
The WCET Tool Challenge 2006
Jan Gustafsson

Dept. of Computer Science and Electronics, Mälardalen University, V̈aster̊as, Sweden
jan.gustafsson@mdh.se

Abstract— The purpose of the WCET Tool Challenge is to be
able to study, compare and discuss the properties of different
WCET tools and approaches, to define common metrics, and to
enhance the existing benchmarks. The WCET Tool Challenge
has been designed to find a good balance between openness for
a wide range of analysis approaches, and specific participation
guidelines to provide a level playing field. This should make
results transparent and facilitate friendly competition among the
participants.

I. I NTRODUCTION

The WCET Tool Challenge will be performed during the
autumn of 2006. It will concentrate on three aspects of WCET
analysis:

1) flow analysis,
2) required user interaction,
3) performance.

Companies as well as research groups are welcome to
participate. The actual work with the tools is made by a
PhD student and/or the development teams. We will target
the evaluation on a set of benchmark programs.

The report to be presented at ISoLA 2006 will be based on
the reports from the developers and the student. The report
will be compiled by the working group.

For more details, consult the Challenge web page
http://www.idt.mdh.se/personal/jgn/challenge/ .

A. Goals

The goals of the WCET Tool Challenge are the following:
1) To exhibit the wide range of timing analysis tools avail-

able today:

• using static program analysis, or
• combining analysis and measurements,
• for various target processors,
• in various application domains,
• supporting various programming languages and design

tools,
• academic, commercial; free or at a charge.

2) To illuminate the features, abilities and intended uses of
each tool:

• in finding the feasible execution paths in the SW,
• in modelling complex processor and system HW,
• in deriving useful WCET bounds or estimates,
• in usability, scalability and adaptability,
• in the range of supported targets (processors, compilers,

..)

3) To collect and maintain a growing set of community
standard benchmark programs and related test suites that:

• contain typical (both easy and hard) programming con-
structs,

• can be analyzed by several tools with comparable results,
• test enough of the actual behaviour of each benchmark

to satisfy measurement-based tools and to validate results
from static-analysis tools, and ideally, have known exact
answers (paths and WCETs).

Note that the test suites for the benchmark programs
have two roles: firstly, they enable the participation of the
measurement-based tools like SymTA/P and RapiTime; sec-
ondly, they provide a validation of the static analysis results.

B. Aspects of WCET analysis

1) Area 1 - Flow analysis:The purpose of the flow analysis
phase is to extract the dynamic behaviour of the program.
This includes information on which functions get called,
loops bounds, if there are dependencies between if-statements,
etc. We propose the following flow analysis metrics to be
measured:

• number of automatically found loop bounds (including
context-depending bounds, like triangular loop limits and
loops in functions called from several sites)

• tightness of these (compared to real loop bounds, assum-
ing they are known)

• the number of automatically found infeasible paths
• their reduction effects on the WCET estimates
• the number of automatically found correct memory ac-

cesses
• the number of automatically found resolved call targets

(function pointers)

2) Area 2 - Required user interaction:This area of evalu-
ation is concerned with the amount of work that is involved
with setting up a WCET calculation to receive a result. One
important metric for this area is number of program-specific
manual annotations. Necessary annotations (like CPU type,
frequency etc) can be excluded from the number.

3) Area 3 - Performance:This area is about the bottom
line: the final WCET value and the performance of the tool.
We propose the following metrics:

• estimated WCET value (in clock tics andµs)
• tightness of the estimated WCET value (assuming the real

WCET is known)
• limits of program sizes to be handled



• analysis time and memory requirements for the analysis
(give the CPU time, memory usage (Mb), and describe
the execution platform)

C. WCET tool rounds

Aspects may be non-orthogonal and influence each other.
For example, much preparation work may give a better
(tighter) WCET. This is expected and normal, and shows the
signs of a flexible WCET tool. The same tool can be used for
different aspects with different setups. Therefore we suggest
that each tool is used in three rounds for each target processor:

1) One initial round with no manual annotations for loop
bounds etc. Necessary annotations (like CPU type, fre-
quency etc) are however allowed. This run may not give
a WCET bound at all for some tools and benchmarks.

2) A basic round with the smallest set of manual annota-
tions possible to get a WCET bound.

3) An optimal round with the largest set of annotations to
get as tight WCET bound as possible.

The required user interaction is of course growing for each
round. For each round, the metrics are measured for the three
aspects. For each metric, the complete setup is described.

D. Carrying the evaluation out

There will be two possibilities:

1) The evaluation is carried out by a PhD student Lili Tan
<lili.tan@icb.uni-due.de> , who makes this job as
part of her PhD studies. This will have the advantage of
letting an external newcomer try out the tools, which can
give feedback of the usability of the tools. The student
will make a report on the evaluation and give to the
working team.

2) The evaluation is carried out by the development team.
Results are expected to be sent in to be included in the
report to ISoLA.

There will be a choice for the participants to use one or
both of these approaches.

E. Selection of benchmark programs, processors and compil-
ers.

The benchmarks will represent different types of codes, for
example code with different types of loops, infeasible paths,
automatically generated code, hardware specialized code, and
also large real world programs. A mix of single-path programs
and multi-path programs will be included.

We will use open source benchmark programs from the
MŁlardalen WCET benchmark and PapaBench. These bench-
marks are all available on the web.

We suggest that each participant selects up to three proces-
sors for which to do the analyses; for example one simple (e.g.,
Renesas H8), one medium complex (e.g., ARM7/9, C167NEC,
V850E) and one very complex (e.g., PowerPC), if possible.

As there is no overview over which compilers are supported
by which tools, we let the participants decide on one or two
compiler(s).

II. CONCLUSION

The WCET Tool Challenge will be performed during the
autumn of 2006. A report of the work will be presented at
ISoLA 2006. In the report, the participating tools and their
results will be presented in detail.

ACKNOWLEDGMENT

This work is being supported by ARTIST2 European Net-
work of Excellence.

We would also like to thank the other members of the
WCET Challenge Working Team:

Reinhard Wilhelm<wilhelm@cs.uni-sb.de> , Reinhard
v. Hanxleden< rvh@informatik.uni-kiel.de> ,
Steffen Goerzig<steffen.goerzig@daimlerchrysler.com> ,
and Paul Levi<Paul.Levi@informatik.uni-stuttgart.de> .


