
 1

Abstract—Worst Case Execution Time (WCET) analysis has a

growing importance for real-time systems, to guarantee correct
timing, and to be an aid in developing such systems. The WCET
tools are currently making their way out to the market, and there
are many research groups active in developing prototype tools
using new and better ways of calculating estimates or bounds on
the WCET.

The purpose of the WCET Tool Challenge is to be able to
study, compare and discuss the properties of different WCET
tools and approaches, to define common metrics, and to enhance
the existing WCET benchmarks. The WCET Tool Challenge has
been designed to find a good balance between openness for a wide
range of analysis approaches, and specific participation
guidelines to provide a level playing field. This should make
results transparent and facilitate friendly competition among the
participants.

This report describes the participating tools as well as the
results of the Challenge 2006. There is also an accompanying
report by Lili Tan on the external tests of the tools.

The WCET Tool Challenge is intended to be an annual event.

I. INTRODUCTION
here have been WCET benchmarks around for some years.
The idea of a WCET Tool Challenge came up during the
spring of 2006, inspired by other areas where competitions

or similar have been used to be able to discuss and compare
different approaches (e.g., in automated reasoning (The CADE
ATP System Competition) [1].

The WCET Tool Challenge has been performed during the
autumn of 2006. It has concentrated on three aspects of WCET
analysis:

1. flow analysis,
2. required user interaction,
3. performance.

Two commercial tools, aiT [2] and Bound-T [3], and three
research prototype tools, MTime [4], SWEET [5], and
Chronos [6], participated. An external research assistant and
the development teams made the actual tests of the tools. The
tests targeted on a set of benchmark programs. For more
details on the setup of the event, consult the Challenge web
page [7]. The Challenge has been supported by the Compilers
and Timing Analysis Cluster of ARTIST2 [8].

There are certainly more WCET tools being developed that
could have participated in the Challenge. To the author’s
knowledge we have OTAWA [9], RapiTime [10], SYMTA/P
[11], and Heptane [12]. For a number of reasons, the
developers of these tools did not participate.

There are two main of reasons for not joining the
Challenge:

• The time schedule is too tight or the timing is not OK.
• The Challenge is still too biased towards static

analysis methods and there is no support for
measurement based methods.

For the next Challenge these problems should be solved.

A. Goals
The goals of the WCET Tool Challenge are the following:
1) To exhibit the wide range of timing analysis tools available
today:

• using static program analysis, or
• combining analysis and measurements,
• for various target processors,
• in various application domains,
• supporting various programming languages and

design tools,
• academic, commercial; free or at a charge.

2) To illuminate the features, abilities and intended uses of
each tool:

• in finding the feasible execution paths in the SW,
• in modelling complex processor and system HW,
• in deriving useful WCET bounds or estimates,
• in usability, scalability and adaptability,
• in the range of supported targets (processors,

compilers, ..)
3) To collect and maintain a growing set of community
standard benchmark programs and related test suites that:

• contain typical (both easy and hard) programming
constructs,

• can be analyzed by several tools with comparable
results,

• test enough of the actual behaviour of each
benchmark to satisfy measurement-based tools and
to validate results from static-analysis tools, and
ideally, have known exact answers (paths and
WCETs).

B. Aspects of WCET analysis
1) Area 1 - Flow analysis

The purpose of the flow analysis phase is to extract the
dynamic behaviour of the program. This includes information
on which functions get called, loop bounds, if there are
dependencies between if-statements, etc. We use the following
flow analysis metrics:

• number of automatically found loop bounds
(including context-depending bounds, like
triangular loop limits and loops in functions called
from several sites)

WCET Challenge 2006 – technical report
Jan Gustafsson, Mälardalen University, Västerås, Sweden

T

 2

• tightness of these (compared to real loop bounds,
assuming they are known)

• the number of automatically found infeasible paths
• their reduction effects on the WCET estimates
• the number of automatically found correct memory

accesses
• the number of automatically found resolved call

targets (function pointers)
2) Area 2 - Required user interaction

This area of evaluation is concerned with the amount of
work that is involved with setting up a WCET calculation to
receive a result. One important metric for this area is number
of program-specific manual annotations. Necessary
annotations (like CPU type, frequency etc) can be excluded
from the number.
3) Area 3 – Performance

 This area is about the bottom line: the final WCET value
and the performance of the tool.

We use the following metrics:
• estimated WCET value (in clock tics and µs)
• tightness of the estimated WCET value (assuming

the real WCET is known)
• limits of program sizes to be handled
• analysis time and memory requirements for the

analysis

C. WCET tool rounds
Aspects may be non-orthogonal and influence each other.

For example, much preparation work may give a better
(tighter) WCET. This is expected and normal, and shows the
signs of a flexible WCET tool. The same tool can be used for
different aspects with different setups. Therefore we suggest
that each tool is used in three rounds for each target processor:
1) One initial round with no manual annotations for loop
bounds etc. Necessary annotations (like CPU type, frequency
etc) are however allowed. This round requires loop bounds to
be found automatically; otherwise the analysis will not give a
WCET bound at all for benchmarks containing loops.
2) A basic round with the smallest set of manual annotations
possible to get a WCET bound.
3) An optimal round with the largest set of annotations to get
as tight WCET bound as possible.

The required user interaction is of course growing for each
round. For each round, the metrics are measured for the three
aspects. For each metric, the complete setup is described.

D. Carrying the evaluation out
There have been two possibilities:
1) An external evaluation, carried out by Lili Tan
(lili.tan@icb.uni-due.de), who is a research assistant in the
research group of Dependability of Computing Systems at the
University of Duisburg-Essen. This has the advantage of
letting an external person try out the tools and give an
independent feedback of the usability of the tools, without bias
of any WCET tool developer.
2) The evaluation is carried out by the developer or supplier of
the tool.

E. Selection of benchmark programs, processors and
compilers.

The benchmarks will represent different types of codes, for
example code with different types of loops, infeasible paths,
automatically generated code, hardware specialized code, and
also large real world programs. A mix of single-path programs
and multi-path programs will be included.

We have used open source benchmark programs from the
Mälardalen WCET benchmark [5] and PapaBench [14]. These
benchmarks are available on the web.

Each participant selects up to three processors for which to
do the analyses; for example one simple (e.g., Renesas H8),
one medium complex (e.g., ARM7/9, C167NEC, V850E) and
one very complex (e.g., PowerPC), if possible. As there is no
overview over which compilers are supported by which tools,
we let the participants decide on one or two compiler(s).

