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Abstract—Worst Case Execution Time (WCET) analysis has a 

growing importance for real-time systems, to guarantee correct 
timing, and to be an aid in developing such systems. The WCET 
tools are currently making their way out to the market, and there 
are many research groups active in developing prototype tools 
using new and better ways of calculating estimates or bounds on 
the WCET. 

The purpose of the WCET Tool Challenge is to be able to 
study, compare and discuss the properties of different WCET 
tools and approaches, to define common metrics, and to enhance 
the existing WCET benchmarks. The WCET Tool Challenge has 
been designed to find a good balance between openness for a wide 
range of analysis approaches, and specific participation 
guidelines to provide a level playing field. This should make 
results transparent and facilitate friendly competition among the 
participants. 

This report describes the participating tools as well as the 
results of the Challenge 2006. There is also an accompanying 
report by Lili Tan on the external tests of the tools. 

The WCET Tool Challenge is intended to be an annual event. 

I. INTRODUCTION 
here have been WCET benchmarks around for some years. 
The idea of a WCET Tool Challenge came up during the 
spring of 2006, inspired by other areas where competitions 

or similar have been used to be able to discuss and compare 
different approaches (e.g., in automated reasoning (The CADE 
ATP System Competition) [1]. 

The WCET Tool Challenge has been performed during the 
autumn of 2006. It has concentrated on three aspects of WCET 
analysis: 

1. flow analysis, 
2. required user interaction, 
3. performance. 

Two commercial tools, aiT [2] and Bound-T [3], and three 
research prototype tools, MTime [4], SWEET [5], and 
Chronos [6], participated. An external research assistant and 
the development teams made the actual tests of the tools. The 
tests targeted on a set of benchmark programs. For more 
details on the setup of the event, consult the Challenge web 
page [7]. The Challenge has been supported by the Compilers 
and Timing Analysis Cluster of ARTIST2 [8]. 

There are certainly more WCET tools being developed that 
could have participated in the Challenge. To the author’s 
knowledge we have OTAWA [9], RapiTime [10], SYMTA/P 
[11], and Heptane [12]. For a number of reasons, the 
developers of these tools did not participate.  

 
 

There are two main of reasons for not joining the 
Challenge: 

• The time schedule is too tight or the timing is not OK. 
• The Challenge is still too biased towards static 

analysis methods and there is no support for 
measurement based methods. 

For the next Challenge these problems should be solved. 

A. Goals 
The goals of the WCET Tool Challenge are the following: 
1) To exhibit the wide range of timing analysis tools available 
today: 

• using static program analysis, or 
• combining analysis and measurements, 
• for various target processors, 
• in various application domains, 
• supporting various programming languages and 

design tools, 
• academic, commercial; free or at a charge. 

2) To illuminate the features, abilities and intended uses of 
each tool: 

• in finding the feasible execution paths in the SW, 
• in modelling complex processor and system HW, 
• in deriving useful WCET bounds or estimates, 
• in usability, scalability and adaptability, 
• in the range of supported targets (processors, 

compilers, ..) 
3) To collect and maintain a growing set of community 
standard benchmark programs and related test suites that: 

• contain typical (both easy and hard) programming 
constructs, 

• can be analyzed by several tools with comparable 
results, 

• test enough of the actual behaviour of each 
benchmark to satisfy measurement-based tools and 
to validate results from static-analysis tools, and 
ideally, have known exact answers (paths and 
WCETs). 

B. Aspects of WCET analysis 
1) Area 1 - Flow analysis 

The purpose of the flow analysis phase is to extract the 
dynamic behaviour of the program. This includes information 
on which functions get called, loop bounds, if there are 
dependencies between if-statements, etc. We use the following 
flow analysis metrics: 

• number of automatically found loop bounds 
(including context-depending bounds, like 
triangular loop limits and loops in functions called 
from several sites) 
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• tightness of these (compared to real loop bounds, 
assuming they are known) 

• the number of automatically found infeasible paths 
• their reduction effects on the WCET estimates 
• the number of automatically found correct memory 

accesses 
• the number of automatically found resolved call 

targets (function pointers) 
2) Area 2 - Required user interaction 

This area of evaluation is concerned with the amount of 
work that is involved with setting up a WCET calculation to 
receive a result. One important metric for this area is number 
of program-specific manual annotations. Necessary 
annotations (like CPU type, frequency etc) can be excluded 
from the number. 
3) Area 3 – Performance 

 This area is about the bottom line: the final WCET value 
and the performance of the tool. 

We use the following metrics: 
• estimated WCET value (in clock tics and µs) 
• tightness of the estimated WCET value (assuming 

the real WCET is known) 
• limits of program sizes to be handled 
•  analysis time and memory requirements for the 

analysis 

C. WCET tool rounds 
Aspects may be non-orthogonal and influence each other. 

For example, much preparation work may give a better 
(tighter) WCET. This is expected and normal, and shows the 
signs of a flexible WCET tool. The same tool can be used for 
different aspects with different setups. Therefore we suggest 
that each tool is used in three rounds for each target processor: 
1) One initial round with no manual annotations for loop 
bounds etc. Necessary annotations (like CPU type, frequency 
etc) are however allowed. This round requires loop bounds to 
be found automatically; otherwise the analysis will not give a 
WCET bound at all for benchmarks containing loops. 
2) A basic round with the smallest set of manual annotations 
possible to get a WCET bound. 
3) An optimal round with the largest set of annotations to get 
as tight WCET bound as possible.  

The required user interaction is of course growing for each 
round. For each round, the metrics are measured for the three 
aspects. For each metric, the complete setup is described. 

D. Carrying the evaluation out 
There have been two possibilities:  
1) An external evaluation, carried out by Lili Tan 
(lili.tan@icb.uni-due.de), who is a research assistant in the 
research group of Dependability of Computing Systems at the 
University of Duisburg-Essen. This has the advantage of 
letting an external person try out the tools and give an 
independent feedback of the usability of the tools, without bias 
of any WCET tool developer. 
2) The evaluation is carried out by the developer or supplier of 
the tool. 

E. Selection of benchmark programs, processors and 
compilers. 

The benchmarks will represent different types of codes, for 
example code with different types of loops, infeasible paths, 
automatically generated code, hardware specialized code, and 
also large real world programs. A mix of single-path programs 
and multi-path programs will be included. 

We have used open source benchmark programs from the 
Mälardalen WCET benchmark [5] and PapaBench [14]. These 
benchmarks are available on the web. 

