
Model-Checking with Insufficient Memory

Resources

Birgitta Lindström1 and Paul Pettersson2

1 University of Skövde, Box 408, 541 28 Skövde, Sweden
birgitta.lindstrom@his.se

2 Uppsala University, Box 337, 751 05 Uppsala, Sweden
paul.pettersson@it.uu.se

Technical Report HS- IKI -TR-06-005
School of Humanities and Informatics

University of Skövde

Abstract. Resource limitations is a major problem in model checking.
Space and time requirements of model-checking algorithms grow expo-
nentially with respect to the number of variables and parallel automata
of the analyzed model. We present a method that is the result of experi-
ences from a case study. It has enabled us to analyze models with much
bigger state-spaces than what was possible without our method.
The basic idea is to build partitions of the state-space of an analyzed
system by iterative invocations of a model-checker. In each iteration the
partitions are extended to represent a larger part of the state space,
and if needed the partitions are further partitioned. Thereby the anal-
ysis problem is divided into a set of subproblems that can be analyzed
independently of each other.
We present how the method, implemented as a meta algorithm on-top
of the Uppaal tool, has been applied in the case study.

1 Introduction

In the last decades, model checking (e.g., [1] [2]) has established itself as a
powerful technique for automatic formal verification of transition systems. Its
success has lead to development of several verification tools, including SMV [3],
[4] and SPIN [5] for finite state systems, and e.g., Uppaal [6] and Kronos [7]
for real-time systems modeled as timed automata. These tools have been applied
to prove the correctness of several non-trivial industrial systems [8].

A well-known problem when applying model-checking in general is the state-
space explosion problem [9], i.e., the exponential size of state space w.r.t size
of the input model. As a consequence, available memory (or time) can be in-
sufficient for model-checking of complex system models. In such cases, attempts
to perform exhaustive model checking, such as verifying a global invariant, are
bound to fail. Therefore, a significant amount of work focus on reducing memory
usage of model-checking algorithms (e.g., [10], [11], and [12]).

Memory and time remains a bottleneck in model checking. We present a
method for mitigating the problem of space limitations in model-checking al-
gorithms based on state-space exploration. The state space is partitioned and
a verification algorithm is iteratively invoked to gradually further analyze and
partition the existing set of partitions. The analysis problem is thereby divided
into subproblems, which can be analyzed independently.

In the presented partitioning method, each partition is represented as the
set of states that can be reached, given that a sequence of so-called partition-
ing points are traversed in a given order. Each partition can be generated and
extended by guiding the original model, so that it stays within the partition,
and further extends and divides the partition, if possible. We show how this can
be achieved using an existing model checker by dynamic manipulation of the
analyzed model.

The method is applied to analyze a large case study of a real-time application,
using the Uppaal tool [6]. We share experiences from this case study, and report
that our method could generate all traces of interest, whereas ordinary model-
checking could cover only 26% of them, using the same memory resources.

The rest of this paper is organized as follows: In the remainder of this section
we discuss related work. In Section 2 we present preliminary results and give a
motivating example of our method. In Section 3 and 4 we present our method
in detail, and present how it was applied in a case study. In Section 5 and 6 we
discuss how to use our method, conclude, and outline some future work.

Related Work: In order to speed up verification, algorithms for distributed
exploration of state-space has been developed [13]. This approach increases speed
but the complexity with respect to memory remains and the method requires a
lot of communication between the nodes. Our method is based on partitioning
the state-space into pieces that we can handle with available memory resources
and then explore them one at a time. Our method can easily be subject for
distribution and, in such case, the number of messages required is bounded to
the number of partitions.

Bounded model-checking uses a SAT solver for finding logical errors or prov-
ing their absence in finite-state transition systems [14]. The basic idea is to verify
executions of length k and, if no bug is found, iteratively increase k until: (i)
a bug is found, (ii) the problem is intractable, or (iii) a defined threshold is
reached. Our method is based on the principle of divide an conquer along traces
of a model. A technique that enhances our chances to reach deeper into the
search space compared with bounded model-checking. We dynamically divide
the state-space into partitions. Exploration of the state-space is then performed
independently on these partitions.

Partial-order reduction techniques [15–17] are based on the observation that
concurrent units may execute independently. Result will be the same disregard-
ing of execution order if two executions are undistinguishable with respect to the
specification. Thus, verification can be performed on a reduced state space. The
assumption is that removed states are of no importance for results. Our approach
cover the original state-space. Hence, our method do not require executions to

be undistinguishable with respect to the specification in order to perform the
partitioning.