II. THE BENCHMARKS
The Mälardalen Benchmarks

These benchmarks are collected from several different
research groups and tool vendors around the world and are
available on the web. The programs contain different types of
code constructs (loops, nested loops, arrays, matrixes, bit
operations, recursion, unstructured code, floating point etc.).
The benchmarks are single path programs when run as they
are provided, but can be run or analysed in multi path mode
using the provided annotations, which define multiple values
to certain variables at certain program points.

The benchmark programs have varying sizes (from ≈ 100 to
1300 lines of lines of source code). Each benchmark is
provided as a C source file. In total there is 30+ benchmark
programs, of these 15 were selected for the Challenge. The
selection was made so that as many different types of code
was included as possible. Also, no floating-point programs
were included, because many of the processors to be analysed
by the tools do not support this in hardware.

Table I on the next page describes the Mälardalen
Benchmarks.

Legend:
I = uses include files.
E = calls external library routines.
S = always single path program (no potential flow
 depenency on external variables).
L = contains loops.
N = contains nested loops,
A = uses arrays and/or matrixes.
B = uses bit operations.
R = contains recursion.
U = contains unstructured code.
F = uses floating point calculation.
LOC = lines of source code.

 3

Additional comments to the benchmarks concerning WCET analysis problems:
adpcm: This program is a signal processing application; the comments call it an implementation of the Adaptive Differential
Pulse Code Modulation algorithm. The program was originally written with floating point computation. For the WCET
benchmark, this was changed (by the WCET Challenge Steering Group) into (nonsensical) integer computation. This means that
some computations overflow when compiled with 16-bit integers, as was the case for the H8/300 target, which constitutes a
problem for the WCET analysis.
crc: The main function calls icrc twice with an initialization included in the first call but not in the second call. This constitutes a
problem for the WCET analysis.
duff: This program creates a control flow graph that is not reducible, because the loop has multiple entry points (multiple loop
heads).
insertsort: The maximum number of iterations in the inner loop depends on the counter (i) of the outer loop (“triangular loop”
problem).
nsichneu: This program has an enormous number (1075) of potential paths.
recursion: The program computes Fibonacci numbers using a recursive function. This constitutes a problem for the WCET
analysis. (Due to a mistake on the benchmark web page, the mutual recursion included in the code was commented away in the
program).

TABLE I
MÄLARDALEN BENCHMARKS

Program Description Comment I E S L N A B R U F LOC

adpcm Adaptive pulse code
modulation algorithm.

Completely well-structured code. √ 87

cnt Counts non-negative numbers
in a matrix

Nested loops, well-structured code. Simple code. √ √ √ 267

compress Data compression program.

Adopted from SPEC95 for WCET-calculation. Only
compression is done on a buffer containing totally
random data.

 √ √ √ 508

cover Program for testing many
paths.

A loop containing many switch cases. √ √ 240

crc Cyclic redundancy check
computation on 40 bytes of
data.

Complex loops, lots of decisions, loop bounds depend
on function arguments, function that executes
differently the first time it is called.

 √ √ √ √ 128

duff Using "Duff's device" from the
Jargon file to copy 43 byte
array.

Unstructured loop with known bound, switch statement. √ √ √ 86

edn Finite Impulse Response (FIR)
filter calculations.

A lot of vector multiplications and array handling. √ √ √ √ √ 285

insertsort Insertion sort on a reversed
array of size 10.

Input-data dependent nested loop with worst-case of
n2/2 iterations (triangular loop).

 √ √ √ 92

janne_complex

Nested loop program. The inner loops number of iterations depends on the
outer loops current iteration number.

 √ √ √ 64

matmult

Matrix multiplication of two
20x20 matrices.

Multiple calls to the same function, nested function
calls, triple-nested loops.

 √ √ √ √ 163

ndes

Complex embedded code. A lot of bit manipulation, shifts, array and matrix
calculations.

 √ √ √ 231

ns

Search in a multi-dimensional
array.

Return from the middle of a loop nest, deep loop nesting
(4 levels).

 √ √ √ 535

nsichneu

Simulate an extended Petri
Net.

Automatically generated code containing large amounts
of if-statements (more than 250).

 √ 4253

recursion

A simple example of recursive
code.

Both self-recursion and mutual recursion are used. √ √ 41

 4

PapaBench
This benchmark is based on a real and complete real-time

embedded application, developed in the Paparazzi project,
to be used on Unmanned Aerial Vehicles (UAV).

The Paparazzi UAV contains two ATMEL AVR
processors and thus the PapaBench benchmark contains two
programs, one for each processor. Each program is in turn
divided into a number of 'tasks'. Most tasks are executed
cyclically with a fixed period. Some tasks are event-
triggered. There is no kernel. The tasks are executed by an
eternal loop in the main() function. There are also interrupt
handlers.

The benchmark has a total size of ≈ 2 000 lines of source
code. The software constitutes quite complex code that
makes extensive use of floating point computation and
mathematical library routines.

The part papa_ap is the “autopilot” part of the
PapaBench program for an autonomous aircraft. It executes
a flight plan and communicates with the “fly-by-wire” part
papa_fbw.

The part papa_fbw of the PapaBench program is the “fly-
by-wire” program for an autonomous aircraft. It
communicates with the “autopilot” part (program papa_ap)
and runs servo loops to control the aircraft.

It is difficult to find the number of loops in the source
code because C macros are used extensively to create
syntactical structures including loops.

There were some problems with the PapaBench software.
Some changes were made during the Challenge, for
example a hard-coded memory address for the "dummy"
in/output of AVR was changed to a static int array.

III. THE TOOLS

A. Commercial tools
There were two commercial tools in the Challenge; aiT

and Bound-T. The descriptions below are fetched from [14]
and are slightly shortened since some details are left out.
1) AiT

The purpose of AbsInt’s timing-analysis tool aiT is to
obtain upper bounds for the execution times of code
snippets (e.g. given as subroutines) in executables. These
code snippets may be tasks called by a scheduler in some
real-time application, where each task has a specified
deadline. aiT works on executables because the source
code does not contain information on register usage and on
instruction and data addresses. Such addresses are
important for cache analysis and the timing of memory
accesses in case there are several memory areas with
different timing behavior.

Apart from the executable, aiT might need user input to
be able to compute a result or to improve the precision of
the result. User annotations may be written into parameter
files and refer to program points by absolute addresses,
addresses relative to routine entries, or structural
descriptions (like the first loop in a routine).

Alternatively, they can be embedded into the source code

as special comments. In that case, they are mapped to
binary addresses using the line information in the
executable.

Apart from the usual user annotations (loop bounds, flow
facts), aiT supports annotations specifying the values of
registers and variables. The latter is useful for analyzing
software running in several different modes that are
distinguished by the value of a mode variable.