Each participant selects up to three processors for which to 
do the analyses; for example one simple (e.g., Renesas H8), 
one medium complex (e.g., ARM7/9, C167NEC, V850E) and 
one very complex (e.g., PowerPC), if possible. As there is no 
overview over which compilers are supported by which tools, 
we let the participants decide on one or two compiler(s). 

II. THE BENCHMARKS 
The Mälardalen Benchmarks 

These benchmarks are collected from several different 
research groups and tool vendors around the world and are 
available on the web. The programs contain different types of 
code constructs (loops, nested loops, arrays, matrixes, bit 
operations, recursion, unstructured code, floating point etc.). 
The benchmarks are single path programs when run as they 
are provided, but can be run or analysed in multi path mode 
using the provided annotations, which define multiple values 
to certain variables at certain program points.  

The benchmark programs have varying sizes (from ≈ 100 to 
1300 lines of lines of source code). Each benchmark is 
provided as a C source file. In total there is 30+ benchmark 
programs, of these 15 were selected for the Challenge. The 
selection was made so that as many different types of code 
was included as possible. Also, no floating-point programs 
were included, because many of the processors to be analysed 
by the tools do not support this in hardware. 

Table I on the next page describes the Mälardalen 
Benchmarks. 

 
Legend:  
I = uses include files.  
E = calls external library routines.  
S = always single path program (no potential flow 
  depenency on external variables).  
L = contains loops.  
N = contains nested loops,  
A = uses arrays and/or matrixes.  
B = uses bit operations.  
R = contains recursion.  
U = contains unstructured code.  
F = uses floating point calculation.  
LOC = lines of source code. 
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Additional comments to the benchmarks concerning WCET analysis problems: 
adpcm: This program is a signal processing application; the comments call it an implementation of the Adaptive Differential 
Pulse Code Modulation algorithm. The program was originally written with floating point computation. For the WCET 
benchmark, this was changed (by the WCET Challenge Steering Group) into (nonsensical) integer computation. This means that 
some computations overflow when compiled with 16-bit integers, as was the case for the H8/300 target, which constitutes a 
problem for the WCET analysis. 
crc: The main function calls icrc twice with an initialization included in the first call but not in the second call. This constitutes a 
problem for the WCET analysis. 
duff: This program creates a control flow graph that is not reducible, because the loop has multiple entry points (multiple loop 
heads). 
insertsort: The maximum number of iterations in the inner loop depends on the counter (i) of the outer loop (“triangular loop” 
problem). 
nsichneu: This program has an enormous number (1075) of potential paths. 
recursion: The program computes Fibonacci numbers using a recursive function. This constitutes a problem for the WCET 
analysis. (Due to a mistake on the benchmark web page, the mutual recursion included in the code was commented away in the 
program). 

 
 

TABLE I 
MÄLARDALEN BENCHMARKS 

Program Description Comment I E S L N A B R U F LOC 

adpcm  Adaptive pulse code 
modulation algorithm. 

Completely well-structured code.    √       87 

cnt Counts non-negative numbers 
in a matrix 

Nested loops, well-structured code. Simple code.    √ √ √     267 

compress Data compression program. 
 

Adopted from SPEC95 for WCET-calculation. Only 
compression is done on a buffer containing totally 
random data. 

   √ √ √     508 

cover Program for testing many 
paths. 

A loop containing many switch cases.   √ √       240 

crc Cyclic redundancy check 
computation on 40 bytes of 
data. 

Complex loops, lots of decisions, loop bounds depend 
on function arguments, function that executes 
differently the first time it is called. 

  √ √  √ √    128 

duff Using "Duff's device" from the 
Jargon file to copy 43 byte 
array. 

Unstructured loop with known bound, switch statement.   √ √     √  86 

edn Finite Impulse Response (FIR) 
filter calculations. 

A lot of vector multiplications and array handling.   √ √ √ √ √    285 

insertsort Insertion sort on a reversed 
array of size 10. 

Input-data dependent nested loop with worst-case of 
n2/2 iterations (triangular loop). 

   √ √ √     92 

janne_complex 
 

Nested loop program. The inner loops number of iterations depends on the 
outer loops current iteration number. 

  √ √ √      64 

matmult 
 

Matrix multiplication of two 
20x20 matrices. 

Multiple calls to the same function, nested function 
calls, triple-nested loops. 

  √ √ √ √     163 

ndes 
 

Complex embedded code. A lot of bit manipulation, shifts, array and matrix 
calculations. 

   √  √ √    231 

ns 
 

Search in a multi-dimensional 
array. 

Return from the middle of a loop nest, deep loop nesting 
(4 levels). 

   √ √ √     535 

nsichneu 
 

Simulate an extended Petri 
Net. 

Automatically generated code containing large amounts 
of if-statements (more than 250). 

   √       4253 

recursion 
 

A simple example of recursive 
code. 

Both self-recursion and mutual recursion are used.   √     √   41 

 
 



 4 

PapaBench 
This benchmark is based on a real and complete real-time 

embedded application, developed in the Paparazzi project, 
to be used on Unmanned Aerial Vehicles (UAV). 

The Paparazzi UAV contains two ATMEL AVR 
processors and thus the PapaBench benchmark contains two 
programs, one for each processor. Each program is in turn 
divided into a number of 'tasks'. Most tasks are executed 
cyclically with a fixed period. Some tasks are event-
triggered. There is no kernel. The tasks are executed by an 
eternal loop in the main() function. There are also interrupt 
handlers.  

The benchmark has a total size of ≈ 2 000 lines of source 
code. The software constitutes quite complex code that 
makes extensive use of floating point computation and 
mathematical library routines. 

The part papa_ap is the “autopilot” part of the 
PapaBench program for an autonomous aircraft. It executes 
a flight plan and communicates with the “fly-by-wire” part 
papa_fbw. 

The part papa_fbw of the PapaBench program is the “fly-
by-wire” program for an autonomous aircraft. It 
communicates with the “autopilot” part (program papa_ap) 
and runs servo loops to control the aircraft. 

It is difficult to find the number of loops in the source 
code because C macros are used extensively to create 
syntactical structures including loops. 

There were some problems with the PapaBench software. 
Some changes were made during the Challenge, for 
example a hard-coded memory address for the "dummy" 
in/output of AVR was changed to a static int array. 

III. THE TOOLS 

A. Commercial tools 
There were two commercial tools in the Challenge; aiT 

and Bound-T. The descriptions below are fetched from [14] 
and are slightly shortened since some details are left out. 
1) AiT 

The purpose of AbsInt’s timing-analysis tool aiT is to 
obtain upper bounds for the execution times of code 
snippets (e.g. given as subroutines) in executables. These 
code snippets may be tasks called by a scheduler in some 
real-time application, where each task has a specified 
deadline. aiT works  on executables because the source 
code does not contain information on register  usage and on 
instruction and data addresses. Such addresses are 
important for cache analysis and the timing of memory 
accesses in case there are several memory areas with 
different timing behavior.  

