
Model-Based Testing of a WAP Gateway:
an Industrial Case-Study

Anders Hessel and Paul Pettersson

Department of Information Technology, Uppsala University, P.O. Box 337,
SE-751 05 Uppsala, Sweden. E-mail:{hessel,paupet }@it.uu.se .

Abstract. We present experiences from a case study where a model-based ap-
proach to black-box testing is applied to verify that a Wireless Application Proto-
col (WAP) gateway conforms to its specification. The WAP gateway is developed
by Ericsson and used in mobile telephone networks to connect mobile phones
with the Internet. We focus on testing the software implementing the session
(WSP) and transaction (WTP) layers of the WAP protocol. These layers, and
their surrounding environment, are described as a network of timed automata.
To model the many sequence numbers (from a large domain) used in the proto-
col, we introduce an abstraction technique. We believe the suggested abstraction
technique will prove useful to model and analyse other similar protocols with
sequence numbers, in particular in the context of model-based testing.
A complete test bed is presented, which includes generation and execution of test
cases. It takes as input a model and a coverage criterion expressed as an observer,
and returns a verdict for each test case. The test bed includes existing tools from
Ericsson for test-case execution. To generate test suites, we use our own tool
COXER— a new test-case generation tool based on the real-time model-checker
UPPAAL.

1 Introduction

Testing is the dominating technique used in industry to validate that developed software
conforms to its specification. To improve the efficiency of testing, model-based testing
has been suggested as an approach to automate the generation of the tests to be per-
formed during testing. In model-based testing, a model is used to specify the desired
behavior of the developed software, and the testing efforts aims at finding discrepan-
cies between the behavior of an implementation and that specified by the model. This
process can be automated by applying a test generation tool to produce the test to be
used during testing, and by automating the execution and validation of the tests using a
test-execution tool.

Model-based test generation techniques have been studied thoroughly in the re-
search community [Tre96,HLSU02,LMN05] and several applications to industrial sys-
tems have been reported, e.g., [BFG+00,LMNS05]. There is much less literature de-
scribing industrial applications of model-based testing techniques for real-time systems,
i.e., systems that must react to stimuli and produce output in a timely fashion, i.e., real-
time systems including, e.g., clients or servers using protocols with timing.



In this paper, we present experiences from applying a model-based approach to per-
form black-box conformance testing of a gateway developed by Ericsson. The gateway
is used to connect mobile phone clients using the Wireless Application Protocol (WAP)
with the Internet. We present how the specification of the transaction layer (WTP) and
the session layer (WSP) have been described in the modeling language of timed au-
tomata [AD94]. The specific protocol used in the model is a connection oriented ver-
sion, and the model includes scenarios where several transactions are associated with a
session. In addition to the components constituting the WAP stack of the gateway, the
model also contains automata modeling abstract behavior and assumption imposed on
the components in its environment, such as a web sever and terminals using the gateway.

A specific problem when modeling the WAP protocol is to model the sequence
numbers, called Transaction Identifiers (TID), used in the exchanged packages, called
Protocol Data Units (PDU). The protocol typically makes use of several TIDs with a
domain of size215 using a sliding window of size214. To make automatic analysis fea-
sible, previous models of the protocol, used for model-checking the specification, have
introduced a limit on the maximum allowed TID values, assuming that all behaviors of
the protocol will be covered with a small maximum TID value [GB00]. We take a differ-
ent approach and introduce an abstraction technique to handle TID values. It maintains
the concrete TID values, so that they can be accessed in the abstract test-cases generated
from the model.

To specify how thorough a test suite should test the WAP gateway, we select test
cases following some particular coverage criterion, such as coverage of control states
or edges in the model. As our model contains the environment of the system under test,
a test-case generation tool can find out how the environment should behave to drive the
system under test in a desired direction to fulfill a given coverage criterion. To formally
specify coverage criteria, we apply results from our previous work [BHJP05], where
we have proposed to use observer automaton with parameters as a formal specification
language for coverage criteria. We show that the observer language is expressive enough
to specify the coverage criteria used to test the WAP gateway.

To perform the actual testing, we have built a complete test bed that supports auto-
mated generation and execution of tests. It takes as input a network of timed automata
and an observer automaton, and uses our toolUPPAAL COXER to generate an abstract
test suite.UPPAAL COXER is a test generation tool based on theUPPAAL model checker
[LPY97]. The test suite is compiled, by a tool named tr2mac [Vil05], into a script pro-
gram that is executed by a test execution environment named TSC2, developed by Er-
icsson. TSC2 executes a script program by sending PDUs to the WAP gateway and
observing the PDUs received in response. If unexpected packages or timing is observed
the discrepancy is reported to a log file, and the testing proceeds with the next test case
in the suite.

From testing the WAP gateway, we report the effect of executing test suites gen-
erated from extended versions of the edge, switch, and projection coverage criteria.
In particular, we present two discrepancies between the model and the WAP gateway
found during testing, and observe that both these problems were found in the rather
small test suites satisfying the edge coverage criterion.



WSP

IP

TCP

HTTP

WAP Application

Web Server

Transaction (WTP)

Transport (WDP)

Bearer (UDP)

Session (WSP)

Application (WAE)

WAP Terminal

WTP

WDP

UDP

TCP

HTTP

IP

WAP Gateway

Proxy

Fig. 1. WAP Gateway Architecture.

The rest of this paper is organized as follows: in the next section we give an infor-
mal description of the studied WAP gateway. In Section 3 we present the abstraction
used to model sequence numbers in the model, presented in Section 4. In Section 5 we
present the test generation and execution tools, and results from testing the gateway. We
conclude the paper in Section 6, and then presents detailed models in an Appendix.