Several techniques (e.g., symmetry reduction, state space collapsing, etc)
for reducing the problem of state space explosion have been applied to the
Java PathFinder (JPF) [18]. Here, we focus on their technique to distribute
model checking and to create dynamic partitions. Distributed model checking is
achieved by partitioning the state space and letting each node handle one par-
tition. When a new state is encountered, it is sent to the node that handle the
partition it belongs to. A cache is used to decrease the number of sent messages
by remembering if a certain state already have been sent. Our method does not
need more than one message per partition since the partitions are independent
from each other. Moreover, we can handle more than one partition per node
by model checking them one after the other. Dynamic partitioning used in JPF
simply means that states that belongs to a certain node, partition, to begin with
can be moved to a other node when necessary (e.g., when there is a lack of
memory). Our method partitions the state space dynamically, as it is explored.

A final observation is that our method is orthogonal to all methods described
here. This means that it is possible to use our method to define a set of parti-
tions and then apply any of the above methods for model checking each of the
generated partition.

2 Preliminaries

The theory of timed automata has proven to be useful for specification and veri-
fication of real-time systems. In this Section we briefly review the basic definition
needed in this paper. We refer the reader to [19] for a more thorough description.

Assume a finite set of real-valued variables C standing for clocks, and a finite
alphabet Σ standing for actions. Let B(C) denote the set of Boolean combination
of clock constraints of the form x ∼ n or x − y ∼ n, where x, y ∈ C and n is a
natural number.

Definition 1. A timed automaton A is a tuple 〈N, l0, E, I〉 where:

– N is a finite set of locations,
– l0 ∈ N is the initial location,
– E ⊆ N × B(C) × Σ × 2C × N is the set of edges, and
– I : N → B(C) assigns invariants to locations.

Definition 2. The semantics of a timed automaton is a timed transition system
with states of the form 〈l, u〉, where l ∈ N and u is a clock assignment assigning
all clocks in C to a non-negative real-number. Transitions are defined by the two
rules:

– (discrete transitions) 〈l, u〉
a
→ 〈l′, u′〉 if 〈l, g, a, r, l′〉∈E, u ∈ g, u′ = [r 7→ 0]u

and u′ ∈ I(l′)

– (delay transitions) 〈l, u〉
d
→ 〈l, u ⊕ d〉 if u ∈ I(l) and (u ⊕ d) ∈ I(l) for a

non-negative real d ∈ ℜ+

Idle

P1

Prepare

CS

Wait

Idle

P2

Prepare

CS

Wait

p-point[1,1]
flag[1] := 1

p-point[1,2]
turn := 1

turn != 1

flag[2] == 0

flag[1] := 0

p-point[2,1]
flag[2]:=1

p-point[2,2]
turn:=2

flag[1]==0

flag[2] := 0
turn != 2

Fig. 1. Tie-breaker algorithm annotated with p-points, p−point[i, j], where i indicates
process identity and j is an enumeration of the transition

where u ⊕ d denotes the clock assignment which maps each clock x in C to the
value u(x) + d, and [r 7→ 0]u is the clock assignment u with each clock in r reset
to zero.

Definition 3. A run of a timed automata A = 〈N, l0, E, I〉 with initial state
〈l0, u0〉 over a timed trace ξ = (t1, a1)(t2, a2)(t3, a3)... is a sequence of transi-
tions:

〈l0, u0〉
d1→

a1→ 〈l1, u1〉
d2→

a2→ 〈l2, u2〉
d3→

a3→ 〈l3, u3〉...

satisfying the condition t1 = d1 and ti = ti−1 + di for all i ≥ 1. The timed
language L(A) is the set of all timed traces ξ for which there exists a run of A
over ξ.

2.1 A Motivating Example

Consider the automata specifying the tie-breaker algorithm [20] in Figure 1. Our
goal is to establish mutual exclusion, i.e., the global invariant ¬(P1.CS∧P2.CS).
The generated state space is searched for a state where both P1 and P2 are in
their location CS. Suppose that we could identify some transitions in the state
space of the model, and that we could make the model checker explore only
the part of the state space where these transitions are taken in a given order.
That is, the model checker would only explore the partition of the state space
containing states reachable when the given global transitions are taken in the
specified order. Further, suppose that we could repeat this procedure for all
potential orders, we would then cover the original state space of the model. An
obvious drawback would, of course, be that we could have as many partitions as
there are execution traces through the automata.

