
Deriving the
Worst-Case Execution Time Input Values

– Extended version –

Andreas Ermedahl†‡, Johan Fredriksson‡,
and Jan Gustafsson†

School of Innovation, Design and Engineering
Mälardalen University, Västerås, Sweden

{andreas.ermedahl,johan.fredriksson,jan.gustafsson}@mdh.se

Peter Altenbernd�

Department of Computer Science
University of Applied Sciences, Darmstadt, Germany

p.altenbernd@fbi.h-da.de

Abstract—A Worst-Case Execution Time (WCET) analysis de-
rives upper bounds for execution times of programs. Such bounds
are crucial when designing and verifying real-time systems. A
major problem with today’s WCET analysis approaches is that
there is no feedback on the particular values of the input variables
that cause the program’s WCET. However, this is important
information for the real-time system developer.

We present a novel approach to overcome this problem. In
particular, we present a method, based on a combination of input-
sensitive static WCET analysis and systematic search over the
value space of the input variables, to derive the input value
combination that causes the WCET. We also present several
different approaches to speed up the search. Our evaluations
show that the WCET input values can be relatively quickly
derived for many type of programs, even for program with
large input value spaces. We also show that the WCET estimates
derived using the WCET input values often are much tighter
than the WCET estimates derived when all possible input value
combinations are taken into account.

I. INTRODUCTION

A worst-case execution time (WCET) analysis derives an
estimate to the worst possible execution time of a computer
program. For the estimate to be applicable in safety-critical,
hard real-time systems, where failures to meet deadlines can
have catastrophic consequences, the estimate must be safe,
i.e., greater than or equal to the actual WCET. To be useful,
the estimate must also be tight, i.e., provide little or no
overestimation compared to the actual WCET.

Reliable WCET estimates are a basis for most of the
research performed within the real-time research community.
They are used to create schedules and to perform schedu-
lability analysis, to determine if performance goals are met
for tasks, and to check that interrupts have sufficiently short
reaction times.

† Supported by the the ALL-TIMES FP7 project, grant no. 2215068, and by
the KK-foundation grant 2005/0271.

‡ Supported by the Swedish Foundation for Strategic Research (SSF), via the
strategic research centre PROGRESS.

� Supported by Deutscher Akademischer Austauschdienst (DAAD).

The WCET analysis problem has been well studied during
the last decades. Today, several academic and commercial
WCET analysis tools exist, see e.g., [24] for an overview.
Many of them are used in industry on a regular basis.
Except deriving WCET estimates, the tools often provide
other valuable means for understanding the program’s worst-
case behaviour. This includes, e.g., visualisations of both
the execution path and the hardware state that produced the
estimate. However, deriving which particular input value com-
bination that caused the WCET has, to the best of the authors’
knowledge, hardly been addressed before, even though it is
very valuable information.

For example, such information can be used for identifying
bottlenecks, and hence to further optimizing the program.
Further, it is valuable for whole-system stress testing i.e.,
identifying the overall system’s worst-case behaviour, and for
steering measurement-based timing analysis methods, to select
input value combinations that forces the program to run for
long execution times. Moreover, as outlined in Section II, it
can be used to produce tighter WCET estimates, which allows
for better system utilisation.

In general, the problem of determining the worst case input
value combination of an arbitrary program is hard. This is
because it is possible to create programs for which the WCET
input is found only by testing all input value combinations.

However, large parts of software in, e.g., some embedded
systems, does not exhibit this type of behavior [5]. If they
contain a control flow that is not too complex (e.g., no
recursion, unstructured code, deep loop nesting, or complex
decision structures), and are run on quite simple hardware
(e.g., no caches or speculation features), the WCET can be
calculated with high precision by existing static WCET tools,
without testing all input value combinations.