2 Wireless Application Protocol

The Wireless Application Protocol (WAP)1 is a global and open standard that specifies
an architecture for providing access to Internet services to mobile (hand-held) devices.
It is typically used when a mobile phone is used to browse Web pages on the Internet,
or when pictures or music are downloaded to a mobile phone. The WAP standard spec-
ifies both a protocol and a format, named Wireless Markup Language (WML) being
the WAP analogy to HTML used by HTTP. The WML format also has a compressed
binary encoding (WML/Binary) that is used during wireless communication to save
bandwidth.

An overview of a WAP gateway architecture is shown in Figure 1. A WAP gateway
converts between the WML content on the HTTP side, and WML/Binary on the mo-
bile side. It also serves as a proxy for translating WAP requests to Internet protocols
(e.g., HTTP). The WAP side of a gateway typically consists of the following protocol
layers: Wireless Session Protocol (WSP), Wireless Transaction Protocol (WTP), Wire-
less Datagram Protocol (WDP), and a bearer layer such as e.g., GSM, CDMA, or UDP.
The internet side usually consists of the protocols Hypertext Transfer Protocol (HTTP),
Transmission Control Protocol (TCP), and Internet Protocol (IP). The WDP layer and
a bearer on the WAP side corresponds to the TCP/IP layers on the Internet side. The
security layers Wireless Transport Layer Security (WTLS) on the WAP side and Secure
Socket Layer (SSL) on the Internet side are optional and omitted in Figure 1.

The WAP specification defines two roles in the protocol. The part that starts a trans-
action is calledinitiator, and the other part is calledresponder. For example, a mobile

1 The Wireless Application Protocol Architecture Specification is available at the
web pagehttp://www.openmobilealliance.org/tech/affiliates/wap/-
wapindex.html .



Time

Initiator Responder

Invoke

Invoke

Ack

Result

Invoke

Ack

Layer N − 1

Layer N

res

indcnf

req

(ii)(i)

Time

Class 0

Class 1

Class 2

Fig. 2. The three WTP transaction classes(i) and signaling terminology(ii).

device is the initiator when it access data from the Internet, but it can also be the re-
sponder if a (push) initiator sends out a message to the mobile device. Communication
between initiator and responder is divided in three types of transactionclasses, ranging
from class 0 in which no acknowledgments are used, to class 2 that also send acknowl-
edgments of results. The desired behavior the classes is shown in Figure 2(i).

In Figure 2(ii) the terminology for message signaling between layers in the WAP
stack is illustrated. An upper layer requests (req) a service from the layer below, which
then confirms (cnf) that the request has been handled. A message from a peer layer is
indicated (ind) by the layer below and the upper layer response (res) to notify that the
message is accepted. Some message types do not require response nor confirmation.

The data structures used to and from an upper layer in the WAP stack are called
Service Data Units (SDUs). The WTP layer has its own peer messages, e.g. acknowl-
edgment, and it conveys SDUs to and from its upper layers. The behavior of a WTP
layer is specified in the WAP specification as a state machine. In practice, every new
transaction is a new instance of the WTP state machine, and there can be many simul-
taneous transactions.

The interfaces of a WAP stack layer are called Service Access Points (SAP). In
this paper the Transport SAP (T-SAP), the Transaction SAP (TR-SAP), and the Session
SAP (S-SAP) will be referenced.

Session Layer: The WSP layer is responsible for handling sessions in the WAP pro-
tocol. A session is a collection of transactions from the same user that can be treated
commonly. An example of a case when a session is convenient is when a user logs in to
a Web server. When logged in, the session is used to authenticate subsequent requests.
If the session is disconnected (or aborted) all the transactions in the session will be
aborted.



(GET) Method

WTP WSP

Release

WTP_Result

TR_Invoke_res

TR_Result_req
S_MethodResult_req

S_MethodInvoke_res

S_MethodInvoke_ind

TR_MethodInvoke_ind
TR_Invoke_ind

RcvAck
TR_Result_cnf S_MethodResult_cnf

Session Mgr
RcvInvoke

WTP trans

Fig. 3. Messages in the responder during a WSP GET request.

The session layer consists of two parts: aSession Managerthat handles the connect
and disconnect of a session, and a set of processes handling outstanding HTTP requests
calledMethods. For example, at a GET request aGET-Methodprocess is spawned off
to handle the request. A Method is associated with a WTP transaction and is terminated
when the transaction terminates. In Figure 3, a sequence diagram shows WSP, and the
underlying WTP layer, in a WAP responder stack during a successful GET request.
Note how the Session Manager is only involved in the initialization of the WSP.

Transaction Layer: The WAP transaction layer handles the sending and re-sending
of transactions. To separate transactions, each transaction is numbered with a unique
sequence number, calledtransaction identifier(TID). New TIDs are created by the ini-
tiator by incrementing the last created TID value by one. The initiator can have several
ongoing transactions with more than one responder, e.g., a server can push to several
terminals. Therefore, a responder cannot be sure that each new transaction has a TID
value incremented by exactly one.

The responder of a connection oriented session has a window of214 TIDs. The
last TID value received from an initiator is saved in a variable namedlastTID. The
counter wraps around at215−1. When a new message arrives, it is directly accepted
if the TID value is not increased more than214 times fromlastTID. We will call such
valuesgreater than lastTID, and other valueslessthan lastTID, except if the value is
equal tolastTID.

If the bearer media reorders two messages so that the greater TID value arrives late,
the later message is said to be anout-of-ordermessage. When an out of order message
arrives, the responder invokes a so-calledTID verification procedurebefore it contin-



ues. The TID verification is performed by sending a special acknowledge message (with
bit TIDveset). The initiator acknowledge (with bitTIDok) if it has an outstanding trans-
action with the same TID value.

If an initiator is out of synchronization withlastTID(e.g., after a reboot) it can avoid
further TID verifications (using bitTIDnew). This forces a TID verification that will set
lastTID to the TID of theTIDnewmessage. During TID verification no new transactions
are started by the initiator, and the responder removes any old transactions.