Suppose that we instead select a subset of the edges in the automata and
use the global order of the transitions derived from these edges to partition the
state space. In this way, the number of partitions is decreased since transitions
excluded from the subset may be taken in any order.

In the Tie-breaker example we select a subset of the edges as such partitioning
points. In Figure 1 they are denoted p-point[i,j] where i is the process identity,

and j is an index in an enumeration of the chosen edges. Thus, we call the
partition points p-points. Any trace ξ ∈ L(A) will traverse a subset of these
p-points in some order. We call such sequence of traversed p-points a p-path.
Introducing the p-points in Figure 1 results in a finite set of p-paths if the
model-checker is able to detect loops.

Definition 4. Let ppξ be the sequence of p-points that a trace ξ ∈ L(A) traverses
(possibly the empty sequence). Let PP be the set of all p-paths pp of an automaton
A. We define F (ξ, pp) to be the predicate such that:

F (ξ, pp) =

{

true if ppξ is a prefix of pp,

false otherwise.

We say that a trace ξ follows a p-path pp ∈ PP if F (ξ, pp).

The basic observation is that we can partition the state space with respect to
these p-paths. Each p-path have a unique sequence of p-points. Each trace ξ is
bound to follow at least one of the p-paths and is therefore included in at least
one of the partitions. Instead of verifying a property in the complete state space
of a model, we can check the property with respect to the partition defined by
one p-path at a time:

FORALL pp ∈ PP DO
FORALL ξ such that F (ξ, pp)

verify property

The mechanism we use for verification of mutual exclusion as a global invariant
in our Tie-breaker example is a reachability mechanism. With this, we can ask
the model checker whether there is a trace to a state where the invariant is
falsified. This mechanism is denoted ∃3 . In our Tie-breaker example, we have:

FORALL pp ∈ PP DO #All p-paths generated from model
FORALL ξ such that F (ξ, pp)

∃3 (P1.CS ∧ P2.CS)

In order to take advantage of the p-paths, we have the following issues: (i)
selection of p-points (ii) limitation of p-path length, (iii) identification of all p-
paths, and (iv) prevention of the model checker searching outside partition. We
will discuss these issues further in Section 5. In the next section, we present an
algorithm for generating partitions using a standard model checker supporting
reachability analysis, and in Section 4 we shall see how the algorithm is applied
in a large case study.

3 Partitioning and Model-Checking

In this Section, we describe a method that dynamically generates partitions for
a given model (Section 3.1). We also show how model-checking is applied to the
generated partitions (Section 3.2).

3.1 Partition Generation

The method for generating partitions presented here uses an extra automaton
that will guide the model checker. The basic idea is that the automata of the
original model will synchronize with the guiding automaton at each p-point (see
Figure 2). The guiding automaton uses a constant array, Ppath, and a constant
integer, Length, to store information about the p-path to be exercised. The array
Ppath contains the current p-path and the value of Length is the length of the p-
path. Synchronization at p-point j as the (i+1)th traversed p-point is successful
only if the following is true:

1. Ppath[i] = j ∧ i < Length, or
2. i =Length,

where Ppath[i − 1] is the ith element of the array Ppath. Intuitively, (1) holds if
the execution stays within the partion specified by Ppath, and (2) is true if the
end of the partition is reached.

In Figure 2 we see an example of a guiding automaton (the lower of the three
automata) that is used to partition the state-space of the Tie-breaker algorithm.
Note how the two Tie-breaker process automata synchronizes with the guiding
automaton whenever a p-point is reached. Note also that when the end of current
p-path is reached (the edge guarded i = Length in the guiding automaton), and
hence a potential extension of the p-path is found, the identity of the current
p-point extending the p-path is stored in a variable Next. In this way, the guiding
automaton will guide the state-space exploration to stay within the partition,
by following the p-path, and finally identify how to extend the p-path.