Based on these observations, we have developed several
novel methods for deriving the WCET input values which are
especially efficient for the simpler type of software described
above. The concrete contributions of this article are:

• A novel search algorithm to find the WCET input values,

based on a combination of static WCET analysis and
systematic search over the value space of input variables.
The best running time is proportional to the 2-logarithm
of the size of the input space. This is much faster that
exhaustive search, with a running time proportional to the
size of the input space.
• An extreme-value heuristic together with other novel ideas
to to speed up the search, allowing the WCET input values
in many cases to be derived more quickly than in the basic
binary search approach.
• We show how to use our search methods to produce tighter
WCET estimates compared to WCET estimates derived
when all possible input value combinations are taken into
account.
• We evaluate our search methods on a set of benchmarks
and industrial codes, showing that the WCET input values
often can be relatively quickly derived, even for program
with very large input spaces.

The rest of the article is organised as follows: Section II intro-
duces WCET analysis and presents related work. Section III
presents our basic method for deriving WCET input values.
Section IV presents approaches for quicker method termina-
tion and Section V outlines how to handle overestimations in
the static WCET analysis. Section VI presents our analysis
results and in Section VII we draw conclusions and outline
future work.

II. WCET ANALYSIS AND RELATED WORK

A. Classification of WCET analysis.

A WCET analysis can be categorised as being based on
static analysis, on measurements, or on a combination [24].

A static WCET analysis derives WCET estimates without
actually running the program. Instead, it takes into account all
input value combinations, together with the characteristics of
the software and hardware, to derive a safe WCET estimate.
The analysis is commonly subdivided into the three phases of
flow analysis; where bounds on the number of times different
instructions can be executed are derived, low-level analysis;
where bounds on the time different instructions may take to
execute are derived, and calculation; where a WCET estimate
is derived based on the information obtained in the first two
phases [7], [24].

Many static WCET analyses are input-sensitive, meaning
that they are able to take constraints on input variable values
into account when calculating a WCET estimate [24]. In
general, such analyses should derive more precise WCET
estimates than non-input-sensitive, since limitations of inputs
may limit the possible paths that can be taken. This is the case,
e.g., when the value of an input variable is used to decide the
number of times a loop can iterate. In this work, we assume
that an input-sensitive static WCET analysis is available, and
we use it as a basis for our methods.

It is not always possible to statically deduce the exact timing
behaviour of a program with a set of possible inputs, due to
the complexity of the control flow and the used hardware.

In these cases, static WCET analysis tools make conserva-
tive overapproximations in their subanalyses [24], something
which may result in non-tight WCET estimates [9]. For
example, the WCET may be based on a series on worst-case
loop behaviors, each possible for some value of some input
variable, but never possible simultaneously for any input value
combination. Moreover, different overapproximations are often
conservatively combined in the WCET estimate calculation.
One example is when a cache analysis conservatively classifies
a memory access as a always cache miss even though it may,
for a input value combination that gives a large loop bound,
result in a cache hit.

Thus, a static input-sensitive WCET analysis tool will
sometimes, when run with a single worst-case input value
combination, be able to produce a tighter WCET estimate,
compared to when run with all possible input value combi-
nations. This allows for better overall system utilization and
makes it easier for the real-time system designer to produce a
schedulable system.

A measurement-based WCET analysis executes the program
on the hardware for some input value combinations, using
some type of time measurement equipment, such as oscillo-
scopes, logical analysers, or hardware trace mechanisms to
derive the timing of the program or parts of the program [2],
[23], [25]. Since it is impossible for most programs to test
all input value combinations, only a subset of the possi-
ble executions are run, hoping that the selected subset will
include the WCET-causing input value combination. If not,
this may lead to dangerous underestimations of the WCET.
Consequently, methods for quickly identifying input value
combinations which are candidates to produce the WCET,
as the ones presented in this article, should provide valuable
guidance for measurement-based WCET analyses.

B. Related work

To the author’s knowledge the problem of deriving which
input values actually cause the WCET has been addressed only
by few researchers.