Apart from the executable, aiT might need user input to 
be able to compute a result or to improve the precision of 
the result. User annotations may be written into parameter 
files and refer to program points by absolute addresses, 
addresses relative to routine entries, or structural 
descriptions (like the first loop in a routine).  

Alternatively, they can be embedded into the source code 

as special comments. In that case, they are mapped to 
binary addresses using the line information in the 
executable.  

Apart from the usual user annotations (loop bounds, flow 
facts), aiT supports annotations specifying the values of 
registers and variables. The latter is useful for analyzing 
software running in several different modes that are 
distinguished by the value of a mode variable.  

The aiT versions for all supported processors share a 
common architecture:  

—First, the control flow is reconstructed from the given 
object code by a bottom up approach. This annotated 
control-flow graph serves as the input for the following 
analysis steps.  

—Next, value analysis computes ranges for the values in 
the processor registers at every program point. Its results 
are used for loop bound analysis, for the detection of 
infeasible paths depending on static data, and to determine 
possible addresses of indirect memory accesses.  

—aiT’s cache analysis relies on the addresses of memory 
accesses as found by value analysis and classifies memory 
references as sure hits and potential misses.  

—Pipeline analysis predicts the behavior of the task on 
the processor pipeline.  

The result is an upper bound for the execution time of 
each basic block in each distinguished execution context.  

—Finally, bound calculation (called path analysis in the 
aiT framework) determines a worst-case execution path of 
the task from the timing information for the basic blocks.  

The structuring of the whole task of determining upper 
bounds into several phases allows different methods 
tailored to the subtasks to be used. In aiT’s case, value 
analysis and cache/pipeline analysis are realized by abstract 
interpretation, a semantics-based method for static program 
analysis. 

Path analysis is implemented by integer linear 
programming. Reconstruction of the control flow is 
performed by a bottom-up analysis. Detailed information 
about the upper bounds, the path on which it was computed, 
and the possible cache and pipeline states at any program 
point are attached to the call graph / control-flow graph and 
can be visualized in AbsInt’s graph browser aiSee.  

Limitations of the Tool. aiT includes automatic analysis 
to determine the targets of indirect calls and branches and to 
determine upper bounds of the iterations of loops. These 
analyses do not work in all cases. If they fail, the user has to 
provide annotations.  
2) Bound-T 

The tool determines an upper bound on the execution 
time of a subroutine, including called functions. The input 
is a binary executable program with (usually) an embedded 
symbol table (debug information). The tool is able to 
compute upper bounds on some counter-based loops. For 
other loops the user provides annotations, called assertions 
in Bound-T. Annotations can also be given for variable 
values to support the automatic loop-bounding.  
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The output is a text file listing the upper bounds etc. and 
graph files showing call-graphs and control-flow graphs for 
display with the DOT tool [15].  

Reading and decoding instructions is hand-coded based 
on processor manuals. The processor model is also 
manually constructed for each processor. Bound-T has 
general facilities for modelling control flow and integer 
arithmetic, but not for modelling complex processor states. 
Some special-purpose static analyses have been 
implemented, for example for the SPARC register-file 
overflow and underflow traps and for the concurrent 
operation of the SPARC Integer Unit and Floating Point 
Unit. Both examples use (simple) abstract interpretation 
followed by ILP (Integer Linear Programming).  

The control-flow graph (CFG) is often defined to model 
the processor’s instruction- sequencing behaviour, not just 
the values of the program counter. A CFG node typically 
represents a certain pipeline state, so the CFG is really a 
pipeline-state graph. Instruction interactions (e.g. data-path 
blocking) are modelled in the time assigned to CFG edges.  

Counter-based loops are bounded by modelling the task’s 
loop-counter arithmetic. The computational effect of each 
instruction is modelled as a relation between the ”before” 
and ”after” values of the variables (registers and other 
storage locations). The relation is expressed in Presburger 
Arithmetic as a set of affine (linear plus constant term) 
equations and inequalities, possibly conditional. Instruction 
sequences are modelled by concatenating (joining) the 
relations of individual instructions. Branching control-flow 
is modelled by adding the branch condition to the relation. 
Merging control-flow is modelled by taking the union of the 
inflowing relations.  

To bound loop iterations, Bound-T first re-analyses the 
model of the loop body in more detail to find loop-counter 
variables. A loop counter is a loop-variant variable such 
that one execution of the loop body changes the variable by 
an amount that is bounded to a finite interval that does not 
contain zero. If Bound-T also finds bounds on the initial 
and final values of the variable, a simple computation gives 
a bound on the number of loop iterations. 

Bound-T uses the Omega Calculator from Maryland 
University [16] to create and analyze the equation set. 
Loop-bounds can be context-dependent if they depend on 
scalar pass-by-value parameters for which actual values are 
provided at the top (caller end) of a call-path.  

The worst-case path and the upper bound for one 
subroutine are found by the Implicit Path Enumeration 
Technique, applied to the control-flow graph of the 
subroutine. The lp_solve tool is used [17]. If the subroutine 
has context-dependent loop bounds, the IPET solution is 
computed separately for each context (call path).  

Annotations are written in a separate text file. The 
program element to which an annotation refers is identified 
by a symbolic name (subroutine, variable) or by structural 
properties (loops, calls). The structural properties include 
nesting of loops, location of calls with respect to loops, and 
location of variable reads and writes. 

 Limitations of the Tool. The task to be analyzed must not 
be recursive. The control-flow graphs must be reducible. 
Dynamic (indexed) calls are only analyzed in special cases, 
when Bound-T’s data-flow analysis finds a unique target 
address.  

Dynamic (indexed) jumps are analyzed based on the code 
patterns that the supported compilers generate for 
switch/case structures, but not all such structures are 
supported.  

Bound-T can detect some infeasible paths as a side-
effect of its loop-bound analysis. There is, however, no 
systematic search for such paths. Points-to analysis 
(aliasing analysis) is weak, which is a risk for the 
correctness of the loop-bound analysis.  

The bounds of an inner loop cannot depend on the index 
of the outer loop(s).  

For such “non-rectangular” loops Bound-T can often 
produce a “rectangular” upper bound. Loop-bound analysis 
does not cover the operations of multiplication (except by a 
constant), division or the logical bit-wise operations (and, 
or, shift, rotate).  

