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Chapter 1

Introduction

This language reference describes the syntax and semantics of SaveCCM, a
component modeling language for embedded systems designed with vehicle ap-
plications and safety concerns in focus. The SaveCCM component model was
defined within the SAVE1 project. The SAVE components are influenced mainly
by the Rubus component technology [8], with a switch concept similar to that
in Koala [10]. The semantics is defined by a transformation into timed au-
tomata with tasks, a formalism that explicitly models timing and real-time task
scheduling [6].

The purpose of this document is to describe a semantics of the SAVE com-
ponent modeling language, which can be used to describe timing and functional
behavior of components. The model of a system is in some cases an over ap-
proximation of the actual system behavior. An implementation of a model can
resolve non-determinism e.g. by merging tasks or assigning a scheduling policy
(such as static scheduling or fixed priority, preemptive or not) that will resolve
the non-determinism.

In [1] a component technology called SaveCCT is presented, which uses
SaveCCMas component modeling language. In addition to modeling and spec-
ification of components, SaveCCT supports synthesis of code for the run-time
systems, and analysis of models using e.g., the model-checking tool Times [3].
Compositional reasoning of SaveCCMfor safety analysis is discussed in [5, 4].

The rest of this document is organized as follows: in Chapter 2 we describe
the syntax of SaveCCM, and give informal semantics. In Chapter 3 we define a
core language, which is a simpler language used to define the exact meaning of
SaveCCM constructs. Chapter 4 gives formal semantics of the core language,
and Chapter 5 defines SaveCCM in terms of the core language.

1SAVE is a project supported by Swedish Foundation for Strategic Research. See

http://www.mrtc.mdh.se/SAVE/ for more information.
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Chapter 2

The SaveComp Component
Model

The SaveComp Component Model (SaveCCM) formalises the component con-
cept of the SaveComp component technology, and defines how components can
be combined to create systems [7]. For use in the vehicular systems domain, the
component model should support the development of resource-efficient systems
and thus the run-time framework governing e.g., component communication,
must be lightweight. Another requirement is that system behaviour should be
predictable, both functionally and with respect to timeliness and resource usage.

SaveCCM is based on a textual XML syntax, and a somewhat modified
subset of UML2 component diagrams is used as a graphical notation. The
semantics is formally defined by a two-step transformation, first from the full
language to a similar but simpler language called SaveCCM Core, and then into
timed automata with tasks. In this chapter we will use the graphical notation
only (the XML schema is described in Appendix A), and present the semantics
informally. The graphical notation is presented in Figure 2.1.

In SaveCCM, systems are built from interconnected elements with well-
defined interfaces consisting of input- and output ports. The three element
categories; components, switches and assemblies, are described in more detail
below. The model is based on the control flow (pipes-and-filters) paradigm,
and an important feature is the distinction between data transfer and control
flow. The former is captured by connections between data ports where data of a
given type can be written and read, and the latter by trigger ports that control
the activation of components. A port can also have both triggering and data
functionality.

This separation of data and control flow results in a flexible model that sup-
ports both periodic and event-driven activities, since on a system level, execution
can be initiated by either clocks or external events. It also allows components to
exchange data without handing over the control, which simplifies the construc-
tion of, e.g., feedback loops and communication between sub-systems running
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Component

Switch

Assembly

Figure 2.1: The graphical notation of SaveCCM.

at different frequencies.
Another aspect of explicit control flow is that the resulting design is suf-

ficiently analysable with respect to temporal behaviour to allow analysis of
schedulability, response time, etc., factors which are crucial to the correctness
of real-time systems.

2.1 Components

Components are the main architectural element in SaveCCM. In addition to
input and output ports, the interface of a component contains a series of qual-
ity attributes, each associated with a value and possibly a confidence measure.
These attributes could include, for example, (worst case) execution time in-
formation for a number of target hardware configurations, reliability estimates,
safety models, etc. The quality attributes are used for analysis, model extraction
and for synthesis.

The concrete functionality of a component is typically provided by a single
entry function implemented in C, but the model also allows the use of more
complex components that consist of a number of possibly communicating tasks.
In both cases, no intercomponent dependencies are permitted, except those
explicitly captured by the ports.

A component is initially inactive. It remains in this state until all input
trigger ports have been activated, at which point it switches to the executing
state. We say that the component has been triggered. The component execution
starts with a read phase, where the current value at each input data port is stored
internally to ensure consistent computation. The component then performs the
associated computations on the basis of this input and possibly an internal state.
When the execute phase is over, i.e., when the function has been computed or,
in the case of a more complex component, when all tasks have finished, the write
phase writes output to the output data ports. Finally, the input trigger ports
are reset and all outgoing trigger ports are activated, after which the component
returns to the idle state.