3 Abstraction for Test Case Generation

As described, the TIDs of the messages play an important role in the WAP specifica-
tion. An instance of the WAP protocol will typically make use of several TIDs from
the domain0 to 215−1, and a sliding window of size214. Thus, the potential num-
bers of TID values will be infeasible for exhaustive model-based test-case generation
— the generation algorithm will experience the so-calledstate-space explosion prob-
lem[Hol97]. To overcome this problem, previous applications of automatic verification
techniques to the WAP protocol have limited the analysis to scenarios with only a single
transaction [HJ04,GB00]. We will take a different approach and introduce an abstrac-
tion. It will allow us to deal with abstract TID values during the analysis of the model,
while maintaining the concrete TID values so that concrete model traces can still be
generated.

Concrete domain: We assume a setT of TID variablest0, . . . , tN−1. To describe the
semantics we use avariable assignmentv : T → {n | 0 ≤ n ≤ 215−1} ∪ {⊥}, where
⊥ represents the unassigned value. Initially all variables are unassigned. The variables
can be compared with Boolean combinations ofti < tj andti ≤ tj , and manipulated
with the operations

ti = free v′(ti) =⊥
ti = tj v′(ti) = v(tj)
ti = new+ v′(ti) = max(v) + 1
ti = new− v′(ti) = min(v)− 1

wherev′ is the resulting variable assignment,v the directly preceeding variable assign-
ment, andmax(v) andmin(v) the maximum and minimum assigned integer values of
all TIDs, respectively.

Abstract domain: We use a setA of abstract TID variablesa0, . . . , aN−1, and an
abstract variable assignmentva : A → {n | 0 ≤ n < N} ∪ {⊥}. We assume that
the set of abstract values istight in the following sense: ifva(ai) = k then there exists
va(aj) = l for all 0 ≤ l < k.

Abstraction of Concrete TID values: We define theabstraction functionα : T → A
to be the mapping, such thatα(ti) = 0 if min(v) = v(ti), α(ti)<α(tj) if v(ti)<v(tj),
α(ti)=α(tj) if v(ti)=v(tj), α(ti) =⊥ if v(ti) =⊥, andva is tight. A transition from
the abstract stateva to v′a is possible if there exists a transition fromv to v′, va = α(v),
andv′a = α(v′).



The proposed abstraction is sound in the sense that properties in the abstract state-
space also hold in the concrete state-space. That is, ifva = α(v), then the truth-value
of ti < tj or ti ≤ tj is the same for the corresponding abstract TIDsai and aj . It
can be shown that the abstract transition relation ismustabstraction and thus under-
approximates the concrete transition relation [LT88,BKY05].

Modeling and Analysis in UPPAAL : When modeling the WAP protocol, we shall use
ti = new+, ti = tj , andti = new− to model assignment of newcorrect TID val-
ues,existingvalues, and values that areout of order, respectively. To implement the
abstraction, we useUPPAAL’s meta variables. Such variables are used to annotate mod-
els. They can be refered to in the model, but they are not considered when two states
are compared during analysis. We declare the set of concrete TID variablesT as a vec-
tor of meta variables, the set of abstract TID variablesA as vector of ordinary integer
variables, and apply the abstraction function to each state explored during state-space
exploration2. In this way, the analysis will explore concrete states until the reachable
abstract state-space is explored, while maintaining the concrete values to support gen-
eration of concrete test cases.

4 Testing Model

In this section, we describe our model of the WAP gateway. The model is emphasized on
the software layers WTP and WSP. They have been modeled as detailed and close to the
WAP specification as possible. Other parts of the gateway are modeled more abstractly,
but without loss of externally observable behavior affecting the WTP and WSP layers.
We have chosen to model theconnection orientedversion of the WAP protocol, where
several outstanding transaction can be held together into a session. The model has been
made with the intention to generate real system tests that can be executed over a physical
connection. Obviously, the complexity of making this kind of system model and system
test is much higher than to test each layer separately.

In Figure 4, an overview of the modeled automata and their conceptual connections
is shown as a flow-graph. The nodes represent timed automata [AD94] and the edges
synchronization channels or shared data, divided in two groups (with the small arrows
indicating the direction of communication). The model is divided in two parts, thegate-
waymodel, and thetest environmentmodel. The test environment consists of the two
automataTerminal andHTTP Sever. The gateway model is further divided in to a
WTP part, a WSP part, and globally shared data and timers3. The WTP part consists
of the service access pointTSAP, two instancesWTP0 andWTP1 of the WTP proto-
col, a WSPSession Manager, two instancesMethod 0 andMethod 1 of the WSP
methods, and a session service access pointSSAP.

2 We have implemented this in ourUPPAAL COXER tool. The same affect can be achieved
by annotating each edge in the model with a simple function, implementing the abstraction
function.

3 To improve the readability of Figure 4, we have omitted many edges to and from the automata
Timer andData Store.



(Suspend)

Abort Release

TSAP_RcvAck
TSAP_RcvInvoke

S_Disconnect_ind

S_Connect_res

S_Connect_ind

S_MethodInvoke_res

S_MethodResult_ind
S_MethodAbort_ind

HTTP Server

HTTP_Req

HTTP_Answer

WSP Layer

Terminal2MIEP

MIEP2Terminal

WTP Layer

TSAP_RcvAbort
S_MethodResult_req

S_MethodInvoke_ind

TR_Invoke_ind

TR_Result_req
TR_Invoke_res

TR_Abort_ind

TR_Result_req

TSAP_SEND

Disconnect

TR_InvokeMethod_ind

WTP 0

WTP 1

TSAP

Method 1

Method 0

Session

Timers

SSAP

Manager

Terminal

Data Store

Fig. 4. Overview of the formal model.