The aiT versions for all supported processors share a
common architecture:

—First, the control flow is reconstructed from the given
object code by a bottom up approach. This annotated
control-flow graph serves as the input for the following
analysis steps.

—Next, value analysis computes ranges for the values in
the processor registers at every program point. Its results
are used for loop bound analysis, for the detection of
infeasible paths depending on static data, and to determine
possible addresses of indirect memory accesses.

—aiT’s cache analysis relies on the addresses of memory
accesses as found by value analysis and classifies memory
references as sure hits and potential misses.

—Pipeline analysis predicts the behavior of the task on
the processor pipeline.

The result is an upper bound for the execution time of
each basic block in each distinguished execution context.

—Finally, bound calculation (called path analysis in the
aiT framework) determines a worst-case execution path of
the task from the timing information for the basic blocks.

The structuring of the whole task of determining upper
bounds into several phases allows different methods
tailored to the subtasks to be used. In aiT’s case, value
analysis and cache/pipeline analysis are realized by abstract
interpretation, a semantics-based method for static program
analysis.

Path analysis is implemented by integer linear
programming. Reconstruction of the control flow is
performed by a bottom-up analysis. Detailed information
about the upper bounds, the path on which it was computed,
and the possible cache and pipeline states at any program
point are attached to the call graph / control-flow graph and
can be visualized in AbsInt’s graph browser aiSee.

Limitations of the Tool. aiT includes automatic analysis
to determine the targets of indirect calls and branches and to
determine upper bounds of the iterations of loops. These
analyses do not work in all cases. If they fail, the user has to
provide annotations.
2) Bound-T

The tool determines an upper bound on the execution
time of a subroutine, including called functions. The input
is a binary executable program with (usually) an embedded
symbol table (debug information). The tool is able to
compute upper bounds on some counter-based loops. For
other loops the user provides annotations, called assertions
in Bound-T. Annotations can also be given for variable
values to support the automatic loop-bounding.

 5

The output is a text file listing the upper bounds etc. and
graph files showing call-graphs and control-flow graphs for
display with the DOT tool [15].

Reading and decoding instructions is hand-coded based
on processor manuals. The processor model is also
manually constructed for each processor. Bound-T has
general facilities for modelling control flow and integer
arithmetic, but not for modelling complex processor states.
Some special-purpose static analyses have been
implemented, for example for the SPARC register-file
overflow and underflow traps and for the concurrent
operation of the SPARC Integer Unit and Floating Point
Unit. Both examples use (simple) abstract interpretation
followed by ILP (Integer Linear Programming).

The control-flow graph (CFG) is often defined to model
the processor’s instruction- sequencing behaviour, not just
the values of the program counter. A CFG node typically
represents a certain pipeline state, so the CFG is really a
pipeline-state graph. Instruction interactions (e.g. data-path
blocking) are modelled in the time assigned to CFG edges.

Counter-based loops are bounded by modelling the task’s
loop-counter arithmetic. The computational effect of each
instruction is modelled as a relation between the ”before”
and ”after” values of the variables (registers and other
storage locations). The relation is expressed in Presburger
Arithmetic as a set of affine (linear plus constant term)
equations and inequalities, possibly conditional. Instruction
sequences are modelled by concatenating (joining) the
relations of individual instructions. Branching control-flow
is modelled by adding the branch condition to the relation.
Merging control-flow is modelled by taking the union of the
inflowing relations.

To bound loop iterations, Bound-T first re-analyses the
model of the loop body in more detail to find loop-counter
variables. A loop counter is a loop-variant variable such
that one execution of the loop body changes the variable by
an amount that is bounded to a finite interval that does not
contain zero. If Bound-T also finds bounds on the initial
and final values of the variable, a simple computation gives
a bound on the number of loop iterations.

Bound-T uses the Omega Calculator from Maryland
University [16] to create and analyze the equation set.
Loop-bounds can be context-dependent if they depend on
scalar pass-by-value parameters for which actual values are
provided at the top (caller end) of a call-path.

The worst-case path and the upper bound for one
subroutine are found by the Implicit Path Enumeration
Technique, applied to the control-flow graph of the
subroutine. The lp_solve tool is used [17]. If the subroutine
has context-dependent loop bounds, the IPET solution is
computed separately for each context (call path).

Annotations are written in a separate text file. The
program element to which an annotation refers is identified
by a symbolic name (subroutine, variable) or by structural
properties (loops, calls). The structural properties include
nesting of loops, location of calls with respect to loops, and
location of variable reads and writes.

 Limitations of the Tool. The task to be analyzed must not
be recursive. The control-flow graphs must be reducible.
Dynamic (indexed) calls are only analyzed in special cases,
when Bound-T’s data-flow analysis finds a unique target
address.

Dynamic (indexed) jumps are analyzed based on the code
patterns that the supported compilers generate for
switch/case structures, but not all such structures are
supported.

Bound-T can detect some infeasible paths as a side-
effect of its loop-bound analysis. There is, however, no
systematic search for such paths. Points-to analysis
(aliasing analysis) is weak, which is a risk for the
correctness of the loop-bound analysis.

The bounds of an inner loop cannot depend on the index
of the outer loop(s).

For such “non-rectangular” loops Bound-T can often
produce a “rectangular” upper bound. Loop-bound analysis
does not cover the operations of multiplication (except by a
constant), division or the logical bit-wise operations (and,
or, shift, rotate).

The task to be analyzed must use the standard calling
conventions. Furthermore, function pointers are not
supported in general, although some special cases such as
statically assigned interrupt vectors can be analyzed.

No cache analysis is yet implemented (the current target
processors have no cache or very small and special caches).
Any timing anomalies in the target processor must be taken
into account in the execution time that is assigned to each
basic block in the CFG. However, the currently supported,
cacheless processors probably have no timing anomalies.
As Bound-T has no general formalism (beyond the CFG)
for modelling processor state, it has no general limitations
in that regard, but models for complex processors would be
correspondingly harder to implement in Bound-T.

B. Prototype research tools
1) MTime

The Vienna MTime analysis tool aims at assessing the
timing behavior of automatically generated program code
for embedded systems.

The first step performed by the method is a static
program analysis.

Next, the control-flow graph is partitioned automatically
into custom-sized program segments in order to reduce the
complexity. Then, for all paths spawning across these
program segments test data is generated in order to execute
exactly the desired paths. After this, the execution times of
these paths are measured on the actual target hardware.
Finally, the results of these measurements are safely
composed into a final WCET bound by using integer linear
programming.