This strict “read-execute-write” semantics ensures that once a component is
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Delay(D, P)

in <<SaveComp>> out

Clock(T, J)

<<SaveComp>> out

Figure 2.2: Clock and Delay components.

triggered, the execution is functionally independent of any concurrent activity.
In particular, a component produces the same output with preemptive and
non-preemptive scheduling, i.e., whether or not a task may be interrupted by
another task during its execution. The “read-execute-write” semantics also
facilitates analysis, since component execution can be abstracted by a single
transfer function from input values and internal state to output values.

In order to manipulate timing of triggers we introduce two special component
types, Clock and Delay. Their graphical syntax is shown in Figure 2.2. A Clock
is a trigger generator, with parameters T and J for period and jitter, respectively.
A new period starts every T time units, and a clock generates a trigger within J
time units after the start of each period. A Delay component, with parameters
D and P for delay and precision, will delay within D and D+P time units from
receiving a trigger until generating a trigger.

2.2 Composite Components

A composite component is a special case of a component, where the behaviour
is specified by an internal composition. We introduce the notation examplified
in Figure 2.3 to show the internal composition of a composite component. This
expanded notation may be collapsed into the standard SaveCCM component
notation.

The grey area illustrates the separation between the internal composition and
the externals of the component. The dashed lines show how data is transferred
from input ports in the read phase, or to output ports in the write phase.
Note that triggering is not transferred in this way. Instead, all trigger ports
to the internal composition will become active when the composite component
becomes active. All triggering from the internal composition is discarded, since
the composition is required to activate its output triggers when it becomes
passive.

A composite component becomes active when all its input trigger ports be-
come active (i.e. when it is triggered). In the read phase, data is transferred and
internal components activated. The execute phase will perform computations
of internal components, until no internal component is triggered or active. In
the write phase data is transferred to external components, and the composite
component becomes inactive (idle).
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<<SaveComp>>

<<SaveComp>>

Figure 2.3: An expanded view of a composite component (by example).

2.3 Switches

The switch construct in SaveCCM is similar to that in Koala [10]. Switches
provide the means to change the component interconnection structure, either
statically for pre-runtime static configuration, or dynamically, e.g., to implement
modes and mode switches. The switch specifies a number of connection patterns,
i.e., partial mappings from input to output ports. Each connection pattern is
guarded by a logical expression over the data available at the input ports of the
switch, defining the condition under which that pattern is active.

If fixed values are supplied to ports used in connection pattern guards, partial
evaluation can determine that parts of a switch will remain unchanged during
runtime. Such static parts are optimised into ordinary connections, and compo-
nents that are rendered unreachable as a consequence are omitted in the final
system.

It should be noted that switches, in contrast with components, are not trig-
gered. Instead, they respond directly to the arrival of data or a trigger signal
at an input port and immediately relay it according to the currently active con-
nection patterns. Switches perform no computation other than the evaluation
of connection pattern guards.

2.4 Assemblies

Assemblies are encapsulated sub-systems. The internal components and inter-
connections are hidden from the rest of the system, and can be accessed only
indirectly through the ports of the assembly. Like switches, assemblies are not
triggered. Data and trigger signals arriving at a port are immediately relayed
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to the outgoing connections.
Due to the restricted execution semantics of SaveCCM, an assembly gen-

erally does not satisfy the requirements of a component. Hence, an assembly
should be viewed as a means for naming a collection of components and hiding
its internal structure, rather than as a component composition mechanism.

2.5 Ports

As mentioned above, we distinguish between input and output ports, and be-
tween trigger ports and typed data ports. Component input ports, the output
ports of the whole system, and switch input ports that occur in some connection
pattern guard, are one-place buffers with overwrite semantics. The remaining
ports, i.e. component output ports, assembly ports and switch ports that do
not occur in any guard, are just conceptual interaction points through which
data passes immediately.

All ports are named, all data ports are typed and may have an initial value.
Names, types and values may be hidden in the graphical notation, but when
shown appear as a label next to the port. The format of the label is name : type

= value, name : type or just name. When the type of a data port is hidden its
initial value is also hidden.