The task to be analyzed must use the standard calling 
conventions. Furthermore, function pointers are not 
supported in general, although some special cases such as 
statically assigned interrupt vectors can be analyzed.  

No cache analysis is yet implemented (the current target 
processors have no cache or very small and special caches). 
Any timing anomalies in the target processor must be taken 
into account in the execution time that is assigned to each 
basic block in the CFG. However, the currently supported, 
cacheless processors probably have no timing anomalies. 
As Bound-T has no general formalism (beyond the CFG) 
for modelling processor state, it has no general limitations 
in that regard, but models for complex processors would be 
correspondingly harder to implement in Bound-T. 

B. Prototype research tools 
1) MTime 

The Vienna MTime analysis tool aims at assessing the 
timing behavior of automatically generated program code 
for embedded systems. 

The first step performed by the method is a static 
program analysis.  

Next, the control-flow graph is partitioned automatically 
into custom-sized program segments in order to reduce the 
complexity. Then, for all paths spawning across these 
program segments test data is generated in order to execute 
exactly the desired paths. After this, the execution times of 
these paths are measured on the actual target hardware. 
Finally, the results of these measurements are safely 
composed into a final WCET bound by using integer linear 
programming.  

The key challenges when implementing the prototype 
have been the completely automatic program segmentation, 
test data generation (using model checking) and predictable 
execution time measurements.  

The current limitations of the proof-of-concept prototype 
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implementation are the missing support of function calls 
(because when using code generators functions can be 
inlined) and generic loops.  

The key strengths of the method are that it can be applied 
without any user interaction, the tool is modular, hardware 
timing behavior is contributed by predictable execution 
measurements performed on the actual target hardware and 
the WCET bound can be calculated using well established 
calculation methods.  
2) SWEET 

SWEET has been developed in a modular fashion, 
allowing for different analyses and tool parts to work rather 
independently. The tool architecture conforms to the 
general scheme for WCET analysis, consisting of three 
major phases: a flow analysis, a processor-behavior 
analysis and an estimate calculation. The analyses 
communicate through two well-defined data structures, the 
scope graph with flow facts [18], (representing the result of 
the flow analysis), and the timing model [19], (representing 
the result of the processor-behavior analysis). In essence, 
SWEET offers the following functionality:  

—Automatic flow analysis on the intermediate code 
level.  

—Integration of flow analysis and a research compiler.  
—Connection between flow analysis and processor-

behavior analysis.  
—Instruction cache analysis for level one caches.  
—Pipeline analysis for medium-complexity RISC 

processors.  
—A variety of methods to determine upper bounds based 

on the results of flow- and pipeline analysis.  
Unlike most WCET analysis tools, SWEET’s flow 

analysis is integrated with a research compiler. The flow 
analysis is performed on the intermediate code (IC) of the 
compiler, after structural optimizations. Thus, the control 
structure of the IC and the ob ject code is similar, and the 
flow analysis results for the IC are valid for the ob ject code 
as well.  

SWEET’s flow analysis is based on a multi-phase 
approach. A program slicing is used to restrict the flow 
analysis to only those parts of the program that may affect 
the program flow. The analysis is handled by the abstract 
execution, a form of symbolic execution based on abstract 
interpretation. The analysis uses abstract interpretation to 
derive safe bounds on variables values at different points in 
the program. However, rather than using traditional fixed-
point iteration, loops are ”rolled out” dynamically and each 
iteration is analysed individually in a fashion similar to 
symbolic execution. The abstract execution is able to 
automatically calculate both loop bounds and infeasible 
path information.  

SWEET’s processor-behavior analysis is highly 
decoupled from the flow analysis, and based on a two-phase 
approach. In the first phase, the memory access analysis, 
memory areas accessed by different instructions are 
determined. The result of the analysis is a set of “execution 
facts” which are used in the pipeline analysis. Such facts 

specify the memory area(s) that an instruction may 
reference or if the instruction may hit and/or miss the cache. 
Execution facts can also specify other factors like 
assumptions on branch prediction outcomes, and the precise 
set available depends on the target processor.  

The pipeline analysis is performed by simulating object 
code sequences through a trace-driven cycle-accurate CPU 
model. The pipeline analysis has been explicitly designed to 
allow standard CPU simulators to be used as CPU models. 
However, this requires that the simulator is clock-cycle 
accurate, can be forced to perform its simulation according 
to given instruction sequences and corresponding execution 
facts, and does not suffer from timing anomalies.  

Consecutive simulation runs starting with the same basic 
block in the code are combined to find timing effects across 
sequences of two or more blocks in the code [19]. The 
analysis assumes that there is a known upper bound on the 
length of block sequences that can exhibit timing effects; 
this value can be greater than two even on quite simple 
processors.  

SWEET’s estimate calculation phase support three 
different type of calculation techniques, all taking the same 
two data structures as input. A fast path-based technique, a 
global IPET technique and a hybrid clustered technique. 
The clustered calculation can perform both local IPET 
and/or local path-based calculations (the decision on what 
to use is based on the flow information available for the 
specific program part under analysis).  

SWEET uses DOT from GraphViz [15] to graphically 
visualize its results.  

Limitations of the Tool. Each part of the tool, flow 
analysis, processor-behavior analysis, and bound 
calculation have their individual limitations. The flow 
analysis can handle ANSI-C programs including pointers, 
unstructured code, and recursion. However, to make use of 
the automatic flow analysis the program must be compiled 
with the research compiler that SWEET is integrated with, 
otherwise flow facts must be manually given. There are also 
some limitations inherent to the used research compiler, e.g. 
the use of dynamically allocated memory is currently not 
supported, and annotations will be needed in such cases. 

The current memory access analysis does not handle data 
caches. Only one-level instruction caches are supported. 
The pipelines that are amenable to SWEET’s pipeline 
analysis are limited to in-order pipelines with bounded 
long-timing effects and no timing anomalies. In particular, 
out-of-order pipelines are not handled. 

The path-based bound calculation requires that the code 
of the task is well-structured. The IPET-based and clustered 
calculation methods can handle arbitrary task graphs. 

 
3) Chronos 

Chronos is an open-source static WCET analysis tool. 
The purpose of Chronos is to determine a tight upper 
bound for the execution times of a task running on a 
modern processor with complex micro-architectural 
features. The input to Chronos is a task written in C and 
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the configuration of the target processor. The frontend of 
the tool performs data flow analysis to compute loop 
bounds. If it fails to obtain certain loop bounds, user 
annotations have to be provided. The user may also input 
infeasible-path information to improve the accuracy of the 
results. The frontend maps this information from the source 
code to the binary executable.  