The key challenges when implementing the prototype
have been the completely automatic program segmentation,
test data generation (using model checking) and predictable
execution time measurements.

The current limitations of the proof-of-concept prototype

 6

implementation are the missing support of function calls
(because when using code generators functions can be
inlined) and generic loops.

The key strengths of the method are that it can be applied
without any user interaction, the tool is modular, hardware
timing behavior is contributed by predictable execution
measurements performed on the actual target hardware and
the WCET bound can be calculated using well established
calculation methods.
2) SWEET

SWEET has been developed in a modular fashion,
allowing for different analyses and tool parts to work rather
independently. The tool architecture conforms to the
general scheme for WCET analysis, consisting of three
major phases: a flow analysis, a processor-behavior
analysis and an estimate calculation. The analyses
communicate through two well-defined data structures, the
scope graph with flow facts [18], (representing the result of
the flow analysis), and the timing model [19], (representing
the result of the processor-behavior analysis). In essence,
SWEET offers the following functionality:

—Automatic flow analysis on the intermediate code
level.

—Integration of flow analysis and a research compiler.
—Connection between flow analysis and processor-

behavior analysis.
—Instruction cache analysis for level one caches.
—Pipeline analysis for medium-complexity RISC

processors.
—A variety of methods to determine upper bounds based

on the results of flow- and pipeline analysis.
Unlike most WCET analysis tools, SWEET’s flow

analysis is integrated with a research compiler. The flow
analysis is performed on the intermediate code (IC) of the
compiler, after structural optimizations. Thus, the control
structure of the IC and the ob ject code is similar, and the
flow analysis results for the IC are valid for the ob ject code
as well.

SWEET’s flow analysis is based on a multi-phase
approach. A program slicing is used to restrict the flow
analysis to only those parts of the program that may affect
the program flow. The analysis is handled by the abstract
execution, a form of symbolic execution based on abstract
interpretation. The analysis uses abstract interpretation to
derive safe bounds on variables values at different points in
the program. However, rather than using traditional fixed-
point iteration, loops are ”rolled out” dynamically and each
iteration is analysed individually in a fashion similar to
symbolic execution. The abstract execution is able to
automatically calculate both loop bounds and infeasible
path information.

SWEET’s processor-behavior analysis is highly
decoupled from the flow analysis, and based on a two-phase
approach. In the first phase, the memory access analysis,
memory areas accessed by different instructions are
determined. The result of the analysis is a set of “execution
facts” which are used in the pipeline analysis. Such facts

specify the memory area(s) that an instruction may
reference or if the instruction may hit and/or miss the cache.
Execution facts can also specify other factors like
assumptions on branch prediction outcomes, and the precise
set available depends on the target processor.

The pipeline analysis is performed by simulating object
code sequences through a trace-driven cycle-accurate CPU
model. The pipeline analysis has been explicitly designed to
allow standard CPU simulators to be used as CPU models.
However, this requires that the simulator is clock-cycle
accurate, can be forced to perform its simulation according
to given instruction sequences and corresponding execution
facts, and does not suffer from timing anomalies.

Consecutive simulation runs starting with the same basic
block in the code are combined to find timing effects across
sequences of two or more blocks in the code [19]. The
analysis assumes that there is a known upper bound on the
length of block sequences that can exhibit timing effects;
this value can be greater than two even on quite simple
processors.

SWEET’s estimate calculation phase support three
different type of calculation techniques, all taking the same
two data structures as input. A fast path-based technique, a
global IPET technique and a hybrid clustered technique.
The clustered calculation can perform both local IPET
and/or local path-based calculations (the decision on what
to use is based on the flow information available for the
specific program part under analysis).

SWEET uses DOT from GraphViz [15] to graphically
visualize its results.

Limitations of the Tool. Each part of the tool, flow
analysis, processor-behavior analysis, and bound
calculation have their individual limitations. The flow
analysis can handle ANSI-C programs including pointers,
unstructured code, and recursion. However, to make use of
the automatic flow analysis the program must be compiled
with the research compiler that SWEET is integrated with,
otherwise flow facts must be manually given. There are also
some limitations inherent to the used research compiler, e.g.
the use of dynamically allocated memory is currently not
supported, and annotations will be needed in such cases.

The current memory access analysis does not handle data
caches. Only one-level instruction caches are supported.
The pipelines that are amenable to SWEET’s pipeline
analysis are limited to in-order pipelines with bounded
long-timing effects and no timing anomalies. In particular,
out-of-order pipelines are not handled.

The path-based bound calculation requires that the code
of the task is well-structured. The IPET-based and clustered
calculation methods can handle arbitrary task graphs.

3) Chronos

Chronos is an open-source static WCET analysis tool.
The purpose of Chronos is to determine a tight upper
bound for the execution times of a task running on a
modern processor with complex micro-architectural
features. The input to Chronos is a task written in C and

 7

the configuration of the target processor. The frontend of
the tool performs data flow analysis to compute loop
bounds. If it fails to obtain certain loop bounds, user
annotations have to be provided. The user may also input
infeasible-path information to improve the accuracy of the
results. The frontend maps this information from the source
code to the binary executable.

The core of the analyzer works on the binary executable.
It disassembles the executable to generate the control flow
graph (CFG) and performs processor-behavior analysis on
this CFG. Chronos supports the analysis of (i) out-of-order
pipelines, (ii) various dynamic branch prediction schemes,
(iii) instruction caches, and the interaction among these
different features to compute a tight upper bound on the
execution times.

The core of the analyzer determines upper bounds of
execution times of each basic block under various execution
contexts such as correctly predicted or mispredicted jump
of the preceding basic blocks and cache hits/misses within
the basic block. Determining these bounds is challenging
for out-of-order processor pipelines due to the presence of
timing anomalies. It requires the costly enumeration of all
possible schedules of instructions within a basic block.
Chronos avoids this enumeration via a fixed-point analysis
of the time intervals (instead of concrete time instances) at
which the instructions enter/leave different pipeline stages.

Next, the analyzer employs Integer Linear Programming
(ILP) to bound the number of executions corresponding to
each context. This is achieved by bounding the number of
branch mispredictions and instruction cache misses. Here
ILP is used to accurately model branch prediction,
instruction cache as well as their interaction. The analysis
of branch prediction is generic and parameterizable w.r.t.
the commonly used dynamic branch prediction schemes
including GAg and gshare. Instruction caches are analyzed
using the ILP-based technique proposed by Li, Malik, and
Wolfe. However, the integration of cache and branch
prediction requires analyzing the constructive and
destructive timing effects due to cache blocks being
“prefetched” along the mispredicted paths. This complex
interaction is accounted for in the analyzer by suitably
extending the instruction cache analysis.