To generate all partitions, represented by p-paths, without modifying the
applied model-checker, dynamic manipulation of both the verified safety prop-
erty and the model files is required. The algorithm for generating partitions is
shown in Figure 3. The algorithm uses a stack to store information about the
current set of generated partitions. Each stack item is a pair 〈pp, n〉, where pp

is a prefix of a complete p-path, and n is its length. We shall use ǫ to represent
the empty path, and pp :: q to represent the result of appending the paths q to
pp. The algorithm also uses a model file containing the model of the system, and
a property file containing the property to be verified. We use properties of the
form ∃3φ to specify that a state satisfying φ is reachable in the model.

Initially, the stack has one element 〈pp0, n0〉, where pp0 = ǫ and n0 = 0,
the query in the property file is ∃3 Next 6= 0, and the model file is modified by
setting the values for the constant array Ppath to pp0 and Length to n0 with
values from the stack (i.e. ǫ and 0). The initial property is satisfied as soon
as a possible continuation is found, i.e. when a process synchronizes with the
guiding automaton at a p-point. From the diagnostic trace generated by the
model-checker, we can extract from the value of Next a possible continuation of
pp0. We denote this value pp1

1. At this point, we do two things:

– 〈pp0 :: pp1
1, n0 + 1〉, is pushed onto the stack, and

– call the model checker with the extended query ∃3 (Next 6= 0∧Next 6= pp1
1)

WrongPath
Next ==0

FoundStep
Next==j

OnPath
Next==0

CSCS

i<Length,
Ppath!=j

i==Length
Next:=j

Allow ?
j:=ppointId

i<Length,
Ppath[i]==j
Allowed !
i++

flag[1]==0

turn!=2 Allowed?

turn:=2

Allow!
ppointId:=22

Allowed ?

flag[2]:=1

Allow !

ppointId := 21

flag[2]:=0

Allowed?

turn:=1

Allowed?

flag[1]:=1

Allow !

ppointId := 11

Allow!
ppointId := 12

turn!=1

flag[2]==0

flag[1]:=0

Fig. 2. Tie-breaker model extended with a guiding automaton, which guides the search
for next p-point

This is repeated until the query ∃3 (Next 6= 0∧Next 6= pp1
1∧...∧Next 6= ppn

1) can-
not be satisfied. At this point, there are n p-paths on the stack: 〈pp1

1, 1〉, ..., 〈ppn
1 , 1〉.

In each iteration, a new pair 〈pp
j
i , ni〉 is popped. We use these values to set

Ppath= pp
j
i and Length= ni in the model file. The query in the property file

is re-initiated to ∃3 Next 6= 0. The above procedure is then repeated until all
possible continuations of pp

j
i are pushed on the stack.

The finding of a complete p-path is recognized by the algorithm each time the
initial query ∃3Next 6= 0 returns false, meaning that there is no continuation of
current p-path. Each time this happens, we have the unique sequence of p-points
defining a p-path.

The algorithm terminates when the stack is empty. At this point we have
identified all p-paths, and thereby all partitions, of the model. A state that is
reachable in the original state space is reachable when following one (or several)
of the identified p-paths. We shall see in the next section how to modify the algo-
rithm slightly, so that each partition is model checked for the original property
to be verified.

push stack

modify

query file

pop stack

end

no

yes

check

model

no

push stack

yes

empty

satisfied

modify

model file

analyze

trace

init

initialize

query file

Fig. 3. Algorithm for finding the p-paths

Correctness: The algorithm presented here will in general not terminate for
the (only) reason that the iterator i in the guiding automaton (see Figure 2) will
in general cause loops of the state space to unfold. We declared variable i as a
hidden (or meta) variable. Such variables are used to annotate a model, but are
not considered when states are compared during the state-space generation. This
means that states that only differs by value of i will be considered as equivalent
by the model-checker during the state-space exploration. The use of a hidden
variable guarantees that there is no infinite p-path. Hidden variables can be
found in e.g. the tools SPIN[5] and Uppaal [6]. We also have partial correctness
since the algorithm generates the full state space of the original model.

3.2 Model-Checking Partitions

Section 3 describes how to find all partitions of a model. Since we do not want
to continue the search for new partitions if the property to be verified is satisfied
(or violated) in one the already defined partitions, we extend the algorithm to
verify the property each time a complete p-path is found (see Figure 4).