The core of the analyzer works on the binary executable. 
It disassembles the executable to generate the control flow 
graph (CFG) and performs processor-behavior analysis on 
this CFG. Chronos supports the analysis of (i) out-of-order 
pipelines, (ii) various dynamic branch prediction schemes, 
(iii) instruction caches, and the interaction among these 
different features to compute a tight upper bound on the 
execution times.  

The core of the analyzer determines upper bounds of 
execution times of each basic block under various execution 
contexts such as correctly predicted or mispredicted jump 
of the preceding basic blocks and cache hits/misses within 
the basic block. Determining these bounds is challenging 
for out-of-order processor pipelines due to the presence of 
timing anomalies. It requires the costly enumeration of all 
possible schedules of instructions within a basic block. 
Chronos avoids this enumeration via a fixed-point analysis 
of the time intervals (instead of concrete time instances) at 
which the instructions enter/leave different pipeline stages.  

Next, the analyzer employs Integer Linear Programming 
(ILP) to bound the number of executions corresponding to 
each context. This is achieved by bounding the number of 
branch mispredictions and instruction cache misses. Here 
ILP is used to accurately model branch prediction, 
instruction cache as well as their interaction. The analysis 
of branch prediction is generic and parameterizable w.r.t. 
the commonly used dynamic branch prediction schemes 
including GAg and gshare. Instruction caches are analyzed 
using the ILP-based technique proposed by Li, Malik, and 
Wolfe. However, the integration of cache and branch 
prediction requires analyzing the constructive and 
destructive timing effects due to cache blocks being 
“prefetched” along the mispredicted paths. This complex 
interaction is accounted for in the analyzer by suitably 
extending the instruction cache analysis.  

Finally, bounds calculation is implemented by the IPET 
technique by converting the loop bounds and user provided 
infeasible-path information to linear flow constraints.  

Limitations of the Tool. Chronos currently does not 
analyze data caches. Since the focus is mainly on processor-
behavior analysis, the tool performs limited data flow 
analysis to compute loop bounds. The tool also requires 
user feedback for infeasible program paths.  

IV. RESULTS 

A. Results from the developers 
Since the MTime tool does not support function calls, 

and all benchmarks contain such calls, no results from 
MTime were available this time. All other four tools have 

reported their results. We give an individual summary for 
each of the tools.  

We regret that the result tables for the four tools are 
different. The reason for this is that no common reporting 
format was enforced during the Challenge. This should be 
changed in coming Challenge rounds. 
1) aiT 

The report from aiT was short, a summary of the results 
fitted into two Excel sheets. Tables II to IV show the 
content of the Excel sheet. As we can see, aiT succeeded in 
analyzing all of the benchmark programs for all three target 
processors (C16x, ARM TMS470, and PowerPC MPC565). 
They also measured the execution times for the Mälardalen 
benchmarks (except for the programs marked with “buffer”, 
which means that the buffer of their measurement 
equipment was too small to handle the large runtime of the 
program). The overestimation done by aiT is in most cases 
below 10%. The analysis for ARM shows especially low 
overestimation. No measurements were provided for the 
PapaBench benchmark. 

MinAn is the minimal number of annotations needed to 
get a WCET-analysis result (loop bounds, recursion bounds, 
flow annotations, ...). Not counted are annotations for the 
runtime libraries of the used compilers, which are usually 
delivered together with the analyser.  

AT is the runtime of the analysis in seconds for the set of 
optimal annotations. The analysis used the following 
hardware: PC with Pentium 4, 2.x-3.x Ghz, 2 GB RAM, as 
much swap-space as needed. In the time values, fractions of 
seconds are removed, as they are not reproducible. Not all 
tests are run on exactly the same machine. The matmult test 
for ARM7 needs more than 2GB RAM for the set of the 
best annotations, therefore it is run on a 64bit 3.2 Ghz Xeon 
with 8 GB RAM, with normal set of annotations it runs on 
the other normal machines in 3 seconds. In table IV, A-
Loops are number of loop bounds found automatically 
without any annotations, counted over loop contexts. 

Analysis problems encountered for the aiT tool 
No real problems have been reported. Obviously, not all 
loop bounds were found automatically, so some had to 
provided manually (see the colunmn “MinAn”). 
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TABLE III 
RESULTS FOR AIT – PAPABENCH 

papa_bench  C16x  ARM  PowerPC  

  C16x cycles TMS470 cycles MPC565 cycles 

Task Executable  WCET  WCET  WCET 

T1 /_test_ppm_task fly_by_wire  16 604  9 875  1 242 

T2 /_send_data_to_autopilot_task fly_by_wire  4 758  3 197  331 

T3 /_check_mega128_values_task fly_by_wire  9 512  4 092  437 

T4 /_servo_transmit fly_by_wire  2 390  1 909  1 249 

T5 /_check_failsafe_task fly_by_wire  9 444  4 058  432 

T6 /_radio_control_task autopilot  20 516  15 972  2 247 

T7 /_stabilisation_task autopilot  9 936  4 239  340 

T8 /_link_fbw_send autopilot  170  144  81 

T9 /_receive_gps_data_task autopilot  33 942  23 618  2 764 

T10 /_navigation_task autopilot  163 266  87 979  5 303 

T11 /_altitude_control_task autopilot  2 134  915  95 

T12 /_climb_control_task autopilot  8 458  4 129  247 

T13 /_reporting_task autopilot  8 286  11 172  4 465 
 

 

TABLE II 
RESULTS FOR AIT – MÄLARDALEN BENCHMARKS 

wcet_bench C16x   ARM   PowerPC   

 C16x cycles  TMS470 cycles  MPC565 cycles  

Program Measured WCET 
Over- 

estimation Measured WCET 
Over- 

estimation Measured WCET 
Over- 

estimation 

adpcm buffer 558 342 - buffer 1 375 886 - buffer 430 274 - 

cnt 19622 20 250 3,20% 16 853 17 053 1,19% 7 235 7 376 1,95% 

compress 27308 37 570 37,58% 19 970 20 280 1,55% 6 824 9 461 38,64% 

cover 10080 10 452 3,69% 6 778 6 780 0,03% 4 299 5 006 16,45% 

crc buffer 275 910 - buffer 196 007 - buffer 98 830 - 

duff 6916 7 196 4,05% 4 610 4 612 0,04% 1 028 1 355 31,81% 

edn 838686 927 068 10,54% 299 734 307 889 2,72% buffer 88 381 - 

insertsort 4720 4 870 3,18% 3 990 3 992 0,05% 1 770 1 838 3,84% 

janne_complex 1294 1 330 2,78% 827 829 0,24% 359 383 6,69% 

matmult 936602 956 710 2,15% 438 435 448 261 2,24% buffer 237 736 - 

ndes 401294 453 348 12,97% 190 530 194 448 2,06% buffer 130 025 - 

ns 73738 75 712 2,68% 36 097 38 043 5,39% buffer 18 215 - 

nsichneu 28328 29 840 5,34% 18 825 18 827 0,01% 8 052 8 327 3,42% 

recursion 8318 10 068 21,04% 7 143 7 451 4,31% 5 096 5 527 8,46% 

statemate 2486 2 620 5,39% 3 810 3 812 0,05% 1 260 1 294 2,70% 
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TABLE IV 
NUMBER OF FOUND LOOP BOUNDS AND ANALYSIS TIMES FOR AIT 