An external port is a port that is not connected with any other port, but
has an extra label mapping it to some external entity. Example of external
entities that can be mapped this way are I/O-ports, interrupts, and real-time
database pointers [9]. The format of the label depends on the external entity
to which it is mapped. Example labels are inport(0x080f) for an input register
at address 80f (hex), or db ptr(q) for a database pointer, initialized by a query
q (this query should be formulated in such a way that the result is always a
single data element). External ports are not allowed internally within a com-
posite component. Visualisation using entity type specific icons is encouraged,
replacing the circle (for an input port) or semi-circle (for an output port).

A trigger output port can only be connected to trigger input ports, a data
output port can only be connected to data input ports of compatible type, and
a combined port can be connected to trigger, data or combined input ports of
compatible type.

2.6 Connections

There are two types of connections: immediate and complex. Immediate con-
nections represent loss-less, atomic migration of data or trigger signals from one
port to another, as would typically be the case between components located on
the same physical node. For distributed systems, and in particular during early
design stages before the deployment of components to nodes has been deter-
mined, a more flexible connection concept is convenient. This is provided by
complex connections that represent data and control transfer over channels with

8



possible delay or information loss. The detailed characteristics of a particular
complex connection are explicitly modelled by a timed automaton to capture,
e.g., delay constraints, buffer sizes, or the possibility of faults.

As in UML2, a connection from an assembly input port to an input port
of an internal element, or from an internal output port to an assembly output
port, is denoted by a delegation arrow, but semantically they are the same as
ordinary connections from output to input ports.
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Chapter 3

SaveCCM Core Syntax

We define a minimal component language, SaveCCM Core, from which we can
derive the constructs of the SaveComp component model. This simplifies the
definition of semantics, and makes it more flexible as new constructs can easily
be derived. The core syntax consists of three modelling elements: basic compo-
nents, composite components, and conditional connections. Using these we can
describe all constructs in the SaveCCM language.

Each modelling element has a set of ports, through which it can interact.
Each port is either an input port or an output port, as well as either a data
port or a trigger port. A data port has a type associated with it. An input data
port of a component is associated with a variable of the same type as the port
holding the latest value written to the port. An input trigger port is associated
with a boolean variable determining if the trigger port is active.

Common for basic components and composite components is that they have
exactly one external output trigger port. For a component C we will write
trigger out(C) when referring to this port.

3.1 Basic Component

An example of the graphical syntax for basic components is shown in Fig. 3.1 (a).
The component C1 has three input ports and two output ports. Trigger ports
are annotated with a small triangle, as for example port p3. When the port p3

becomes active the component is triggered, since p3 is the only input trigger port.
For the component C1 we have the output trigger port trigger out(C1) = p5. In
addition to its ports a component is characterized by its behaviour, describing
the internal computation of the component.

We will model the internal behaviour of a basic component using a timed
automaton with tasks [3]. For a simple component this could be a single task
released when the component is triggered. A more complex component can have
several tasks, possibly with intricate dependencies between them. The automa-
ton has a special exit location with no outgoing edges. When this location is
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C1

p1

p2

p3

p4

p5

1

exit

T

u!

p     T _done

u!p
1

u! 2T

1

R(T ): T _done := true1

R(T ): T _done := true2

1

2

1

(a) (b)

Figure 3.1: (a) A basic component C1 with three input ports and two output
ports. (b) Timed automaton with tasks, describing the behaviour of component
C1.

reached, and all released task instances have finished executing, the component
becomes idle again. Locations can be labelled with tasks, and when such a loca-
tion is reached the corresponding task is released for scheduling. Each task Ti is
associated with a computation time C(Ti), a deadline D(Ti), and a sequence of
assignments R(Ti). The assignment R(Ti) will update data variables when the
task computation has completed. We will write behaviour(C) when referring to
the automata modelling the internal behaviour of a component C.

The automaton in Fig. 3.1 (b) describes the behaviour of the component C1.
Two of the locations are labelled with tasks T1 and T2, the third is the exit
location. In our example, the task T2 depends on data computed by T1. The
task assignments R(T1) and R(T2) update the variables T1 done and T2 done
so they can be used to test for task completion. The input data port p1 is
used to determine if task T2 should be executed. The type of port p1 is boolean.
When the component is triggered, the task T1 is released. The assignment R(T1)
updates the variable T1 done to true when task T1 completes. If the value at
port p1 is true the task T2 is released after T1 completes, and before the exit
location is reached.

3.2 Composite Component

A composite component is a component with its internal behaviour defined
by a composition of internal components. The component C4 seen in Fig. 3.2
has seven external ports p1 through p7, and five internal ports p′1 through p′5.
When the trigger ports p3 and p4 become active, C4 is triggered and becomes
executing.