Finally, bounds calculation is implemented by the IPET
technique by converting the loop bounds and user provided
infeasible-path information to linear flow constraints.

Limitations of the Tool. Chronos currently does not
analyze data caches. Since the focus is mainly on processor-
behavior analysis, the tool performs limited data flow
analysis to compute loop bounds. The tool also requires
user feedback for infeasible program paths.

IV. RESULTS

A. Results from the developers
Since the MTime tool does not support function calls,

and all benchmarks contain such calls, no results from
MTime were available this time. All other four tools have

reported their results. We give an individual summary for
each of the tools.

We regret that the result tables for the four tools are
different. The reason for this is that no common reporting
format was enforced during the Challenge. This should be
changed in coming Challenge rounds.
1) aiT

The report from aiT was short, a summary of the results
fitted into two Excel sheets. Tables II to IV show the
content of the Excel sheet. As we can see, aiT succeeded in
analyzing all of the benchmark programs for all three target
processors (C16x, ARM TMS470, and PowerPC MPC565).
They also measured the execution times for the Mälardalen
benchmarks (except for the programs marked with “buffer”,
which means that the buffer of their measurement
equipment was too small to handle the large runtime of the
program). The overestimation done by aiT is in most cases
below 10%. The analysis for ARM shows especially low
overestimation. No measurements were provided for the
PapaBench benchmark.

MinAn is the minimal number of annotations needed to
get a WCET-analysis result (loop bounds, recursion bounds,
flow annotations, ...). Not counted are annotations for the
runtime libraries of the used compilers, which are usually
delivered together with the analyser.

AT is the runtime of the analysis in seconds for the set of
optimal annotations. The analysis used the following
hardware: PC with Pentium 4, 2.x-3.x Ghz, 2 GB RAM, as
much swap-space as needed. In the time values, fractions of
seconds are removed, as they are not reproducible. Not all
tests are run on exactly the same machine. The matmult test
for ARM7 needs more than 2GB RAM for the set of the
best annotations, therefore it is run on a 64bit 3.2 Ghz Xeon
with 8 GB RAM, with normal set of annotations it runs on
the other normal machines in 3 seconds. In table IV, A-
Loops are number of loop bounds found automatically
without any annotations, counted over loop contexts.

Analysis problems encountered for the aiT tool
No real problems have been reported. Obviously, not all
loop bounds were found automatically, so some had to
provided manually (see the colunmn “MinAn”).

 8

TABLE III
RESULTS FOR AIT – PAPABENCH

papa_bench C16x ARM PowerPC

 C16x cycles TMS470 cycles MPC565 cycles

Task Executable WCET WCET WCET

T1 /_test_ppm_task fly_by_wire 16 604 9 875 1 242

T2 /_send_data_to_autopilot_task fly_by_wire 4 758 3 197 331

T3 /_check_mega128_values_task fly_by_wire 9 512 4 092 437

T4 /_servo_transmit fly_by_wire 2 390 1 909 1 249

T5 /_check_failsafe_task fly_by_wire 9 444 4 058 432

T6 /_radio_control_task autopilot 20 516 15 972 2 247

T7 /_stabilisation_task autopilot 9 936 4 239 340

T8 /_link_fbw_send autopilot 170 144 81

T9 /_receive_gps_data_task autopilot 33 942 23 618 2 764

T10 /_navigation_task autopilot 163 266 87 979 5 303

T11 /_altitude_control_task autopilot 2 134 915 95

T12 /_climb_control_task autopilot 8 458 4 129 247

T13 /_reporting_task autopilot 8 286 11 172 4 465

TABLE II
RESULTS FOR AIT – MÄLARDALEN BENCHMARKS

wcet_bench C16x ARM PowerPC

 C16x cycles TMS470 cycles MPC565 cycles

Program Measured WCET
Over-

estimation Measured WCET
Over-

estimation Measured WCET
Over-

estimation

adpcm buffer 558 342 - buffer 1 375 886 - buffer 430 274 -

cnt 19622 20 250 3,20% 16 853 17 053 1,19% 7 235 7 376 1,95%

compress 27308 37 570 37,58% 19 970 20 280 1,55% 6 824 9 461 38,64%

cover 10080 10 452 3,69% 6 778 6 780 0,03% 4 299 5 006 16,45%

crc buffer 275 910 - buffer 196 007 - buffer 98 830 -

duff 6916 7 196 4,05% 4 610 4 612 0,04% 1 028 1 355 31,81%

edn 838686 927 068 10,54% 299 734 307 889 2,72% buffer 88 381 -

insertsort 4720 4 870 3,18% 3 990 3 992 0,05% 1 770 1 838 3,84%

janne_complex 1294 1 330 2,78% 827 829 0,24% 359 383 6,69%

matmult 936602 956 710 2,15% 438 435 448 261 2,24% buffer 237 736 -

ndes 401294 453 348 12,97% 190 530 194 448 2,06% buffer 130 025 -

ns 73738 75 712 2,68% 36 097 38 043 5,39% buffer 18 215 -

nsichneu 28328 29 840 5,34% 18 825 18 827 0,01% 8 052 8 327 3,42%

recursion 8318 10 068 21,04% 7 143 7 451 4,31% 5 096 5 527 8,46%

statemate 2486 2 620 5,39% 3 810 3 812 0,05% 1 260 1 294 2,70%

 9

TABLE IV
NUMBER OF FOUND LOOP BOUNDS AND ANALYSIS TIMES FOR AIT

wcet_bench C16x ARM PowerPC

 C16x TMS470 MPC565

Program A-Loops MinAn AT A-Loops MinAn AT A-Loops MinAn AT

adpcm 28 3 50 24 3 3 25 2 23

cnt 6 0 18 6 0 4 6 0 2

compress 4 7 35 3 6 4 2 6 3

cover 3 0 52 3 0 1 3 0 7

crc 4 1 219 3 1 2 5 0 128

duff 0 2 3 0 2 1 1 1 1

edn 20 5 143 26 0 14 18 0 61

insertsort 1 1 5 2 1 2 1 1 1

janne_complex 0 2 3 0 1 2 0 2 1

matmult 13 0 66 11 0 743 11 0 301

ndes 41 0 406 12 0 3 12 0 54

ns 9 0 40 6 0 1 6 0 6

nsichneu 0 1 58 1 0 30 1 1 8

recursion 0 1 1 0 1 1 0 1 1

statemate 0 1 13 0 1 15 0 1 53

papa_bench C16x ARM PowerPC

 C16x TMS470 MPC565

Task A-Loops MinAn AT A-Loops MinAn AT A-Loops MinAn AT

Executable: fly_by_wire

T1 /_test_ppm_task 0 0 28 0 0 2 0 0 1
T2
/_send_data_to_autopilot_task 1 0 7 1 0 2 1 0 1
T3
/_check_mega128_values_task 0 0 9 0 0 2 0 0 1