The idea of the model is to let theTerminal automaton model a mobile device that
non-deterministically stimulates the gateway with input and receives its output. In a
typical scenario, the Terminal requests a WML page from a web sever. The request
goes through an instance of the WTP and WSP layers and further to a web sever. In
case the page exists, it is sent back through the gateway, and is finally received in the
Terminal. Such a scenario is depicted in Figure 3.

In the following, we briefly describe how the WAP gateway specification and the
components in its environment have been modeled as a network of timed automata. Due
to lack of space, several of the automata are not shown in detail in this paper, but can
be found in [HP06].

4.1 Test Environment Model

The test environment consists of the two automataTerminal a HTTP Server. Mes-
sages from the terminal to the WAP gateway are modeled as the single synchronization
Terminal2MIEP, and similar in the other direction (see Figure 4). When the synchro-
nization occurs, a special set of global integer variables are assigned, which corresponds
to the fields of the protocol headers, e.g., WTP Type, WTP Class, or WSP Connect. Our
model is done so that any state preceding aTerminal2MIEP synchronization (similar in
the other direction), contains all values of the variables that corresponds to fields of the
modeled message. This is to facilitate the constructions of packets from model traces,
which is needed in the later stage when traces are compiled in to concrete test cases.

As mentioned, another important design decision is to let theTerminal model ini-
tiate and control the whole interactions. A particular problem is to control theHTTP
server. We have solved this by sending control messages encoded into the message
content, from the terminal, all the way through the WAP gateway, to theHTTP sever.



S_NULL

_got_invoke

_will_send_S_Connect_ind

CONNECTING

_will_send_TR_Invoke_res

_got_S_Connect_res

CONNECTING_2

_got_TR_Result_cnf

CONNECTED

_will_send_TR_Result_req

_got_WSP_Get_in_CONN _will_send_Release_in_CONN

_got_WSP_Get_in_C2

_will_send_Release

_aborting_all

disconnecting

_will_send_S_Disconnect_ind

_got_Abort_ind_in_C2

_init4_init3_init2_init1_init0

_got_Disconnect_in_C2

_will_send_TR_Abort_req

_skip_WSP_in_C2

TR_Invoke_ind?

SDU[TRSAP_Up_I][WSPType_I]==WSP_Connect,
SDU[TRSAP_Up_I][Class_I]==2

conn_trans:=SDU[TRSAP_Up_I][TID_I],
SDU[TRSAP_Down_I][TID_I]:=conn_trans,
procCount:= procCount+1

S_Connect_ind!

procCount:=procCount-1

move!

src:=TRSAP_Up_I,
dst:=SSAP_Up_I

TR_Invoke_res!

N_Methods:=0

S_Connect_res?
procCount:= procCount+1

TR_Result_cnf?
conn_trans==SDU[TRSAP_Up_I][TID_I]

procCount:= procCount+1

clean!
src:=TRSAP_Up_I,
conn_trans := NULL,
procCount:= procCount-1

TR_Result_req!

procCount:=procCount-1

SDU[TRSAP_Up_I][WSPType_I]==WSP_Get
TR_Invoke_ind?
procCount:=procCount+1

TR_Invoke_Method_ind!
Release!
procCount:=procCount-1

SDU[TRSAP_Up_I][WSPType_I]==WSP_Get
TR_Invoke_ind?
procCount:=procCount+1

TR_Invoke_Method_ind!

Release!
procCount:=procCount-1

Abort!
N_Methods > 0

SDU[TRSAP_Up_I][WSPType_I]==WSP_Disconnect,
SDU[TRSAP_Up_I][Class_I]==0
TR_Invoke_ind?

procCount:=procCount+1 move!
src:=WSP_I,
dst:=SSAP_Up_I

N_Methods==0

S_Disconnect_ind!
conn_trans := NULL,
procCount:=procCount-1

move!
src:=TRSAP_Up_I,
dst:=WSP_I

TR_Abort_ind?
procCount:=procCount+1

SDU[TRSAP_Up_I][TID_I]==conn_trans

move!
src:=TRSAP_Up_I,
dst:=WSP_I

clean!
src:=TRSAP_Down_I,
conn_trans := NULL,
procCount:=procCount-1

clean!
src:=TRSAP_Up_I

clean!
src:=WSP_I

clean!
src:=SSAP_Down_I

clean!
src:=SSAP_Up_I

SDU[TRSAP_Down_I][Clear_I]==0
SDU[TRSAP_Down_I][WSPType_I]:=WSP_ConnectReply,
SDU[TRSAP_Down_I][TID_I]:=conn_trans

Disconnect?
SDU[WSP_I][Reason_I]:=DISCONNECT,
procCount:=procCount+1

SDU[TRSAP_Down_I][Clear_I]==0
SDU[TRSAP_Down_I][TID_I]:=conn_trans,
SDU[TRSAP_Down_I][Reason_I]:=SDU[WSP_I][Reason_I]

TR_Abort_req!

SDU[TRSAP_Up_I][WSPType_I]!=WSP_Connect

SDU[TRSAP_Up_I][Reason_I]:=225,
procCount:=procCount+1

TR_Invoke_ind?

2 ==
(SDU[TRSAP_Up_I][WSPType_I]!=WSP_Disconnect)
+ (SDU[TRSAP_Up_I][WSPType_I]!=WSP_Get)

TR_Invoke_ind?

procCount:=procCount+1

2 ==(SDU[TRSAP_Up_I][WSPType_I]!=WSP_Disconnect)
+ (SDU[TRSAP_Up_I][WSPType_I]!=WSP_Get)
TR_Invoke_ind?
procCount:= procCount+1

move!
src:=TRSAP_Up_I,
dst:=TRSAP_Down_I

SDU[TRSAP_Down_I][Clear_I]==0

TR_Abort_req!
procCount:=procCount-1

SDU[TRSAP_Down_I][Class_I]!=0

move!
src:=TRSAP_Up_I,
dst:=TRSAP_Down_I

SDU[TRSAP_Down_I][Clear_I]==0

TR_Abort_req!
procCount := procCount-1

SDU[TRSAP_Down_I][Class_I]!=0

move!

dst:=TRSAP_Down_I,
src:=TRSAP_Up_I

SDU[TRSAP_Down_I][Clear_I]==0TR_Abort_req!
procCount:=procCount-1

SDU[TRSAP_Down_I][Class_I]!=0
SDU[TRSAP_Down_I][Class_I]==0

src:=TRSAP_Down_I,
procCount:=procCount-1

clean!