wcet_bench C16x   ARM   PowerPC   

 C16x   TMS470   MPC565   

Program A-Loops MinAn AT A-Loops MinAn AT A-Loops MinAn AT 

adpcm 28 3 50 24 3 3 25 2 23 

cnt 6 0 18 6 0 4 6 0 2 

compress 4 7 35 3 6 4 2 6 3 

cover 3 0 52 3 0 1 3 0 7 

crc 4 1 219 3 1 2 5 0 128 

duff 0 2 3 0 2 1 1 1 1 

edn 20 5 143 26 0 14 18 0 61 

insertsort 1 1 5 2 1 2 1 1 1 

janne_complex 0 2 3 0 1 2 0 2 1 

matmult 13 0 66 11 0 743 11 0 301 

ndes 41 0 406 12 0 3 12 0 54 

ns 9 0 40 6 0 1 6 0 6 

nsichneu 0 1 58 1 0 30 1 1 8 

recursion 0 1 1 0 1 1 0 1 1 

statemate 0 1 13 0 1 15 0 1 53 

          

papa_bench C16x   ARM   PowerPC   

 C16x   TMS470   MPC565   

Task A-Loops MinAn AT A-Loops MinAn AT A-Loops MinAn AT 

Executable: fly_by_wire          

T1 /_test_ppm_task 0 0 28 0 0 2 0 0 1 
T2 
/_send_data_to_autopilot_task 1 0 7 1 0 2 1 0 1 
T3 
/_check_mega128_values_task 0 0 9 0 0 2 0 0 1 

T4 /_servo_transmit 1 0 1 1 0 1 1 0 1 

T5 /_check_failsafe_task 0 0 9 0 0 1 0 0 1 

Executable: autopilot          

T6 /_radio_control_task 0 0 27 6 0 4 0 0 4 

T7 /_stabilisation_task 0 0 13 0 0 3 0 0 1 

T8 /_link_fbw_send 0 0 1 0 0 1 0 0 1 

T9 /_receive_gps_data_task 0 4 38 2 4 6 0 4 2 

T10 /_navigation_task 0 12 208 15 12 41 0 14 14 

T11 /_altitude_control_task 0 0 3 0 0 1 0 0 2 

T12 /_climb_control_task 0 0 9 0 0 4 0 0 1 

T13 /_reporting_task 0 0 22 0 0 6 0 0 1 
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2) Bound-T 
The report from Tidorum Ltd. [20] is very well-written 

and ambitious. The Bound-T tool analysed binaries 
generated by two compilers (GNU gcc compiler and the 
Gaisler Research Bare C Compiler) for two targets; Renesas 
H8/300 and SPARC V7/V8. The analyses were performed 
using the Round 1–3 approach described in the setup of the 
Challenge. Actually, the Bound-T tests are the only to 
report this three-round approach. No measurements were 
provided. 

The host computer was a Compaq Presario X1000 laptop 
with an Intel Centrino processor running at 1.4 GHz and 
512 MB RAM. The operating system was Debian Linux. 

The Bound-T report thoroughly describes the used 
processors and compilers. We omit these descriptions here 
for space reason and refer to the report. In the table below, 
the results for Bound-T are described. The table is an 
excerpt from the report. For example, we only give results 
for the round that gives a WCET value (round 1 if all loop 
bounds were found automatically, else round 2). We also 
omit programs where Bound-T failed. 

The columns have the following meanings:  
– Comp: The name of the compiler. The remaining 

columns in the row report results from the executable 
generated with this compiler. If this column is blank, the 
column Loops in the row report properties of the source 
code and the remaining columns are unused. The compiler 
also identifies the target processor as follows:  

gcc: The GNU compiler for the H8/300.  
bcc: The Gaisler Research Bare C Compiler (based on 

GCC) for the SPARC.  
– Loops: The number of loops in the program. The 

number of loops in the executable is often larger than in the 
source code because the compiler may generate loops (eg. 
for C expressions like n << k) and there may be loops in 
library routines. For the SPARC/BCC target the loops in the 
irreducible library routines are not included.  

– Bound: The number of loops for which Bound-T found 
iteration bounds. Note that some loops may be counted 
twice, if Bound-T finds both context-independent and 
context-dependent bounds for the same loop.  

– Ass: The number of loops for which iteration bounds 
was asserted, perhaps for each Round as in the preceding 
column, or for which other assertions (such as variable 
value bounds) were used that let Bound-T find iteration 
bounds. Blank for the source code row.  

– AT: Analysis time, in seconds of real (wall-clock) time. 
The time is measured with one user logged in but no other 
heavy activity. From run to run the time varies about 5 - 
10%.  

Analysis problems encountered for the Bound-T tool 
The benchmark duff is irreducible and cannot be analysed 

by Bound-T. The loop termination logic in janne_complex 
is too complex for Bound-T and too complex for manual 
reasoning. The recursive program recursion cannot be 
analysed by Bound-T.  