T4 /_servo_transmit 1 0 1 1 0 1 1 0 1

T5 /_check_failsafe_task 0 0 9 0 0 1 0 0 1

Executable: autopilot

T6 /_radio_control_task 0 0 27 6 0 4 0 0 4

T7 /_stabilisation_task 0 0 13 0 0 3 0 0 1

T8 /_link_fbw_send 0 0 1 0 0 1 0 0 1

T9 /_receive_gps_data_task 0 4 38 2 4 6 0 4 2

T10 /_navigation_task 0 12 208 15 12 41 0 14 14

T11 /_altitude_control_task 0 0 3 0 0 1 0 0 2

T12 /_climb_control_task 0 0 9 0 0 4 0 0 1

T13 /_reporting_task 0 0 22 0 0 6 0 0 1

 10

2) Bound-T
The report from Tidorum Ltd. [20] is very well-written

and ambitious. The Bound-T tool analysed binaries
generated by two compilers (GNU gcc compiler and the
Gaisler Research Bare C Compiler) for two targets; Renesas
H8/300 and SPARC V7/V8. The analyses were performed
using the Round 1–3 approach described in the setup of the
Challenge. Actually, the Bound-T tests are the only to
report this three-round approach. No measurements were
provided.

The host computer was a Compaq Presario X1000 laptop
with an Intel Centrino processor running at 1.4 GHz and
512 MB RAM. The operating system was Debian Linux.

The Bound-T report thoroughly describes the used
processors and compilers. We omit these descriptions here
for space reason and refer to the report. In the table below,
the results for Bound-T are described. The table is an
excerpt from the report. For example, we only give results
for the round that gives a WCET value (round 1 if all loop
bounds were found automatically, else round 2). We also
omit programs where Bound-T failed.

The columns have the following meanings:
– Comp: The name of the compiler. The remaining

columns in the row report results from the executable
generated with this compiler. If this column is blank, the
column Loops in the row report properties of the source
code and the remaining columns are unused. The compiler
also identifies the target processor as follows:

gcc: The GNU compiler for the H8/300.
bcc: The Gaisler Research Bare C Compiler (based on

GCC) for the SPARC.
– Loops: The number of loops in the program. The

number of loops in the executable is often larger than in the
source code because the compiler may generate loops (eg.
for C expressions like n << k) and there may be loops in
library routines. For the SPARC/BCC target the loops in the
irreducible library routines are not included.

– Bound: The number of loops for which Bound-T found
iteration bounds. Note that some loops may be counted
twice, if Bound-T finds both context-independent and
context-dependent bounds for the same loop.

– Ass: The number of loops for which iteration bounds
was asserted, perhaps for each Round as in the preceding
column, or for which other assertions (such as variable
value bounds) were used that let Bound-T find iteration
bounds. Blank for the source code row.

– AT: Analysis time, in seconds of real (wall-clock) time.
The time is measured with one user logged in but no other
heavy activity. From run to run the time varies about 5 -
10%.

Analysis problems encountered for the Bound-T tool
The benchmark duff is irreducible and cannot be analysed

by Bound-T. The loop termination logic in janne_complex
is too complex for Bound-T and too complex for manual
reasoning. The recursive program recursion cannot be
analysed by Bound-T.

The analysis during round 1 (trying to find loop bounds
automatically) took too long for 7 benchmarks and had to
be aborted. In addition, the analysis failed with an error in
the Omega Calculator in a further 3 benchmarks. For these
programs, loop assertions had to be calculated manually.

 11
TABLE V

RESULTS FOR BOUND-T

Program Comp Loops Bound Ass AT WCET

adpcm 20

 gcc 31 26 5 9.5 2 002 692

 bcc 18 15 3 2.3 803 089

cnt 4

 gcc 5 5 0.5 45 806

 bcc 4 4 0.4 19 628

compress 8

 gcc 15 4 11 2.6 586 093

 bcc 8 4 4 31.5 122 249

cover 3

 gcc 3 3 6.6 7 742

 bcc 3 3 1.0 3173

crc 3

 gcc 3 3 1.3 164 118

 bcc 3 2 1 0.5 57 663

edn 13

 gcc 23 19 4 136.9 1 514 112

 bcc 15 12 3 1.3 426 779

insertsort 2

 gcc 2 1 1 0.3 7 760

 bcc 2 1 1 0.2 2078

matmult 5

 gcc 6 6 0.8 1506520

 bcc 5 5 0.4 615345

ndes 12

 gcc 21 19 39.0 823 416

 bcc 12 12 1.3 82676

ns 4

 gcc 4 4 38.1 20976

 bcc 4 4 3.0 7097

nsichneu 1

 gcc 1 0 1 215.6 104 522

 bcc 1 0 1 6.8 20 756

papa_ap ?

 gcc 85 23 54 1 224.5 20 266 762

 bcc 45 2 1 1.0 62 753

papa_fbw ?

 gcc 25 9 15 6.5 1 150 867

 bcc 6 3 1 1.0 9008

 12

3) MTime

Since the MTime tool does not support function calls,
and all benchmarks contain such calls, no results from
MTime were available this time.
4) SWEET

The tables VI to VIII show the results for SWEET and
the Mälardalen WCET benchmarks. For the analyses we
used a PC running Windows XP with Intel processor, clock
frequency 1.06 GHz, and 1.49 Gb of primary memory. The
WCET is expressed in clock cycles for ARM9. Please note
that the machine model of ARM9 has not been verified to
100%. Since there are no measurements, no figures of
overestimation can be given. Analysis time (AT) is given in
seconds (excluding loading of files). Times in seconds;
have been rounded to one decimal in the table. The number
of loops is the number found in the analysed intermediate
code.

Table VI. Single path analysis, basic loop bound
calculation.

This analysis uses no annotations. SWEET calculates all
loop bounds automatically.

Table VII. Single path analysis, advanced loop bound
calculation plus infeasible path calculation.

For these analyses we add analysis of infeasible paths,
and show the number of such paths found. For some
programs, this can give tighter WCET estimates. In this
table, “% longer” means extra time used for the analysis
compared to the analysis time in Table VI. The column “%
better” shows the difference (relative reduction) of the
calculated WCET compared to Table V.

Table VIII. Multi path analysis, basic loop bound
calculation.