SDU[TRSAP_Down_I][Class_I]==0
procCount:=procCount-1,
src:=TRSAP_Down_I

clean!

SDU[TRSAP_Down_I][Class_I]
==0

src:=TRSAP_Down_I,
procCount:=procCount-1

clean!

SDU[TRSAP_Up_I][WSPType_I]== WSP_Disconnect
TR_Invoke_ind?
procCount:=procCount+1

SDU[TRSAP_Down_I][Clear]==0
SDU[TRSAP_Down_I][TID_I]:=conn_trans

TR_Abort_req!

procCount:=procCount+1

Disconnect?
SDU[WSP_I][Reason_I]:=DISCONNECT,
procCount:=procCount+1

Fig. 5. TheSession Manager automaton.

In this way, theHTTP server can be instructed to delay its response message, drop a
message, or immediately return.

As the gateway model reacts to stimuli fromTerminal, several instances of the WAP
layers automata will become active simultaneously. We use a counter to keep track of
the number of active automata in the gateway model that are not in a stable state, i.e.,
a state where it is idle and waiting for new input. The counter is used to restrict the
Terminal from sending messages that will not be dealt with immediately. This scheme
avoids unnecessary interleavings and reduces the state-space of the model.

How the TID Abstraction is modeled: In theTerminal automaton, TIDs are assigned
when new PDUs are created, as described in Section 3. To use an existing TID value
(i.e., to perform an assignment), or to free a TID variable (i.e., set it to⊥) is straight-
forward to model inUPPAAL. To modelnew+ andnew−, we use two hidden variables
MinTID andMaxTID that are initialized to214−1 and214, respectively. All TID vari-
ablesti are initially⊥. The operationti = new+ can now be modeled by assigning a
variableti the value ofMaxTID followed by an incrementation ofMaxTID, and dually
for the operationti = new−.

4.2 Gateway Model

The gateway model is a detailed timed automata description made with the intention
to comply with the WAP specification as closely as possible. Communications between



S_NULL

HOLDING

_to_requesting_1

REQUESTING

_got_MethodInvoke_res

PROCESSING

REPLYING

_reinit

_to_holding

_to_requesting_2

INITIAL

_will_send_Abort

_aborting

_got_Abort_disconnect_in_processing

_got_Abort_suspend_in_processing

_got_Abort_disconnect_in_replying

_will_send_Disconnect

_abort_method

Release?
procCount:=procCount+1

S_MethodInvoke_res?

SDU[TRSAP_Down_I][TID_I]:=transaction,
SDU[TRSAP_Down_I][Clear_I]:=1,
SDU[SSAP_Down_I][TID_I]:=NULL,
SDU[SSAP_Down_I][Clear_I]:=0,
procCount:=procCount+1

SDU[TRSAP_Down_I][Clear_I]==0,
SDU[SSAP_Down_I][TID_I]==transaction

TR_Invoke_res!
procCount:=procCount-1

TR_Result_req!
procCount:=procCount-1

TR_Result_cnf?
N_Methods:= N_Methods-1,
SDU[SSAP_Up_I][TID_I]:=transaction,
SDU[TRSAP_Up_I][TID_I]:=NULL,
SDU[TRSAP_Up_I][Clear_I]:=0,
SDU[SSAP_Up_I][Clear_I]:=1,
procCount:= procCount+1

SDU[TRSAP_Up_I][TID_I]==transaction,
SDU[SSAP_Up_I][Clear_I]==0

S_MethodResult_cnf!
transaction:= NULL,
procCount:= procCount-1

TR_Invoke_Method_ind?
N_Methods := N_Methods+1,
transaction:=SDU[TRSAP_Up_I][TID_I],
procCount:=procCount+1

SDU[TRSAP_Up_I][TID_I] == resTIDreg[myTIDreg]

move!

src:=TRSAP_Up_I,
dst:=mystore,
procCount:=procCount-1

SDU[SSAP_Up_I][Clear_I]==0
move!
src:=mystore,
dst:=SSAP_Up_I,
SDU[SSAP_Up_I][Clear_I]:=1

S_MethodInvoke_ind!
procCount:=procCount-1

S_MethodResult_req?
SDU[SSAP_Down_I][WSPType_I]:= WSP_Reply,
procCount:=procCount+1

SDU[SSAP_Down_I][TID_I]==transaction

SDU[TRSAP_Down_I][Clear_I]==0
move!
src:=SSAP_Down_I,
dst:=TRSAP_Down_I

transaction:=NULL,
src:=mystore

clean!

N_Methods:=N_Methods-1,
transaction:=NULL,
procCount:=procCount-1

TR_Abort_req!

SDU[TRSAP_Down_I][Clear_I]==0

SDU[TRSAP_Down_I][Reason_I]:=SDU[WSP_I][Reason_I],
SDU[TRSAP_Down_I][TID_I]:=transaction,
SDU[TRSAP_Down_I][Clear_I]:=1

Abort?
procCount:= procCount +1

Abort?
procCount:= procCount+1

SDU[TRSAP_Up_I][TID_I]==transaction,
SDU[TRSAP_Up_I][Reason_I]==DISCONNECT
TR_Abort_ind?
procCount:=procCount+1

SDU[TRSAP_Up_I][TID_I]==transaction,
SDU[TRSAP_Up_I][Reason_I]==SUSPEND
TR_Abort_ind?
procCount:=procCount+1

clean!
src:=TRSAP_Up_I

clean!
src:=TRSAP_Up_I

SDU[TRSAP_Up_I][TID_I]==transaction,
SDU[TRSAP_Up_I][Reason_I]==DISCONNECT
TR_Abort_ind?
procCount:=procCount+1

clean!
src:=TRSAP_Up_I

Suspend!