The variable found keeps track of the number of potential continuations of
a p-path. The condition found > 1 implies that there exists a continuation. If
found = 0 and the model-checker returns false, there is no potential continuation

push stack

modify

query file

pop stack

return true

no

yes

check

model

no

push stack

yes

empty

satisfied

modify

model file

found++

analyze

trace

init

initialize

query file

modify

query file

check

model

found==0
yes

no

found:=0

satisfiedno

yes

return false

Fig. 4. The partitioning algorithm extended with property verification.

of current p-path. Since the current model contains a complete p-path together
with the guiding automaton, we can check the model for the property to be
verified. E.g. in the Tie-breaker example, we would check the mutual exclusion
property ∃3 (P1.CS ∧ P2.CS) in all completed partitions.

The algorithm terminates when the property is satisfied or the stack is empty,
indicating that all partitions have been checked.

4 Case Study: Execution Orders

4.1 Motivation

The motivation for our case study is to investigate the relation between ex-
ecution environment and testability when testing for timeliness properties. It
has previously been shown that testability is inherently low in dynamic, event-
triggered real-time systems when compared with corresponding time-triggered
systems [21]. Existing theoretical bounds for testability are based on parameters
of the execution environment (e.g., potential preemptions) [22]. The goal with
our study is to evaluate this theory. We model a dynamic, event-triggered real-

time system with its execution environment. The parameters of the execution
environment are varied and the effect on system testability is assessed.

Testability is, however, not possible to measure directly. We, therefore, need
another metric with which we can estimate the effect on testability. We have cho-
sen to focus on reproducibility, which is a hard issue when testing event-triggered
real-time systems for timeliness. Reproducibility is the property that the system
repeatedly exhibits identical behavior when stimulated with the same test case.
This is hard to achieve in event-triggered systems. The reason is that the actual
behavior of a system depends on elements that have not been expressed explicitly
as an input to the system (e.g., varying efficiency of hardware acceleration com-
ponents). This means that what we judge to be a repeated test case might lead
to different behaviors due to elements that we do not control. The problem is
especially difficult when we try to provoke the system to miss deadlines. In these
situations we will enforce bursts of events that causes a high system load and
frequent interrupts. This may lead to race conditions and, thereby, variations in
the behavior with respect to time and order.

For the reasons given above, we have chosen to use the number of behaviors
with respect to execution orders (i.e., interleavings among a set of tasks) as
a reasonable approximation for testability of dynamic, event-triggered systems
when testing of timeliness properties are in focus.

The basic idea is to use sequences of events (identified by type, time of
occurrence, and possibly additional parameters) as test cases. For each selected
test case, we count the number of potential execution orders. By varying values
of the execution environment parameters and studying the effect on the number
of execution orders, we can estimate how testability is affected by the execution
environment parameters.

4.2 Approach

A real-time system is modeled in timed automata and model checking is used
to explore its behavior. We vary the values of selected execution environment
parameters and count the number of potential execution orders. The behavior
of the system is explored to find all potential execution orders. Uppaal is used
to explore the system behavior.

A picture of the modeled system is shown in Figure 5. Tasks involved in execu-
tion orders are part of the application: T1, ..., Tm, where Tj is a timed automata
process corresponding to a task. Controlled environment is restricted to a set of
events: e1, ..., en, where ei is a timed automata process corresponding to an event
(e.g., a sensor signal). Execution environment consists of observer, scheduler, and
resource handler. The observer, observes events in the controlled environment
and communicates with the scheduler. The system is dynamic. Tasks are trig-
gered on event observations. Tasks are scheduled according to their deadlines
in an EDF (earliest deadline first) manner. Execution of tasks are conducted in
non-preemptive intervals and each time a task is given access to the processor,
a p-point is passed. In this specific case, each p-path is an execution order.

…

…

Controlled

Environment
Application

en

e2

e1

TmT2T1

SchedulerObserver Resource
handler

Execution environment

Fig. 5. The modeled system

In order to evaluate the performance of our algorithm, we compare it to
a base-line algorithm. The basic idea with the base-line algorithm is to ask
the model-checker to return complete p-paths, one at a time. In this approach,
we need a defined final state S. The initial query asks the model checker if S

is reachable, i.e., ∃3 S . The generated trace gives us a complete p-path, pp1.
The query is then extended to ∃3 S ∧ ¬pp1. This is repeated until the query
∃3 S ∧ ¬pp1 ∧ ... ∧ ¬ppn is falsified and, hence, there are no more p-paths.