The connections between external and internal ports is provided by a com-
ponent framework, to enforce a behaviour similar to that of a basic component.
The contents of external input data ports are copied to internal output data
ports when the composite component is triggered, and internal input data ports
are copied to external output data ports when the composite component be-
comes idle again. There is a single internal output trigger port, which becomes

11



C4

C2

p1

p2

p3

p5p1

p2

p3

'

'

'

p4'

C3

p4 p6p5'

p7

Figure 3.2: A composite component composed of two internal components. The
dashed lines illustrate that the internal components are not directly connected
to the external ports of the composite component.

active when the composite component is triggered. The external output trigger
port becomes active when the composite component becomes idle again.

A composite component consists of external ports, internal ports, internal
connections and internal components. For each external data port, there is a
corresponding internal data port of the same type. For a composite component
C we will write trigger in(C) and trigger out(C) when referring to the unique
internal and external trigger output port, respectively.

3.3 Conditional Connection

The conditional connection is a connection with an activating condition, intro-
duced to enable dynamic configuration of a model in such a way that it will
become a static configuration when its parameters are fixed.

The graphical syntax of conditional connections is shown i Fig. 3.3, where (a)
connects data ports and (b) connects trigger ports. It is a connection from port
p1 to port p2 that is active when the expression p3 ∧ p4 holds. The ports p3 and
p4 are the setports of the connection, containing data used in the expression.
The setports of a conditional connection are not trigger ports. The connections
in Fig. 3.2 have no conditions, and are drawn as lines. The lines are special cases
of conditional connections, with no setports and a condition that is always true.

For a conditional connection x, from(x) is the sending port, to(x) is the
receiving port, setports(x) are the setports of the connection and expr(x) is a
boolean expression over the setports. The ports from(x) and to(x) must be of
the same type.
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p3 p4

p1 p2

p3     p4

p3 p4

p1 p2

p3     p4

(a) (b)

Figure 3.3: A conditional connection with two setports, the connection is active
when both setports are true. (a) connects two data ports, (b) connects two
trigger ports.
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Chapter 4

SaveCCM Core Semantics

We define the semantics of SaveCCM Core by describing a translation to net-
works of timed automata [2] extended with tasks [3]. We extend this further
with operations. An operation is a sequence of statements, such as variable
updates or conditional if-statements. As mentioned above, locations can be
labelled with tasks. When such a location is reached the corresponding task is
released for scheduling.

In order to model a transition which is taken as soon as its guard becomes
satisfied, we introduce an urgent channel u which is always available for synchro-
nization. For a component C we introduce the variable idleC , and for its ports
p variables extp, intp and activep. For a conditional connection we introduce
extp for its setports.

The variable extp represent the observable data value at an input data port
or setport. The boolean variable activep is true when the input trigger port p

has been activated. Basic components use intp to keep an internal working copy
of port data. The boolean variable idleC is true when component C is idle, and
false otherwise. It is used for composite components to determine when all its
internal components are idle.

Each component in a SaveCCM system is modelled as a separate timed
automaton, and the system is modelled as the parallel composition of these
automata.

4.1 Basic Component

The full SaveCCM language imposes some restrictions on the component be-
haviour that should be addressed in the core language as well. For example, the
so-called read–execute–write semantics specifies that input ports may only be
accessed at the very start of each invocation, and output ports are only written
to at the end.

The automaton behaviour(C) describes the response of a component being
triggered. To define its reactive behaviour we augment this automaton with a
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IDLE 1

exit

T

u!

active    := false,
idle    := true,
write()

active
u!
read()

u!

u!int

u!

C1

p3

p3

p1

2T

int      T _donep1 1

T _done    T _done1 2

Figure 4.1: Semantics of component C1 in Fig. 3.1.

location idle and two edges, one from idle to the initial location of behaviour(C),
and one from the exit location of behaviour(C) to idle. We also replace all port
references p with references to the corresponding internal variable intp.

A component remains in idle until all its input trigger ports are active. On
the transition from idle, internal port variables are updated from the corre-
sponding input ports. When the exit location is reached, and all released task
instances have finished executing, the component becomes idle again. On the
transition from exit to idle, input trigger ports are deactivated, and output ports
are forwarded by the component framework.