Disconnect!

transaction:=NULL,
procCount:=procCount-1,
N_Methods:=N_Methods-1

Disconnect!

move!
src:=TRSAP_Up_I,
dst:=SSAP_Up_I

SDU[SSAP_Up_I][Clear_I]==0

S_MethodAbort_ind!

TR_Abort_ind?

SDU[TRSAP_Up_I][TID_I]==transaction,
SDU[TRSAP_Up_I][Reason_I]!=DISCONNECT,
SDU[TRSAP_Up_I][Reason_I]!=SUSPEND

procCount:=procCount+1

move!
src:=TRSAP_Up_I,
dst:=SSAP_Up_I

S_MethodAbort_ind!

N_Methods:=N_Methods-1,
transaction:=0,
procCount:=procCount-1

SDU[TRSAP_Up_I][TID_I]==transaction,
SDU[TRSAP_Up_I][TID_I]!=DISCONNECT
TR_Abort_ind?
procCount:=procCount+1

Fig. 6. TheMethod automaton.

two layers are modeled as synchronization labels and an array of data representing the
modeled fields values. All communications to or from WTP or WSP go via SAPs to
mimic the real protocol.

TSAP: As illustrated in Figure 4 the SAP below the WTP layer, called T-SAP, is
modeled by automatonTSAP that converts the raw data fields sent over theTermi-
nal2MIEP channel into signals that mimics a Transport SAP. In the upward direction,
TSAP converts the WTP layer data into signals, e.g., RcvInvoke, RcvAck, and Rcv-
Abort. In the downward directionTSAP merely copies the data to the environment
(i.e., no headers to be added). TheTSAP automaton also inspects the TID value and
decides if the message should be delivered or dropped.

WTP layer: Two instances of the WTP layer are modeled, i.e., there can be two trans-
actions active at the same time. An instance is activated when a message arrives with
a TID that does not already exist in the layer. Successive messages with the same TID
are directed to the activated instance. The WTP automata are namedWTP0 andWTP1
and are instances of the same automaton template inUPPAAL. All messages from the
WTP state machine of the WAP specification are modeled, including all types of aborts.
The timers are also modeled, with the two intervalsacknowledge intervalA and retry
intervalR.



Web Server

TSC2

store
PDU

WAP Gatewaytr2macCoVer

Test Generation Test Execution

.cfg
pdu
list

.obs

.xml

Fig. 7. Overview of the setup used for testing the WAP gateway.

WSP layer: The WSP layer consists of two types of automata: session managerSes-
sion Manager shown in Figure 5, and two methods automataMethod0 andMethod1,
shown in Figure 6. TheSession Manager is responsible for connections and discon-
nections of the session. It forwards incoming method invokes, e.g., when a WML page
is requested. We model the GET method that, on the HTTP side, becomes a HTTP
GET request. When a session is disconnected all methods are aborted. Each method
has a corresponding outstanding transaction that it aborts. It is also possible to abort a
individual method transaction without terminating the whole session.

SSAP: Above the WSP layer is the Session SAP. We model an automatonSSAP that
mimics the gateway from the S-SAP to the communication with the HTTP server.

Timer: Timers are modeled by four instances of automatonTimer, two for each WTP
layer automaton. A timer can be activated and deactivated by the WTP automaton. If a
timer expires it sends a message to its WTP automaton.

Datastore: The automaton namedDatastore manages data. Its memory is modeled
as an array where the rows are “owned” by different automata. The columns represent
fields in the PDUs. TheDatastore automaton implements three convenient sub routines
that can be used by the other automata in the gateway:copy, clear, andmove. To not
over-write data in an unintended way, the rows also include aClear bit that is set when
new data is allowed to be written.

5 Test Generation and Execution

The tool setup used for generating and executing tests at Ericsson is shown in Figure 7.
The setup is divided in two parts, a testgenerationpart for generating and transforming
test cases into executable format, and a testexecutionpart that executes the tests on the
WAP gateway in a controlled computer network. In the following, we first describe the
test criteria used as input to our test generation tool, then the test generation, and last
how the tests were executed and some experiences.



5.1 Test Criteria

To specify how thorough a test suite should test a system, we select test cases following
some given coverage criteria. Before presenting the criteria, we (informally) character-
ize a stability property that will be used in all testing criteria. We say that the gateway
model is in astable stateif all automata are in locations modeling idling states from
which they need an (input) synchronization to proceed. In the system under test, this
corresponds to a situation where the whole gateway is idle and waiting for some input
from the environment, which implies that there are no transactions active in the gate-
way, and no other ongoing activity. We shall use a predicate namedstableState()that is
true only if the gateway model is in a stable state.

In Figure 8, the three coverage criteria used in this case study are formally specified
asobservers with parameters[BHJP05]4.

Edge Coverage Observer:It is shown in Figure 8(i). Assume thatP is a set of au-
tomata. The expressionedge(P ) returns a value only if an automaton (in the setP ) is
active in a transition. The parameterE is then assigned to the edge of the active process
in P . The observer then reaches stategotEdge(E), whereE is the assigned edge. The
gotEdge(E)location has a true loop which allows it to stay in the location forever. When
thestableState()macro becomes true, the observer reaches locationdone(E), indicating
that the edgeE is covered.