The analysis during round 1 (trying to find loop bounds 
automatically) took too long for 7 benchmarks and had to 
be aborted. In addition, the analysis failed with an error in 
the Omega Calculator in a further 3 benchmarks. For these 
programs, loop assertions had to be calculated manually. 
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TABLE V 

RESULTS FOR BOUND-T 

Program Comp Loops Bound Ass AT WCET 

adpcm  20     

 gcc 31 26 5 9.5 2 002 692 

 bcc 18 15 3 2.3 803 089 

cnt  4     

 gcc 5 5  0.5 45 806 

 bcc 4 4  0.4 19 628 

compress  8     

 gcc 15 4 11 2.6 586 093 

 bcc 8 4 4 31.5 122 249 

cover  3     

 gcc 3 3  6.6 7 742 

 bcc 3 3  1.0 3173 

crc  3     

 gcc 3 3  1.3 164 118 

 bcc 3 2 1 0.5 57 663 

edn  13     

 gcc 23 19 4 136.9 1 514 112 

 bcc 15 12 3 1.3 426 779 

insertsort  2     

 gcc 2 1 1 0.3 7 760 

 bcc 2 1 1 0.2 2078 

matmult  5     

 gcc 6 6  0.8 1506520 

 bcc 5 5  0.4 615345 

ndes  12     

 gcc 21 19  39.0 823 416 

 bcc 12 12  1.3 82676 

ns  4     

 gcc 4 4  38.1 20976 

 bcc 4 4  3.0 7097 

nsichneu  1     

 gcc 1 0 1 215.6 104 522 

 bcc 1 0 1 6.8 20 756 

papa_ap  ?     

 gcc 85 23 54 1 224.5 20 266 762 

 bcc 45 2 1 1.0 62 753 

papa_fbw  ?     

 gcc 25 9 15 6.5 1 150 867 

 bcc 6 3 1 1.0 9008 
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3) MTime  

Since the MTime tool does not support function calls, 
and all benchmarks contain such calls, no results from 
MTime were available this time. 
4) SWEET 

The tables VI to VIII show the results for SWEET and 
the Mälardalen WCET benchmarks. For the analyses we 
used a PC running Windows XP with Intel processor, clock 
frequency 1.06 GHz, and 1.49 Gb of primary memory. The 
WCET is expressed in clock cycles for ARM9. Please note 
that the machine model of ARM9 has not been verified to 
100%. Since there are no measurements, no figures of 
overestimation can be given. Analysis time (AT) is given in 
seconds (excluding loading of files). Times in seconds; 
have been rounded to one decimal in the table. The number 
of loops is the number found in the analysed intermediate 
code. 

Table VI. Single path analysis, basic loop bound 
calculation.  

This analysis uses no annotations. SWEET calculates all 
loop bounds automatically.  

Table VII. Single path analysis, advanced loop bound 
calculation plus infeasible path calculation. 

For these analyses we add analysis of infeasible paths, 
and show the number of such paths found. For some 
programs, this can give tighter WCET estimates. In this 
table, “% longer” means extra time used for the analysis 
compared to the analysis time in Table VI. The column “% 
better” shows the difference (relative reduction) of the 
calculated WCET compared to Table V.  

Table VIII. Multi path analysis, basic loop bound 
calculation. 

For some of the files, the analysis was “forced” to 
analyse several paths (multi path analysis). This was 
accomplished by defining annotations that assigned 
multiple values to some variables at some program point. 
The annotation files (with comments) are available at the 
Mälardalen benchmark web page. 

4. Table IX. Multi path analysis, advanced loop bound 
calculation plus infeasible path calculation. 

The same settings for as Table VII above are used, but 
for multi path analysis. 

Analysis problems encountered for the SWEET tool 
We had overestimation of one loop in adpcm probably 

due to pessimistic handling of overflow. The PapaBench 
programs could not be analysed by SWEET because of 
problems with finding and analyzing the C-files that 
corresponds to the used library routines for floating point 
calculations. 
 
5) Chronos 

Chronos was run for three processor configurations 
(simple in-order, complex in-order and complex out-of-
order). Table X presents the results. For each of the 
benchmarks, the data representing these three 
configurations is presented on an own line. 

Analysis problems encountered for the Chronos tool 
The programs cover and duff are not analyzable using 

Chronos because they contain switch/case statements that 
are compiled into address tables and register-indirect jumps. 
The program recursion is not analyzable using Chronos 
since the benchmark contains recursive function call. The 
program autopilot in PapaBench is not analyzable using 
Chronos since this benchmark contains unstructured code 
(goto jumps). These types of code are not handled in the 
current tool release. 

Reasons for some of the large overestimations are given 
in the Chronos report. They originate probably from 
overestimations of loop bounds (especially nested loops) 
and missing information on infeasible paths. Another 
reason for the seemingly large overestimations is that the 
simulations may use data that do not lead to the worst-case 
behavior. 

For the benchmark fly_by_wire in PapaBench, 
compilation and estimation should be done from the 
command line instead of the Chronos GUI. This 
benchmark is not executable by Chronos, so there are no 
simulated values in this case. 
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TABLE VI 
RESULTS FOR SWEET – SINGLE PATH BASIC 

Program #Loops AT 
flow analysis 

AT low level 
analysis 

AT total WCET 

adpcm 27 73.9 10.9 84.8 2 165 650 

cnt 4 1.3 0.2 1.5 36 719 

compress 11 2.7 1.6 4.3 206 480 

cover 3 3.8 7.0 10.8 73 128 

crc 6 8.7 0.6 9.3 834 159 

duff 2 0.4 0.2 0.6 5 525 

edn 12 5.3 1.2 6.5 1 425 085 

insertsort 2 0.6 0.1 0.7 31 163 

janne_complex 2 0.1 0.0 0.1 12 039 

matmult 7 11.8 0.3 12.1 2 532 706 

ndes 12 31.6 2.6 34.3 795 425 

ns 4 4.4 0.1 4.5 130 733 

nsichneu 1 41.6 48.3 89.9 119 707 

recursion 0 0.8 0.1 0.9 29 079 

statemate 1 5.6 8.9 10.2 15 964 

 
 

TABLE VII 
RESULTS FOR SWEET – SINGLE PATH ADVANCED 

Program AT flow 
analysis 

AT low 
level 

analysis 

AT total % longer WCET #infeasible paths 
found 

% better 

adpcm 75.3 9.7 84.9 0 2 162 122 182 0 

cnt 1.3 0.2 1.5 3 35 319 10 4 

cnt 2.7 1.5 4.2 -2 49 896 45 76 

cover 3.8 10.3 14.1 31 33 485 576 54 

crc 9.0 0.7 9.7 4 830 278 36 0 

duff 0.5 0.2 0.6 13 4 720 54 15 

edn 5.5 1.2 6.8 4 1 425 085 17 0 

insertsort 0.6 0.1 0.7 3 18 167 3 42 

janne_complex 0.1 0.0 0.1 27 2 523 10 79 

matmult 12.4 0.3 12.8 6 2 532 706 12 0 

ndes 32.2 2.9 35.1 2 793 905 132 0 

ns 4.5 0.1 4.6 1 130 671 7 0 

nsichneu 41.5 27.9 69.4 -23 57 247 877 52 

recursion 0.8 0.1 0.9 11 20 033 16 31 

statemate 1.2 5.6 6.9 32 8 451 328 47 
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TABLE VIII 
RESULTS FOR SWEET – MULTI PATH BASIC 