Fig. 4.1 shows the semantics of the component C1 in Fig. 3.1. When the
port p3 becomes active, the component is triggered and the urgent transition
from idle is enabled. The read() operation invoked by this transition updates
the internal port variables intp1

and intp2
from external port variables extp1

and extp2
, respectively. The variable intp1

is used in a guard to determine if
task T2 should be released after T1 has completed. The transition from exit to
idle is enabled when the tasks T1 and T2 have completed. The transition will
deactivate port p3, set idleC1

to true, and invoke the write() operation.
The write() operation is considered a part of the component framework. It

is invoked by the internals of a component, and implements the behaviour of ex-
ternal connections. The operation is a sequence of invocations writex() for each
connection x from an output of the component, as described in Section 4.3. The
order in which the writex() operations are invoked can effect which connections
are active, since one connection can update a setport of another. Therefore, we
introduce a dependency relation between connections c1 and c2 leading from the
same component,

before(c1, c2) iff to(c1) ∈ setports(c2)

and require that the writex operations are ordered in accordance with these
dependencies. For cyclic dependencies, any ordering is considered correct.
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EXECUTINGIDLE

all_idle()
u!
clear(), write()

triggered()
u!
read()

Figure 4.2: Semantics of a composite component.

4.2 Composite Component

The role of this construct is to enforce that the combined behaviour of the inter-
nal components conforms to the component semantics imposed by SaveCCM. In
particular, the component as a whole should be triggered when all input trigger
ports are active, and the input and output ports are only available at the start
and end of execution, respectively.

The automaton in Fig. 4.2 describe the semantics of composite components.
The guard triggered() enables the transition from idle when all input trigger
ports are active. Data is transferred to internal ports by read(), which also
activates the internal output trigger port trigger in(C) of the composite compo-
nent C. As internal components are triggered, they start executing. The guard
all idle() enables the transition back to idle when idleC′ is true for all inter-
nal components C′. Input trigger ports are deactivated by clear(), which also
updates idleC to true for the composite component C. The write() operation
works similarly to that of a basic component.

For the component C1 in Fig. 2.3, triggered() holds when both p3 and p4 are
active. The read() operation performs writex() operations to update the input
ports of the internal components C2 and C3, which also updates idleC2

and
idleC3

to false by the trigger connections. When idleC2
and idleC3

become true,
all idle() holds and C1 becomes idle. On the transition to idle, p3 and p4 are
deactivated by clear(), which also updates idleC1

to true. The write() operation
forwards values at ports p′5 and p′6 in a sequence of writex() operations for
connections x from ports p5 and p6.

4.3 Conditional Connection

The semantics of a conditional connection x is described by a writex() operation.
The operation will update the input port to(x) from an output port from(x) only
if expr(x) holds. For a data connection, the external port variable of to(x) is
updated with the internal port variable of from(x). For a trigger connection, the
port to(x) is activated and if all input trigger ports of a component C become
active the variable idleC is updated to false.
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if extp3
∧ extp4

then
extp2

:= intp1

end if

if extp3
∧ extp4

then
activep2

:= true

if activep5
then idleC := false

end if
(a) (b)

Figure 4.3: The writex operation for the conditional connections in Fig. 3.3 (a)
and (b).

For the conditional connection in Fig. 3.3, where p2 and p5 are the input
trigger ports of a component C, we define writex() as in Fig. 4.3. If the condition
p3 ∧ p4 holds, port p2 is updated from port p1. For the data connection in (a),
the external port variable of the input port p2 is updated from the internal port
data of the output port p1. For the trigger connection in (b), the input trigger
port p2 is activated. If port p5 is also active the component C is no longer idle.
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Chapter 5

SaveCCM Semantics

The SaveCCM modelling language is built around the same concepts of ports,
components and connections as the core language, but there are some differ-
ences. SaveCCM components can have any number of output trigger ports, and
there is a port type that combines data and triggering. The full language also
contains assembly and switch constructs, which are not in the core language.
The constructs of SaveCCM are described below, and we show how they can be
expressed in the core language.

5.1 SaveCCM Constructs

The PI controller depicted in Fig. 5.1 will be used as an example when de-
scribing the syntax and semantics of SaveCCM constructs. PID controllers are
common for continuous control of for example fuel injection in vehicles. We
have restricted the example to PI control to reduce the level of detail in the
example.

5.1.1 Connections

As in the core language, connections define how data and control can be trans-
ferred between components, but SaveCCM connections have a very weak se-
mantics compared to the connections in the core language. In general, nothing
is said about the time it takes to migrate data over a connection, if data can
be lost in the process, the order in which it arrives, etc. This loose concept
of connection is useful in early stages of system design, e.g., before deploying
components to the different nodes of a distributed system. For detailed analysis
of the system, quality attributes such as maximum delay can be provided. In
order to define a detailed semantics for connections that are specified in detail,
while still allowing loosely specified connections, we categorise connections as
either immediate or complex. The former represent loss-less, atomic migration
of data or triggering from one port to another, as would typically be the case
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Figure 5.1: An example assembly for a PI controller.

between components residing on the same node. Any other type of connection
is categorised as complex. Immediate connections have direct formal semantics,
whereas complex connections are handled indirectly by explicit modelling of the
connection behaviour.