Intuitively, the edge coverage observer specifies that a test suite should cover as
many edgesE of the automata inP as possible, given that after everyE a state satisfy-
ing stableState()is reached. If the setP includes two or more automata from the same
automaton template, we assume thatedge(P ) is the same identifier for both automata if
the same edge is traversed. That is, the edge is considered to be covered if it is traversed
by any instance of the template.

Switch Coverage Observer:The observer in Figure 8(ii) is similar to the edge cover-
age observer, but it specifies that any two adjacent edges in the same automaton instance
should be covered. In this case, it is crucial that the edges are from the same automaton.
Therefore, we require that the automatonP that takes the first edgeE, must also take
the second edgeE2.

Projection Coverage Observer: Figure 8(iii) shows an observer that specifies a pro-
jection criterion. It specifies that a pair of locations from the WTP layer, and the WSP
layer should be covered. The macrostackProj(WTP,WSP)returns a pair of locations
(L,L1), whereL is from a WTP automaton, andL1 is from a WSP automaton. It is
further required thatL andL1 are associated with the same transaction.

4 Due to lack of space, we refer the reader to [BHJP05] for a detailed description of the observer
language.



done(L,L1)

Switch(procid P;)

start

Edge(procid P;)

E := edge(P), P1:=P

firstE(E,P1)

secondE(E,E2)

done(E,E2)

true

notActive(P1)

E2 := edge(P1)

E := edge(P)

gotEdge(E) true

done(E)

start

com(L,L1) true

StackProj(procid WTP; procid WSP;)

(L,L1) := stackProj(WTP,WSP)

(iii)(ii)(i)

stableState()

stableState() stableState()

Fig. 8. The three observers used in the case study.

5.2 Test Generation

The problem of generating test cases is solved by theUPPAAL COXER tool, which
extends the model-checking toolUPPAAL with capabilities for generating test suites5. It
takes as input the timed automata model of the WAP gateway described in the previous
section, and a coverage criterion specified as a parameterized observer (.xml and .obs
in Figure 7, respectively). The output ofUPPAAL COXER is a set of abstract test cases
(or test specifications) represented as timed traces, i.e., alternating sequences of states,
and delays or discrete transitions, in the output format of theUPPAAL tool.

Results: Table 8 shows the result of the test suite generation. Each row of the table
gives the numbers for a given coverage criteria and the automata it covers (used as
input). For example, WTP denotesWTP0 andWTP1 for which the tool has found 63
coverage items, i.e., edges in the WTP template. To cover the WTP edges a test suite
of 16 test cases is produced. The number of transitions of the test suite is 1562. The
test suite interacts with the system 92 times, i.e., 92 PDUs are communicated. We will
discuss the rightmost column in the next subsection.

The table shows the result of the other test criteria as well. We note that, as expected,
the switch coverage criterion requires many more test cases to be executed than edge
coverage. We also note that it is more efficient to execute the test suites covering all
templates at once, i.e., WTP, Session Manager, and Method, than to execute all the
individual test suites. For example, the test suite with edge coverage in all templates
sends 142 PDUs, whereas the sum of sent PDUs in the individual suites is 225. For
switch coverage the numbers are 467 compared to 555 PDUs.

5.3 Test Execution

The timed traces representing abstract test cases are converted to executable script pro-
grams by the tr2mac tool [Vil05], which also takes two configuration files as input (.cfg

5 For more information about theUPPAAL COXER tool, see the web pagehttp://user.-
it.uu.se/˜hessel/CoVer/ .



Criteria Items Test suite Test scriptFailed tests
Observer Templates casestrans PDUs

Edge WTP 63 16 1562 92 1
Session Manager46 12 1058 57 1
Method 31 10 1497 76 0
All 140 28 2548 142 2

Switch WTP 109 44 5082 313 2
Session Manager76 28 3020 166 7
Method 37 9 1495 76 0
All 222 74 8129 467 10

StackProjAll 101 21 2129 114 0

Table 8.Test generation and execution results.

in Figure 7). In a trace, each action label and combination of variable values in the
associated state, represents the parameters of a PDU to be sent or received, or a null op-
eration (all internal actions are mapped to null operations). The files .cfg describe how
to perform the translation for a givenUPPAAL model, i.e., which labels to consider as
external and where to put the state variable values in the PDUs. Each delay of a timed
trace naturally represents a delay to be performed by the test program. The tr2mac pro-
gram accumulates the delays between non-null operations and inserts the result in the
script program.

The output of tr2mac is a script program that can be executed by the TSC2 test
environment, and a list of partially instantiated PDUs that will be needed. The PDUs
are fully instantiated at the time the script is executed in the test harness. The TID values
and information about the specific test environment, e.g., the IP addresses, are filled in
at execution time. In this way, many PDUs can be reused between different test cases
(and the set of needed PDUs will eventually become stable).

When TSC2 executes a script, all listed PDUs must be available in the PDU store6.
TSC2 will send PDUs to the WAP gateway and check that the expected response ap-
pear at the right time points. If this is not the case, TSC2 will report the discrepancy
to a log file, and proceed with the next test script. During testing, TSC2 acts in place
of the mobile device (i.e. the terminal). As described in the previous sections, the mo-
bile device (and thus TSC2 when executing the generated test cases) thus controls the
behavior of the surrounding computer network. The behavior of the web server is con-
trolled by sending parameters in the PDUs that are interpreted as commands by a php
script running on the web server.

Results: The test cases presented in the Table 8 have been executed on an in-house
version of the WAP gateway at Ericsson. As shown in the rightmost column of Table 8
most of the test case went well. A few tests failed due to two discrepancies — one in
theWTP automata and one in theSession Manager automaton.

6 Currently, non-existing listed PDUs must be manually created. It is possible to automate also
this step.



The first discrepancy is in the WSP layer. The session manager is modeled to not ac-
cept any newConnectmessages. Reading the WAP specification carefully, after finding
this discrepancy, we conclude that it is allowed to accept newConnectmessages and
replace the current session if the layer above agrees. This problem in the model explains
the discrepancy found with the test suite covering the edges ofSession Manager, and
the seven discrepancies found when executing the test suite with switch coverage in the
Session Manager.