The base-line approach does not require any alterations of the model during
the search. However, in our case study, the model is too complex for exhaustive
search and the more orders we find, the larger is the state space that we need to
explore to find new ones. At some point in our search we will, therefore, fail to
continue due to memory consumption. Hence, part of state space is not explored
and the set of found execution orders may not be complete.

We applied our algorithm and the base-line algorithm on the same model1.
Table 1 shows that our algorithm managed to cover all p-paths in the model
within 3 hours. The base-line algorithm only managed to cover 26% of the p-
paths. At that point the model checker stopped with an error message, ”out of
memory”.

1 Experiment was performed on US-II sparc 12 CPU multiprocessor with 400MHz,
4Mb cache, and 6144Mb memory. The search order was depth-first.

Table 1. Percentage of p-paths covered by our algorithm and the base-line algorithm

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 20 40 60 80 100 120 140 160 180

C
ov

er
ed

 p
-p

at
hs

 (
%

)

Time (m)

Our Algorithm
Baseline

4.3 Parallel Verification of Partitions

The proposed algorithm for state-space partitioning described in Section 3 split
the search space into partitions along p-paths. In the given description of the
algorithm, we find one partition at a time, using a stack to remember where to
continue the search. However, it is important to note that each item on the stack
contains enough information for an independent continuation of the search for
partitions. The fact that all partitions are independent makes this method par-
ticularly suitable for parallelization of verification. It is possible to distribute the
search over several processors, thereby performing a more time-efficient search.

We ran our experiments on a 12 CPU multiprocessor, thereby increasing
efficiency by an order of magnitude. The limitations of this approach is, of course,
the size of the partitions. Threading on a multiprocessor implies shared memory
and might, hence, invoke the problem of insufficient memory again. In such case,
the partitions can easily be distributed over separate processors. The cost for
distribution in terms of communication is bounded to the number of partitions
since there is only need for one message per p-path.

5 Discussion

In a complex model, we will not know the p-paths beforehand. The algorithm
presented in this paper does therefore, collect the p-paths iteratively. We present

an approach to ensure that the model checker does not search outside the cur-
rent partition. The approach is based on the idea of including the specification
of current partition in the model. Hence, states outside partition cannot be gen-
erated.

The choice of partitioning points decides how the state space is partitioned.
All states will be included in at least one partition and therefore, the choice has
no impact on completeness. However, the choice might affect performance. This
paper does not provide any general method for selection of partitioning points
since we believe that this is application specific. However, we have two general
advices that has shown to be a good strategy in our own experiments.

Our first advice concerns the number of partitioning point. Few partitioning
points will give few, but large partitions and, hence, the problem of memory
consumption might remain. Many points will give a large number of partitions,
(i.e., if all transitions are selected as partitioning points, we would get a p-path
for each possible trace). It is therefore, necessary to find a balance where the
partitions are sufficiently small. Where that balance is depends on the model
and resource limitations. Hence, this is a decision that must be left to the user.

Our second advice concerns the placement of the partitioning points. In order
to get as little overlap of different partitions as possible it is recommended that
the p-points are encountered as close to the start of execution of the model as
possible. In a complex and non-deterministic model, it might be a difficult task
to identify the optimal partitioning points. However, this is not a critical task
for correctness. Even with a less optimal placement of the partitioning points,
the original state space is covered by the partitions.

The use of a hidden variable in the presented method prevent it from un-
folding of loops in the symbolic state-space of the analyzed model. In other
case it is a risk, that states normally treated as equivalent (or included in other
states) by an ordinary (symbolic) reachability analysis algorithm can become
non-equivalent (or not included). In such cases, the algorithm could theoreti-
cally slow down termination. By hiding the information of the progress along
the p-path (i.e., the value of the iterator) in a hidden variable we overcome this
problem.

6 Conclusions

A major problem when verifying complex timed automata models is memory
consumption. We present a method that dynamically divides state space into
smaller (with respect to memory requirements) partitions. These partitions are
independent and can, therefore, easily be distributed over several nodes.

Our experience from using the method is good. We applied it on a large case
study with very promising results. The method enabled us to search the state
space generated by a timed automata model of a dynamic real-time system. Us-
ing the same memory resources, our method could generate all traces of interest,
whereas ordinary model-checking could cover only 26% of them (see table 1).

Since our method is orthogonal to other methods that address the same
problem (see Section 1) it is possible to combine our method for state space
partitioning with any other method when model checking each such partition.
However, further evaluation is needed. One question for further work is how the
distribution of p-points affects efficiency of the method.