5.1.2 Switches

In addition to basic and composite components, there are two more component
types in the full SaveCCM language. Switches are lightweight components used
to change the component interconnection structure, either statically for pre-
runtime static configuration, or dynamically, e.g., to implement modes and mode
switches. The switch specifies a number of connection patterns, i.e., partial
mappings from input to output ports. Each connection pattern is guarded by
a logical expression over the data available at the input ports of the switch,
defining the condition under which that pattern is used. Switches perform no
computation other than the evaluation of connection pattern guards.

The switch Mode in the PI controller has two configurations, depending on
the boolean value of the setport Integration Enabled. When the setport is true

the port Feedback In is connected to Update State, otherwise Feedback In is
connected to Feedback Out. The purpose of Mode is to bypass the Update State

component when integration is disabled.

5.1.3 Assemblies

Assemblies are encapsulated subsystems, just like composite components. The
internal interconnections and components are hidden from the rest of the system,
and can be accessed only through the ports of the assembly. They differ from
compositions in that they provide syntactic abstraction only, meaning that an
assembly does not necessarily behave like a basic component.
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The PI controller is an example of how an assembly can violate the read–
execute–write semantics that is expected from basic components and composi-
tions. This is because in a cascaded control loop, constructed as a chain of PI
controllers, several Calculate Output instances will compute the control signal,
and after the actuator has been updated the Update State instances will com-
pute the next control state. The two trigger ports trigger separate parts of the
PI controller, and control is passed on differently afterwards.

If, instead, the PI controller was designed as a composite component, it
would remain idle until triggered by both Value and Feedback In. Then, the
internal components would be invoked, and once both had finished, data and
control would be passed on to both Control and Feedback out.

5.2 Translating SaveCCM into SaveCCM Core

Basic components and compositions have direct core language counterparts.
The differences regarding output trigger ports and ports with combined data and
triggering, are handled as part of the connection translation described below.
A basic SaveCCM component corresponds to a basic core component with a
behaviour automaton that captures the behaviour of the associated code. Each
composite component results in a corresponding composite core component,
with the same (but transformed) contents. Assemblies and switches are not
represented directly by any core construct, but they influence the translation of
connections.

5.2.1 Clock

A Clock component (Figure 2.2) is a trigger generator, with parameters T and J
for period and jitter, respectively. A new period starts every T time units, and
a clock generates a trigger within J time units after the start of each period.
All clocks are independent, meaning that there is no assumption that clocks are
started simultaneously.

The behaviour automaton of a core component corresponding to Clock(T,J)
is shown in Figure 5.2 (a). The automaton uses a clock x and a boolean variable
first. Initially, x is zero and first is true. Since a Clock has no input ports, it
is immediately activated (all its input trigger ports are active). The first time
the clock becomes active, it waits between zero and T + J time units before
the exit location is reached. This initiates the write phase, where the output
trigger port is activated. Any other time the clock waits between T and T + J ,
resetting x after exactly T time units. When the component becomes inactive
it is immediately activated again, since it has no input trigger ports.

5.2.2 Delay

A Delay component (Figure 2.2), with parameters D and P for delay and pre-
cision, will delay within D and D + P time units from receiving a trigger until
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x ≤ T

first ∧ x ≤ T
x := 0

first := false

¬first ∧ x = T

x := 0

x ≤ J

x ≤ J

exit
(a)

x ≥ D
x := 0

u!

exitx ≤ D + P

(b)

Figure 5.2: Behaviour of (a) Clock(T,J) and (b) Delay(D,P).

generating a trigger.
The behaviour automaton of a core component corresponding to Delay(D,P)

is shown in Figure 5.2 (b). The clock x is immediately reset when the Delay
component becomes active. When x is between D and D + P time units the
exit location is reached. This initiates the write phase, where the output trigger
port is activated.

5.2.3 Connections

In dealing with connections, our aim has been to provide a detailed and intuitive
semantics for immediate connections. Each complex connection is translated
into two immediate connections with a component in between that models the
behaviour of the connection. For example, a connection with a specified max-
imum and minimum delay min and max can be modelled using a component
Delay(min,max − min).

