t) is defined as a method that computes the maximum possible interference imposed by higher-priority tasks

by replacing Xk in Eq. (6) with
∑

xj∈X∗
k
(xj), i.e.,

I∗H(i, t) =
i−1∑
k=1

⌈ t

Tk

⌉
(Ck +

∑
xj∈X∗

k

xj). (13)

Secondly, I∗
L(i, t) replaces Eq. (7) by substituting Xk with maxxj∈X∗

k
(xj)) as follows:

I∗L(i) = max(2 · max
xj∈X∗

k

(xj)), where k = i + 1, . . . , n. (14)

Now, the processor demand bound function is given by

dbf∗FP(i, t) = Ci +
∑

xk∈X∗
i

xk + I∗H(i, t) + I∗L(i). (15)

Finally, Theorem 12 holds by replacing dbfFP(i, t) with dbf∗FP(i, t).
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Figure 4. UΓ as a function of Xi for two task sets where only the lowest priority task share a resource.

8 Protocol evaluation

In this section, the cost of using SIRAP is investigated in terms of extra CPU utilization (UΓ) required for subsystem
schedulability guarantee. Allowing for shared logical resources, the subsystem’s required U Γ is expected to increase. This
increment in UΓ depends on many factors such as the maximum WCET within a critical section X i, the priority of the task
sharing a global resource, and the subsystem period Π s.

8.1 WCET within critical section

One of the factors that affect the cost to be paid using SIRAP is the value of X i. It is clear from Eqs. (6), (7) and (9)
that whenever Xi increase, dbfFP will increase as well, potentially causing UΓ to increase in order to satisfy the condition in
Eq. (8). Figure 4 shows the effect of increasing X i on two different task sets. Task set 1 is sensitive for small changes in X i

whilst task set 2 can tolerate the given range of X i without showing a big change in UΓ. The reason behind the difference is
that task set 1 has a task with period very close to Πs while the smallest task period in task set 2 is greater than Πs by more
than 4 times. Hence, SIRAP can be more or less sensitive to Xi depending on the ratio between task and subsystem period.

For the remaining figures, Figure 5, 6, 7 and 8, simulations are performed as follows. We randomly generated 100 task
sets, each containing 5 tasks. Each task set has a utilization of 25%, and the period of the generated tasks range from 40
to 1000. For each task set, a single task accesses a global shared resource; the task is the highest priority task, the middle
priority task, or the lowest priority task. For each task set, we use two subsystem periods, Π s = 15 or Πs = 30. For each
subsystem period, we use 11 different values of X i ranging from 10% to 50% of the subsystem period.

8.2 Task priority

From Eqs. (6), (7) and (9), looking how tasks sharing global logical resources affect the calculations of dbf FP, it is clear
that task priority for these tasks is of importance. The contribution of low priority tasks on dbf FP is fixed to a specific value
of Xi (see Eq. (7)), while the increase in dbfFP by higher priority tasks depends on many terms such as higher priority task
period Tk and execution time Ck (see Eq. (6)). It is fairly easy to estimate the behaviour of a subsystem when lower priority
tasks share global resources; on one hand, if the smallest task period in a subsystem is close to Π s, UΓ will be significantly
increased even for small values of Xi. As the value of sbf is small for time intervals close to Πs, the subsystem needs a lot
of extra resources in order to fulfil subsystem schedulability. On the other hand, if the smallest task period is much larger
than Πs then UΓ will only be affected for large values of X i, as shown in Figure 4.
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Figure 5. UΓ as a function of Xi, when low, medium and high priority task share a resource respec-
tively, Πs = 15.

Figure 5 shows UΓ as a function of Xi for when the highest, middle and lowest priority task are sharing global resources,
respectively, where Πs = 15. The figure shows that the highest priority task accessing a global shared resource needs in
average more utilization than other tasks with lower priority. This observation is expected as the interference from higher
priority task is larger than the interference from lower priority tasks (see Eq. (6) and (7)). However, note that in the figure
this is true for Xi within the range of [0,5]. If the value of X i is larger than 5, then UΓ keeps increasing rapidly without any
difference among the priorities of tasks accessing the global shared resource. This can be explained as follows. When using
SIRAP, the subsystem budget Θs should be no smaller than Xi according to assumption A3 in Section 5. Therefore, when
Xi ≥ 5, Θs should also become greater than 5 even though subsystem period is fixed to 15. This essentially results in a rapid
increase of UΓ with the speed of Xi/15.

8.3 Subsystem period

The subsystem period is one of the most important parameters, both in the context of global scheduling and sbf calcula-
tions for a subsystem. As Πs is used in the sbf calculations, Πs will have significant effect on UΓ (see Eq. (8)).

Figure 6 compares average subsystem utilization for different values of subsystem period, i.e., for Π s = 15 and Πs = 30.
Here, only the highest priority task accesses a global shared resource. It is interesting to see that the lower value of Π s, i.e,
Πs = 15, results in a lower subsystem utilization when Xi is small, i.e., Xi ≤ 4, and then results in a more subsystem
utilization when Xi gets larger from Xi = 5. That is, Xi and Πs are not dominating factors one to another, but they
collectively affect subsystem utilization. It is also interesting to see that subsystem utilization of Π s = 30 keeps increasing
rapidly from Xi = 10, which is similarly shown for Πs = 15 in Figure 5.

Comparing Figure 7 and Figure 8, in average the highest priority tasks that share global resources need more utilization
than the lower priority tasks. However, in many points, the lower priority tasks need more utilization than the higher priority
tasks. This is due to that, in these points, the highest priority task period is close to the subsystem period Π s which, in turn,
makes these tasks very sensitive to a small change in dbfFP (as also shown in Figure 4).

Hence, in general, Πs should be less than the smallest task period in a subsystem, as in hierarchical scheduling without
resource sharing, the lower value of Πs gives better results (needs less utilization). However, in the presence of global
resources sharing, the selection of the subsystem period depends also on the maximum value of X i in the subsystem.
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Figure 6. Average utilization between the highest priority tasks having Πs = 15 and having Πs = 30.

9 Conculsions

In this paper we have presented the novel Subsystem Integration and Resource Allocation Policy (SIRAP), which provides
temporal isolation between subsystems that share logical resources. Each subsystem can be developed, tested and analyzed
without knowledge of the temporal behaviour of other subsystems. Hence, integration of subsystems, in later phases of
product development, will be smooth and seamless.

SIRAP alleviates many of the problems that stem from temporal side-effects when integrating many subsystems onto a
single processor. Subsystems that work perfectly fine when unit-tested (which typically means that they have the CPU to
them self) often start to exhibit failures when integrated with other subsystems. A large portion of these failures comes from
the changed temporal behaviour and from unpredictable (or at least unanticipated) delays when accessing shared resources.

We have formally proven key features of SIRAP such as bounds on delays for accessing shared resources and the absence
of deadlocks. Further, we have provided schedulability analysis for tasks executing in the subsystems; allowing for use of
hard real-time application within the SIRAP framework.

Naturally, the flexibility and predictability offered by SIRAP comes with some costs in terms of overhead. We have
evaluated this overhead through a comprehensive simulation study. From the study we can see that for sensible configurations
SIRAP typically gives an overhead of less than 20%. However, the study also shows that if parameters of the subsystem (i.e.
period and budget) are chosen poorly with respect to parameters of the tasks in the subsystem the overhead of SIRAP can be
well over 100%. The main conclusion we draw from the study is that the subsystem period should be chosen as much smaller
than the smallest task period in a subsystem and take into account the maximum value of X i in the subsystem to prevent
having high subsystem utilization.
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