For some of the files, the analysis was “forced” to
analyse several paths (multi path analysis). This was
accomplished by defining annotations that assigned
multiple values to some variables at some program point.
The annotation files (with comments) are available at the
Mälardalen benchmark web page.

4. Table IX. Multi path analysis, advanced loop bound
calculation plus infeasible path calculation.

The same settings for as Table VII above are used, but
for multi path analysis.

Analysis problems encountered for the SWEET tool
We had overestimation of one loop in adpcm probably

due to pessimistic handling of overflow. The PapaBench
programs could not be analysed by SWEET because of
problems with finding and analyzing the C-files that
corresponds to the used library routines for floating point
calculations.

5) Chronos

Chronos was run for three processor configurations
(simple in-order, complex in-order and complex out-of-
order). Table X presents the results. For each of the
benchmarks, the data representing these three
configurations is presented on an own line.

Analysis problems encountered for the Chronos tool
The programs cover and duff are not analyzable using

Chronos because they contain switch/case statements that
are compiled into address tables and register-indirect jumps.
The program recursion is not analyzable using Chronos
since the benchmark contains recursive function call. The
program autopilot in PapaBench is not analyzable using
Chronos since this benchmark contains unstructured code
(goto jumps). These types of code are not handled in the
current tool release.

Reasons for some of the large overestimations are given
in the Chronos report. They originate probably from
overestimations of loop bounds (especially nested loops)
and missing information on infeasible paths. Another
reason for the seemingly large overestimations is that the
simulations may use data that do not lead to the worst-case
behavior.

For the benchmark fly_by_wire in PapaBench,
compilation and estimation should be done from the
command line instead of the Chronos GUI. This
benchmark is not executable by Chronos, so there are no
simulated values in this case.

 13

TABLE VI
RESULTS FOR SWEET – SINGLE PATH BASIC

Program #Loops AT
flow analysis

AT low level
analysis

AT total WCET

adpcm 27 73.9 10.9 84.8 2 165 650

cnt 4 1.3 0.2 1.5 36 719

compress 11 2.7 1.6 4.3 206 480

cover 3 3.8 7.0 10.8 73 128

crc 6 8.7 0.6 9.3 834 159

duff 2 0.4 0.2 0.6 5 525

edn 12 5.3 1.2 6.5 1 425 085

insertsort 2 0.6 0.1 0.7 31 163

janne_complex 2 0.1 0.0 0.1 12 039

matmult 7 11.8 0.3 12.1 2 532 706

ndes 12 31.6 2.6 34.3 795 425

ns 4 4.4 0.1 4.5 130 733

nsichneu 1 41.6 48.3 89.9 119 707

recursion 0 0.8 0.1 0.9 29 079

statemate 1 5.6 8.9 10.2 15 964

TABLE VII
RESULTS FOR SWEET – SINGLE PATH ADVANCED

Program AT flow
analysis

AT low
level

analysis

AT total % longer WCET #infeasible paths
found

% better

adpcm 75.3 9.7 84.9 0 2 162 122 182 0

cnt 1.3 0.2 1.5 3 35 319 10 4

cnt 2.7 1.5 4.2 -2 49 896 45 76

cover 3.8 10.3 14.1 31 33 485 576 54

crc 9.0 0.7 9.7 4 830 278 36 0

duff 0.5 0.2 0.6 13 4 720 54 15

edn 5.5 1.2 6.8 4 1 425 085 17 0

insertsort 0.6 0.1 0.7 3 18 167 3 42

janne_complex 0.1 0.0 0.1 27 2 523 10 79

matmult 12.4 0.3 12.8 6 2 532 706 12 0

ndes 32.2 2.9 35.1 2 793 905 132 0

ns 4.5 0.1 4.6 1 130 671 7 0

nsichneu 41.5 27.9 69.4 -23 57 247 877 52

recursion 0.8 0.1 0.9 11 20 033 16 31

statemate 1.2 5.6 6.9 32 8 451 328 47

 14

TABLE VIII
RESULTS FOR SWEET – MULTI PATH BASIC

Program AT
flow analysis

AT low
level

analysis

AT total WCET

crc 40.1 0.6 40.7 834 159

edn 30.8 1.2 32.0 1425 085

insertsort 31.5 0.1 31.5 31 163

janne_complex 10.7 0.0 10.7 19 104

ns 70.5 0.1 70.7 130 733

nsichneu 53.5 48.2 101.8 119 707

TABLE IX
RESULTS FOR SWEET – MULTI PATH ADVANCED

Program AT flow
analysis

AT low
level

analysis

AT total %
longer

WCET #infeasi
ble

paths
found

% better

crc 41.6 0.7 42.3 4 834 088 36 0
edn 32.2 1.2 33.4 4 1 425 085 17 0

insertsort 31.8 0.1 31.9 1 18 167 3 42

janne_complex 11.1 0.1 11.2 4 3 154 10 83

ns 69.4 0.1 69.5 -2 130 671 7 0

nsichneu 54.1 33.2 87.4 -14 41 303 877 65

 15

TABLE X
RESULTS FOR CHRONOS

Program #Loops # Loops found
automatically

ILP formulation
time

ILP solution
time

WCET
estimated

WCET
simulated

Overestima-
tion

adpcm 18 4 0.273 0.019 265 588 160 891 65%
 1.256 1.021 347 742 183 526 89%
 1.035 0.556 317 354 126 258 151%
cnt 4 4 0.029 0.012 4 896 4 792 2%
 0.084 0.020 6 438 5 586 15%
 0.067 0.020 5 401 3 515 54%
compress 8 1 0.231 0.015 5 873 5 859 0%
 0.618 0.054 29 215 7 504 289%
 0.451 0.055 28 487 4 744 500%
crc 3 1 0.098 0.013 47 786 22 688 111%
 0.338 0.052 61 849 26 861 130%
 0.267 0.064 53 275 18 098 194%
edn 12 12 0.058 0.025 89 401 87 444 2%
 0.187 0.086 113 612 108 973 4%
 0.147 0.088 89 030 62 995 41%
insertsort 2 1 0.018 0.001 901 897 0%
 0.045 0.036 1 549 1 364 14%
 0.036 0.033 1245 949 31%
janne_
complex

2 2 0.098 0.017 189 185 2%
 0.321 0.039 800 454 76%
 0.028 0.248 789 356 122%
matmult 5 5 0.025 0.018 186 903 186 899 0%
 0.063 0.048 191 615 185 937 3%
 0.054 0.054 119 526 90 834 32%
ndes 12 7 0.083 0.029 66 655 65 600 2%
 0.414 1.022 107 589 86 639 24%
 0.317 1.186 5 918 53 625 60%
ns 5 0 0.027 0.021 8 199 6 577 25%
 0.071 0.033 9 991 7 568 32%
 0.032 0.058 8 676 4 784 81%
nsichneu 1 1 9.791 0.447 13 609 6 305 116%
 31.562 3.461 97 908 42 966 128%
 22.939 3.356 97 525 40 931 138%
statemate 1 0 2.494 0.137 2 007 1 120 79%
 7.546 0.832 16 185 6 207 161%
 5.708 0.813 16 103 5 898 173%
fly_by_wire 0.254 0.019 7 712 - -
 0.638 0.670 11 980 - -
 0.503 0.807 9 983 - -

 16

B. Overview of results.
Table XI shows the success rate expressed as #WCET
results/#programs. No results from MTime.

Some tools have problems with some of the following:
function calls, unstructured code, recursion, handling
library files, handling large programs (run-time of tool),
specifying correct loop bounds, and annotating infeasible
paths.