5.2.4 Connection Chains

In the full SaveCCM language, components can be connected by a chain of
connections leading through several assembly ports and switches. Such chains
must be collapsed into immediate, end-to-end conditional connections in the
core language. Also, we should get rid of multiple output trigger ports, and
combined data- and trigger ports.

Let external in denote the set of external input ports, and let external out
denote the set of external output ports. Let p → p′ denote an immediate
connection from port p to port p′. For each output port p1 of a core component
C and for each p1 ∈ external in, we consider all connection chains

p1 → p′1, p2 → p′2, . . . , pn → p′n

such that p′n is an input port of a core component C′ or p′n ∈ external out, and
for each 1 ≤ x < n we either have

a) p′x = px+1 (which is the case when p′x is an assembly port), or
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b) p′x is connected to px+1 within a switch connection pattern, guarded by the
condition exprx.

Each such chain results in a conditional connection from p1 to p′n, with an
expression equal to the conjunction of all switch guards in the chain (denoted
exprx above).

If p1 is a combined data and triggering port, or if p′n is a component generated
by a complex connection, then an input trigger port should be added to C′ and
connected to the output trigger port of C by a conditional connection with the
same expression as the connection from p1 to p′n described above.
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Appendix A

SaveCCM XML Syntax

In this appendix we describe the XML syntax of SaveCCM by describing the
element definitions from the DTD (Document Type Definition).

A.1 Application

The APPLICATION element is the top level element of a SaveCCM XML file.
The element has a unique identifier, the id attribute, and contains an IODEF

element, a TYPEDEFS element, a COMPONENTLIST element, and a CONNECTIONLIST
element.

〈!ELEMENT APPLICATION (IODEF, TYPEDEFS, COMPONENTLIST,

CONNECTIONLIST)〉
〈!ATTLIST APPLICATION id ID #REQUIRED〉

A.2 I/O Definition

The IODEF element contains INPORT and OUTPORT elements that define the ex-
ternal ports of an application.

〈!ELEMENT IODEF (INPORT*, OUTPORT*)〉

A.3 Type Definitions

The TYPEDEF element contains descriptions of components, switches and assem-
blies that may be used when composing the application.

〈!ELEMENT TYPEDEFS (COMPONENTDESC*, SWITCHDESC*, ASSEMBLYDESC*)〉
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A.4 Component Description

A COMPONENTDESC element describes a component as a set of ports, attributes,
and an internal behaviour. The element has a unique identifier in the id at-
tribute, and contains INPORT elements, OUTPORT elements, ATTRIBUTE elements,
a BEHAVIOUR element, and a REALISATION element. The behaviour is used to at-
tach models to a component, for use in different tools. The realisation describes
the componenet as either a C function (ENTRYFUNC), a clock/delay component,
or as a composition.

〈!ELEMENT COMPONENTDESC (INPORT*, OUTPORT*, ATTRIBUTE*,

BEHAVIOUR, REALISATION)〉
〈!ATTLIST COMPONENTDESC id ID #REQUIRED〉
〈!ELEMENT REALISATION (ENTRYFUNC | CLOCK | DELAY |

(COMPONENTLIST, CONNECTIONLIST))〉
〈!ELEMENT CLOCK #PCDATA〉
〈!ATTLIST CLOCK period CDATA #REQUIRED jitter CDATA #IMPLIED〉
〈!ELEMENT DELAY #PCDATA〉
〈!ATTLIST DELAY delay CDATA #REQUIRED precision CDATA #IMPLIED〉

A.5 Switch Description

A SWITCHDESC element describes a switch as a set of ports and a set of switching
conditions. The element has a unique identifier in the id attribute, and contains
INPORT elements, OUTPORT elements and SWITCHCONDITION elements.

The SWITCHCONDITION element describes under what conditions the ports of
the switch are internally connected. The FROM and TO elements are described
in Section A.15 (Connection). CONDITION is an empty element, with a setport

and a value attribute signifying the condition that the setport has this value.

〈!ELEMENT SWITCHDESC (INPORT*, OUTPORT*, SWITCHCONDITION*)〉
〈!ATTLIST SWITCHDESC id ID #REQUIRED〉
〈!ELEMENT SWITCHCONDITION (FROM, TO*, CONDITION* )〉
〈!ELEMENT CONDITION EMPTY〉
〈!ATTLIST CONDITION setport IDREF #REQUIRED value CDATA #REQUIRED〉

A.6 Assembly Description

A SWITCHDESC element describes an assembly as a set of ports and a composition
of components and connections. The element has a unique identifier in the id

attribute, and contains INPORT elements, OUTPORT elements, a COMPONENTLIST

element and a CONNECTIONLIST element.