The second discrepancy is a behavior present in our model of the WTP layer but not
in the tested WAP gateway. We found that no acknowledge is sent from the WTP state,
RESULT WAIT, when an (WTP) invoke is retransmitted and an acknowledgment has
already been sent. The retransmission is required in the WTP specification [For01] but
not performed by the implementation. This discrepancy was found both when running
test suites covering the edge and switch criteria of the WTP template.

We also observe that the two discrepancies were both found when executing the
edge covering test suites — one in the test suite forWTP, and the other in the test suite
for Session Manager. The test suite with switch coverage finds the same discrepan-
cies, but many times (as many as the erroneous edges appear in some switch). The suite
with projection coverage did not find any discrepancies.

6 Conclusion

We have presented a complete test bed where test cases are automatically produced and
executed, from a formal model and coverage criteria formally described as observers.
The validity of the tests has been proven in a case study where test cases have been
executed in a real test environment at Ericsson. The test generation techniques and
the coverage criteria used have industrial strength as complete test suites have been
generated for an industrial application, and discrepancies have been found between the
model and the real system.

We have also presented an abstraction technique that can be used in models making
use of sequence numbers with large domains. It preserves the relations needed when
comparing sequence numbers in the WAP protocol, while the size of the analyzed state
space is significantly reduced. We believe that the abstraction will be useful for speci-
fying and analyzing models of other protocols.

Acknowledgment

We thank the other members of the ASTEC AuToWay project at Ericsson and Uppsala
University: Tomas Aurell, Anders Axelssson, Johan Blom, Joel Dutt, Bengt Jonsson,
Natalie Jost, John Orre, Payman Tavanaye Rashid, and Per Vilhelmsson.

References

[AD94] R. Alur and D. L. Dill. A theory of timed automata.Theoretical Computer Science,
126(2):183–235, 1994.



[BFG+00] Marius Bozga, Jean-Claude Fernandez, Lucian Ghirvu, , Claude Jard, Thierry Jron,
Alain Kerbrat, Pierre Morel, and Laurent Mounier. Verification and test generation for
the sscop protocol.Science of Computer Programming, 36(1):27–52, 2000.

[BHJP05] J. Blom, A. Hessel, B. Jonsson, and P. Pettersson. Specifying and generating test
cases using observer automata. In J. Gabowski and B. Nielsen, editors,Proc.4th In-
ternational Workshop on Formal Approaches to Testing of Software 2004 (FATES’04),
volume 3395 ofLecture Notes in Computer Science, pages 125–139. Springer–Verlag,
2005.

[BKY05] Thomas Ball, Orna Kupferman, and Greta Yorsh. Abstraction for falsification. Tech-
nical Report MSR-TR-2005-50, Microsoft Research, June 2005.

[For01] WAP Forum. Wireless transaction protocol, version 10-jul-2001. online, 2001.
http://www.wapforum.org/.

[GB00] S. Gordon and J. Billington. Analysing th wap class 2 wireless transaction protocol
using colored petri nets. In M. Nielsen and D. Simpson, editors,ICATPN 2000, vol-
ume 1825 ofLecture Notes in Computer Science, pages 207–226. Springer–Verlag,
2000.

[HJ04] Yu-Tong He and R. Janicki. Verification of the wap transaction layer. InSoftware
Engineering and Formal Methods, pages 366–375, 2004.

[HLSU02] H.S. Hong, I. Lee, O. Sokolsky, and H. Ural. A temporal logic based theory of
test coverage. In J.-P. Katoen and P. Stevens, editors,Tools and Algorithms for the
Construction and Analysis of Systems :8th International Conference, (TACAS’02),
volume 2280 ofLecture Notes in Computer Science, pages 327–341. Springer–Verlag,
2002.

[Hol97] G.J. Holzmann. The model checker SPIN.IEEE Trans. on Software Engineering,
SE-23(5):279–295, May 1997.

[HP06] Anders Hessel and Paul Pettersson. Model-based testing of a wap gateway: an indus-
trial case-study. Technical Report 2006-045, Department of Information Technology,
Uppsala University, 2006.

[LMN05] K. G. Larsen, M. Mikucionis, and B. Nielsen. Online testing of real-time systems
using uppaal. In J. Gabowski and B. Nielsen, editors,Proc.4th International Work-
shop on Formal Approaches to Testing of Software 2004 (FATES’04), volume 3395 of
Lecture Notes in Computer Science, pages 79–94. Springer–Verlag, 2005.

[LMNS05] Kim G. Larsen, Marius Mikucionis, Brian Nielsen, and Arne Skou. Testing real-time
embedded software using uppaal-tron - an industrial case study. InProc. of the 5th
ACM International Conference on Embedded Software, 2005.

[LPY97] K. G. Larsen, P. Pettersson, and W. Yi.UPPAAL in a Nutshell.Int. Journal on Software
Tools for Technology Transfer, 1(1–2):134–152, October 1997.

[LT88] K.G. Larsen and G.B. Thomsen. A modal process logic. InProc. 3rd Int. Symp. on
Logic in Computer Science, 1988.

[Tre96] J. Tretmans. Test generation with inputs, outputs, and quiescence. In T. Margaria
and B. Steffen, editors,Tools and Algorithms for the Construction and Analysis of
Systems:2nd Int. Workshop (TACAS’96), volume 1055 ofLecture Notes in Computer
Science, pages 127–146. Springer–Verlag, 1996.

[Vil05] Per Vilhelmsson. A test case translation tool - from abstract test sequences to concrete
test programs. Technical report, Department of Information Technology, Uppsala Uni-
versity, 2005.