References

1. E.M.Clarke, A.Emerson: Synthesis of synchronization skeletons for branching time
temporal logic. In Logic of Programs: Workshop, Lecture Notes in Computer
Science 131 (1981) 52–71

2. Queille, J.P., Sifakis, J.: Specification and verification of concurrent programs in
CESAR . In: Proc. 5th Int. Symp. on Programming. Number 137, Berlin, Springer–
Verlag (1982) 195–220

3. K.L.McMillan: Symbolic Model Checking: An Approach to the State Space Ex-
plosion Problem. PhD thesis, Carnegie Mellon University (1992)

4. E.M.Clarke, A.Cimatti, F.Giumchiglia, M.Roveri: NuSMV: A new symbolic model
checker. Software Tools for Technology Transfer 2(4) (2000) 401

5. G.J.Holzmann: The model checker SPIN. IEEE Transactions on Software Engi-
neering 23(5) (1997) 279–295

6. Larsen, K.G., Pettersson, P., Yi, W.: Uppaal in a Nutshell. Int. Journal on
Software Tools for Technology Transfer 1(1–2) (1997) 134–152

7. Daws, C., Olivero, A., Tripakis, S., Yovine, S.: The tool kronos. In: Hybrid
Systems III: Verification and Control. Volume 1066 of Lecture Notes in Computer
Science., Springer-Verlag (1995)

8. Clarke, E.M., Wing, J.M.: Formal Methods: State of the Art and Future Directions.
ACM Computing Surveys 28(4) (1996) 626–643

9. G.J.Holzmann: The Spin Model Checker: Primer and Reference Manual. Addison-
Wesley (2003)

10. Bengtsson, J., Yi, W.: Reducing memory usage in symbolic state-spac exploration
for timed systems. Technical report, Department of Information Technology, Up-
psala University (2001)

11. Bengtsson, J., Yi, W.: On clock difference and termination in reachability analysis
of timed automata. In: Formal Methods, ICFEM 2003. Volume 2885 of Lecture
Notes in Computer Science., Springer-Verlag (2003)

12. Behrmann, G., Larsen, K., Pearson, J., Weise, C., Yi, W.: Efficient timed reachabil-
ity analysis using clock difference diagrams. In: Eleventh International Conference
on Computer Aided Verification. Volume 1633 of Lecture Notes in Computer Sci-
ence., Springer-Verlag (1999) 341–353

13. G.Behrmann: Distributed reachability analysis in timed automata. International
Journal on Software Tools for Technology Transfer, (STTT) 7(1) (2005) 19–30

14. A.Biere, A.Cimatti, E.M.Clarke, O.Strichman, Y.Zue: Bounded model checking.
Advances in Computers 58 (2003)

15. Alur, R., Brayton, R., Henzinger, T., Quadeer, S., Rajmani, S.: Partial order
reduction in symbolic state space exploration. In: Proceedings of the Conference
on Computer Aided Verification (CAV’97), Haifa, Israel (1997)

16. Godefroid, P.: Using partial orders to improve automatic verification. In: 2nd
Workshop on Computer Aided Verification. LNCS 531, New Brunswick, NJ,
Springer-Verlag (1990) 176–185

17. Peled, D.: All from one, one for all, on model-checking using representatives. In:
5th Conference on Computer Aided Verification. LNCS, Greece, Springer-Verlag
(1993) 409–423

18. Lerda, F., Visser, W.: Addressing dynamic issues of program model checking.
Lecture Notes in Computer Science 2057 (2001) 80–102

19. Bengtsson, J., Yi, W.: Timed automata: Semantics, algorithms and tools. In
Reisig, W., Rozenberg, G., eds.: In Lecture Notes on Concurrency and Petri Nets.
Lecture Notes in Computer Science vol 3098, Springer–Verlag (2004)

20. Peterson, G.L.: Myths about the mutual exclusion problem. Inf. Process. Lett.
12(3) (1981) 115–116

21. Schütz, W.: The Testability of Distributed Real-Time Systems. Kluwer Academic
Publishers (1993)

22. Birgisson, R., Mellin, J., Andler, S.: Bounds on Test Effort for Event-Triggered
Real-Time Systems. In: The 6th International Conference on Real-Time Comput-
ing Systems and Applications (RTCSA’99). (1999)