〈!ELEMENT ASSEMBLYDESC (INPORT*, OUTPORT*, COMPONENTLIST,

CONNECTIONLIST)〉
〈!ATTLIST ASSEMBLYDESC id ID #REQUIRED〉
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A.7 Component and Connection List

Lists of components and connections describe a composition, and are used both
for an application and its assemblies.

〈!ELEMENT COMPONENTLIST (COMPONENT*, SWITCH*, ASSEMBLY*)〉
〈!ELEMENT CONNECTIONLIST (CONNECTION*)〉

A.8 Component

A COMPONENT element instantiates a component description (given by the type

attribute), and has a unique identifier (the id attribute).

〈!ELEMENT COMPONENT EMPTY〉
〈!ATTLIST COMPONENT type IDREF #REQUIRED id ID #REQUIRED〉

A.9 Switch

A SWITCH element instantiates a switch description (given by the type at-
tribute), and has a unique identifier (the id attribute).

〈!ELEMENT SWITCH EMPTY〉
〈!ATTLIST SWITCH type IDREF #REQUIRED id ID #REQUIRED〉

A.10 Assembly

An ASSEMBLY element instantiates an assembly description (given by the type

attribute), and has a unique identifier (the id attribute).

〈!ELEMENT ASSEMBLY EMPTY〉
〈!ATTLIST ASSEMBLY type IDREF #REQUIRED id ID #REQUIRED〉

A.11 Behaviour

A behaviour is a collection of models that describe e.g. a component or a
connection. A model can be an external file, or embedded as text within the
element. The model has a type attribute, describing what type of model it is.

A predefined model type is connection, defining an Uppaal model of a
connection, either inline (using the XTA format) or as a model file.

〈!ELEMENT BEHAVIOUR (MODEL*)〉
〈!ELEMENT MODEL #PCDATA〉
〈!ATTLIST MODEL type CDATA #REQUIRED filename CDATA #IMPLIED〉
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A.12 Entry Function

An ENTRYFUNC element describes a C function realizing the behaviour of a com-
ponent.

〈!ELEMENT ENTRYFUNC (BINDPORT*)〉
〈!ATTLIST ENTRYFUNC filename CDATA #REQUIRED entry CDATA #REQUIRED〉
〈!ELEMENT BINDPORT EMPTY〉
〈!ATTLIST BINDPORT port IDREF #REQUIRED argument CDATA #REQUIRED〉

A.13 Input and Output Ports

The INPORT and OUTPORT elements define input and output ports. The mode

attribute determines if a port is a data port, trigger port, or a combination of
data and trigger. The type and value attributes are used for data ports (and
combined ports) to define data type and initial value. The external attribute
holds the label of an external port, defining a connection to an external entity
(e.g. an I/O port or a database pointer). The setport attribute determines if
the port is used in a switch condition.

〈!ELEMENT INPORT EMPTY〉
〈!ATTLIST INPORT mode (data|trig|combined) #REQUIRED

type CDATA #REQUIRED id ID #REQUIRED

value CDATA #IMPLIED

external CDATA #IMPLIED

setport (true|false) "false"〉
〈!ELEMENT OUTPORT EMPTY〉
〈!ATTLIST OUTPORT mode (data|trig|combined) #REQUIRED

type CDATA #REQUIRED id ID #REQUIRED

value CDATA #IMPLIED

external CDATA #IMPLIED〉

A.14 Attribute

Attrubutes are used to describe extra-functional properties of components.

〈!ELEMENT ATTRIBUTE EMPTY〉
〈!ATTLIST ATTRIBUTE id CDATA #REQUIRED

type CDATA #REQUIRED

value CDATA #REQUIRED

credibility CDATA #IMPLIED〉

A.15 Connection

The FROM and TO elements are references to connected ports. A connection
has an optional BEHAVIOUR element, used to define complex connections. No
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behaviour means that the connection is immediate, an empty behaviour means
that the behaviour of the complex connection has not been specified (i.e. the
model is incomplete).

〈!ELEMENT CONNECTION (FROM, TO*, BEHAVIOUR?)〉
〈!ELEMENT FROM EMPTY〉
〈!ATTLIST FROM id IDREF #REQUIRED port IDREF #REQUIRED〉
〈!ELEMENT TO EMPTY〉
〈!ATTLIST TO id IDREF #REQUIRED port IDREF #REQUIRED〉
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