TABLE XI
ANALYSIS SUCCESS RATES

Tool

Successes,
Mälardalen benchmarks

Successes,
PapaBench

aiT

15/15

2/2
 Bound-T

11/15

2/2

 SWEET

15/15

0/2
 Chronos

12/15

1/2

 Table XII shows the success of automatic loop bound
calculation expressed as #Loop bounds found/(total #loops
analysed in successfully analysed programs). No results
from MTime. The “-“ sign in the aiT row means that the
total number of loops were not provided by aiT.

There was no indication of the precision in the found
loop bounds.

TABLE XI
LOOP BOUND RESULTS

Tool

Successes, Mälardalen
benchmarks

Successes,
PapaBench

aiT

129/- (C16x)
91/- (PPC)

2/- (C16x)
2/- (PPC)

Bound-T

90/114 (H8/300)
62/75 (SPARC)

32/110 (H8/300)
5/51 (SPARC)

SWEET

94/94

0/0

Chronos

38/72

0/1

Only SWEET reports results from infeasible path
analysis. The other tools require infeasible paths to be
found and set manually.

For usability aspects, see the external report by Lili Tan
[14].

V. CONCLUSIONS
This first Challenge has been performed successfully in

spite of some initial unclearness, debate and delay. We can
note in the tables from the different tests that there is no
common format of the results, and that different developers
have made different tests sometimes. We still consider the
Challenge to be meaningful and worthwhile, and we can
draw the following conclusions:

• The tests have been a real challenge to the
participating WCET tools. We have a success
range from 0% to 100% in terms of how many of
the benchmark programs that were analyzable by a
certain tool.

• The tests have clearly pointed out problems
existing in the tools as well as in the benchmarks
and the used compilers.

• Most of the tools find more than half of the loop
bounds automatically. Only one tool finds
infeasible paths automatically.

• Several bugs in both the tools and the benchmarks
have been corrected during the Challenge.

• Actual WCET estimates cannot be compared this
time since the developers support different
processors and compilers.

• The quality of WCET estimates is hard to judge
for all tools but aiT, since aiT was the only tool to
provide measurements for some of the
benchmarks. Chronos provided simulated values
that indicate the possible size of overestimation.

ACKNOWLEDGMENT

This work is being supported by ARTIST2 European

Network of Excellence.
We would also like to thank the other members of the

WCET Challenge Working Team:
Reinhard Wilhelm <wilhelm@cs.uni-sb.de>, Reinhard v.

Hanxleden <rvh@informatik.uni-kiel.de>, Steffen Goerzig
<steffen.goerzig@daimlerchrysler.com>, Paul Levi
Paul.Levi@informatik.uni-stuttgart.de, and Klaus Echtle
<klaus.echtle@icb.uni-due.de>.

REFERENCES
[1] http://www.cs.miami.edu/~tptp/CASC
[2] absInt. aiT tool homepage, 2006. www.absint.com/ait.
[3] Tidorum. Bound-T tool homepage, 2006. www.tidorum.fi/bound-t.
[4] Vienna real-time systems group homepage, 2005.

www.vmars.tuwien.ac.at.
[5] Mälardalen University. WCET project homepage, 2006.

www.mrtc.mdh.se/projects/wcet.
[6] The Chronos WCET analysis tool homepage, 2006.

www.comp.nus.edu.sg/~rpembed/chronos.
[7] http://www.idt.mdh.se/personal/jgn/challenge
[8] http://www.artist-

embedded.org/FP6/intranet/ClusterPages/CompilersTA/
[9] OTAWA homepage:

http://www.irit.fr/recherches/ARCHI/MARCH/rubrique.php3?
id_rubrique=28

[10] RapiTime WCET tool homepage, 2006. www.rapitasystems.com.
[11] Cost-efficient worst-case execution time analysis in industrial

practice, Jan Staschulat, Jörn C. Braam, Rolf Ernst, Thomas
Rambow, Rainer Schlör, and Rainer Busch. In Proc. 2nd
International Symposium on Leveraging Applications of Formal
Methods (ISoLA’06), November 2006.

[12] Homepage for the Heptane WCET analysis tool, 2006.
www.irisa.fr/aces/work/heptane-demo/heptane.html.

[13] Homepage for PapaBench, 2007.
http://www.irit.fr/recherches/ARCHI/MARCH/rubrique.php3?
id_rubrique=97

 17

[14] Reinhard Wilhelm et al. The Worst-Case Execution Time Problem ---
Overview of Methods and Survey of Tools. Submitted to ACM
Transactions on Programming Languages and Systems 2006.

[15] Graphviz homepage 2007. http://www.graphviz.org/
[16] An Exact Method for Analysis of Value-based Array Data

Dependences, William Pugh, David Wonnacott. In Proceedings of
the Sixth Annual Workshop on Programming Languages and
Compilers for Parallel Computing 1993.

[17] http://www.cs.sunysb.edu/~algorith/implement/lpsolve/
implement.shtml

[18] Ermedahl, A. A Modular Tool Architecture for Worst-Case
Execution Time Analysis. Ph.D. thesis, Uppsala University, Uppsala,
Sweden, 2003.

[19] Engblom, J. Processor Pipelines and Static Worst-Case Execution
Time Analysis. Ph.D. thesis, Uppsala University, Uppsala, Sweden,
2002.

[20] Tidorum Ltd. Doc.ref. TR-RP-2006-009, issue 1, October 6, 2006.
[21] Tan, L. The Worst Case Execution Time Tool Challenge 2006: The

External Test. To be included in the Proc. 2nd International
Symposium on Leveraging Applications of Formal Methods
(ISoLA’06), November 2006.