Program AT 
flow analysis 

AT low 
level 

analysis 

AT total WCET 

crc 40.1 0.6 40.7 834 159 

edn 30.8 1.2 32.0 1425 085 

insertsort 31.5 0.1 31.5 31 163 

janne_complex 10.7 0.0 10.7 19 104 

ns 70.5 0.1 70.7 130 733 

nsichneu 53.5 48.2 101.8 119 707 

 
 

TABLE IX 
RESULTS FOR SWEET – MULTI PATH ADVANCED 

Program AT flow 
analysis 

AT low 
level 

analysis 

AT total % 
longer 

WCET #infeasi
ble 

paths 
found 

% better 

crc 41.6 0.7 42.3 4 834 088 36 0 
edn 32.2 1.2 33.4 4 1 425 085 17 0 

insertsort 31.8 0.1 31.9 1 18 167 3 42 

janne_complex 11.1 0.1 11.2 4 3 154 10 83 

ns 69.4 0.1 69.5 -2 130 671 7 0 

nsichneu 54.1 33.2 87.4 -14 41 303 877 65 
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TABLE X 
RESULTS FOR CHRONOS 

Program #Loops # Loops found 
automatically 

ILP formulation 
time 

ILP solution 
time 

WCET 
estimated 

WCET 
simulated 

Overestima-
tion 

adpcm 18 4 0.273 0.019 265 588 160 891 65% 
   1.256 1.021 347 742 183 526 89% 
   1.035 0.556 317 354 126 258 151% 
cnt 4 4 0.029 0.012 4 896 4 792 2% 
   0.084 0.020 6 438 5 586 15% 
   0.067 0.020 5 401 3 515 54% 
compress 8 1 0.231 0.015 5 873 5 859 0% 
   0.618 0.054 29 215 7 504 289% 
   0.451 0.055 28 487 4 744 500% 
crc 3 1 0.098 0.013 47 786 22 688 111% 
   0.338 0.052 61 849 26 861 130% 
   0.267 0.064 53 275 18 098 194% 
edn 12 12 0.058 0.025 89 401 87 444 2% 
   0.187 0.086 113 612 108 973 4% 
   0.147 0.088 89 030 62 995 41% 
insertsort 2 1 0.018 0.001 901 897 0% 
   0.045 0.036 1 549 1 364 14% 
   0.036 0.033 1245 949 31% 
janne_ 
complex 

2 2 0.098 0.017 189 185 2% 
   0.321 0.039 800 454 76% 
   0.028 0.248 789 356 122% 
matmult 5 5 0.025 0.018 186 903 186 899 0% 
   0.063 0.048 191 615 185 937 3% 
   0.054 0.054 119 526 90 834 32% 
ndes 12 7 0.083 0.029 66 655 65 600 2% 
   0.414 1.022 107 589 86 639 24% 
   0.317 1.186 5 918 53 625 60% 
ns 5 0 0.027 0.021 8 199 6 577 25% 
   0.071 0.033 9 991 7 568 32% 
   0.032 0.058 8 676 4 784 81% 
nsichneu 1 1 9.791 0.447 13 609 6 305 116% 
   31.562 3.461 97 908 42 966 128% 
   22.939 3.356 97 525 40 931 138% 
statemate 1 0 2.494 0.137 2 007 1 120 79% 
   7.546 0.832 16 185 6 207 161% 
   5.708 0.813 16 103 5 898 173% 
fly_by_wire   0.254 0.019 7 712 - - 
   0.638 0.670 11 980 - - 
   0.503 0.807 9 983 - - 
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B. Overview of results. 
Table XI shows the success rate expressed as #WCET 
results/#programs. No results from MTime.  

Some tools have problems with some of the following: 
function calls, unstructured code, recursion, handling 
library files, handling large programs (run-time of tool), 
specifying correct loop bounds, and annotating infeasible 
paths. 

TABLE XI 
ANALYSIS SUCCESS RATES 

Tool 
 

Successes, 
Mälardalen benchmarks 

 

Successes, 
PapaBench 

 
aiT 
 

15/15 
 

2/2 
 Bound-T 

 
11/15 

 
2/2 

 SWEET 
 

15/15 
 

0/2 
 Chronos 

 
12/15 

 
1/2 

 Table XII shows the success of automatic loop bound 
calculation expressed as #Loop bounds found/(total #loops 
analysed in successfully analysed programs). No results 
from MTime. The “-“ sign in the aiT row means that the 
total number of loops were not provided by aiT. 

There was no indication of the precision in the found 
loop bounds. 

TABLE XI 
LOOP BOUND RESULTS 

Tool 
 

Successes, Mälardalen 
benchmarks 
 

Successes, 
PapaBench 
 

aiT 
 

129/- (C16x) 
91/-   (PPC) 
 

2/-    (C16x) 
2/-    (PPC) 
 

Bound-T 
 

90/114 (H8/300) 
62/75   (SPARC) 
 

32/110 (H8/300) 
5/51    (SPARC) 
 

SWEET 
 

94/94 
 

0/0 
 

Chronos 
 

38/72 
 

0/1 
 

Only SWEET reports results from infeasible path 
analysis. The other tools require infeasible paths to be 
found and set manually. 

For usability aspects, see the external report by Lili Tan 
[14]. 

V. CONCLUSIONS 
This first Challenge has been performed successfully in 

spite of some initial unclearness, debate and delay. We can 
note in the tables from the different tests that there is no 
common format of the results, and that different developers 
have made different tests sometimes. We still consider the 
Challenge to be meaningful and worthwhile, and we can 
draw the following conclusions: 

• The tests have been a real challenge to the 
participating WCET tools. We have a success 
range from 0% to 100% in terms of how many of 
the benchmark programs that were analyzable by a 
certain tool. 

• The tests have clearly pointed out problems 
existing in the tools as well as in the benchmarks 
and the used compilers.  

• Most of the tools find more than half of the loop 
bounds automatically. Only one tool finds 
infeasible paths automatically. 

• Several bugs in both the tools and the benchmarks 
have been corrected during the Challenge. 

• Actual WCET estimates cannot be compared this 
time since the developers support different 
processors and compilers. 

• The quality of WCET estimates is hard to judge 
for all tools but aiT, since aiT was the only tool to 
provide measurements for some of the 
benchmarks. Chronos provided simulated values 
that indicate the possible size of overestimation. 
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