Wenzel et al. [23] use measurements, model checking and
genetic algorithms to derive which input values that make
a certain code part to execute. The worst timing measured
for different code parts are then combined to an overall
program WCET estimate. In contrast, our approach does not
use measurements and is able to derive the overall program
WCET input values.

Fredriksson et al. [10], [11] derive a parametrical WCET
formula for a software component, based on an automatized
partitioning of the component’s input value space and multiple
runs by an input-sensitive WCET analysis tool. Staschulat
et al. [18] derives a similar context-dependant partitioning of
the execution time behaviour of software modules from graph-
ical models of the system. Our approach has some similarities
with, and is reusing part of Fredriksson’s work. However,
since we derive a single WCET input value combination
and not a parametrical WCET formula, the algorithms and
implementations differs a lot.

Program

Input value
space (con-
straints on
input values)

Input
variables Input-sensitive

static WCET
analysis

INPUT SEARCH FOR WCET INPUT VALUES

Worst-case
input values
and WCET
estimate

OUTPUT

Partitioning
of input

value space

WCET estimates
for partitions

Input value
space partitions

Fig. 1. WCET input value analysis

III. DERIVING THE WCET INPUT VALUES

Our method consists of a search algorithm (see Fig. 1) with
a combination of systematic search over partitions of the value
space of the input variables and an input-sensitive static WCET
analysis. The value space of the input variables is all concrete
combinations of the input variable’s values of the program.

The possible values of the input variables are restricted
by the data type in the program. They can often be further
restricted, e.g., by natural physical value constraints. For
example, a variable speed declared as an 8-bit unsigned integer
can hold integer values between 0 and 255. Assuming that
speed holds the input of a vehicle speed sensor, and the vehicle
can’t go faster than 200 km/h, then speed can be further
constrained by speed ≤ 200. These additional restrictions are
often declared by user annotations.

The algorithm systematically divides this input value space
into smaller input value space partitions, each with a subset of
the input value space. Consider a program with three integer
input variables i, j, and k, with the input value constraints
0 ≤ i ≤ 1, 0 ≤ j ≤ 0, and 0 ≤ k ≤ 1. The input value space
vs is then {〈i← 0, j← 0, k← 0〉, 〈i← 1, j← 0, k← 0〉, 〈i←
0, j← 0, k← 1〉, 〈i← 0, j← 0, k← 1〉} The number of input
value combinations is |vs| = 4, and the number of non-empty
value space partitions are 2|vs| − 1 = 15.

A. Algorithm description

The basic search algorithm is given in Fig. 2. It works by
iteratively calculating WCET estimates for different partitions
of the program’s input value space. In each iteration the
partition with the largest WCET estimate is selected and
divided into two or more smaller partitions, for which WCET
calculations are made. The process continues until the selected
partition holds only one input value combination, which is
then returned. Under the algorithm prerequisites given below,
this is a WCET input value combination1. The analysis can
be stopped at any time to return the largest WCET currently
selected. This is a safe value, and possibly tighter than the
value derived by running the static WCET analysis with the
original input value space.

1Note that there sometimes may be several input value combinations which
results in the WCET.

find_WCET_input_values(prog, vs) :=
vsp <- vs;
prio_queue <- empty;
WHILE cardinality(vsp) > 1 DO

vsp_set <- partition(vsp);
FOREACH vsp’ in vsp_set DO

wcet <- calc_wcet(prog, vsp’);
prio_queue.insert(wcet, vsp’);

END FOREACH
vsp <- prio_queue.extract_max();

END WHILE
RETURN vsp.pop_vc();

Fig. 2. WCET input search algorithm

The arguments to the algorithm are prog, the program
under analysis, and vs, a representation of the input variable’s
value space. A value space partition, vsp, holds a subset of
vs. The function cardinality(vsp) returns the number
of input value combinations held by the argument vsp. The
function partition(vsp) creates two or more disjunct
partitions from the argument vsp.

The prio_queue is a priority queue where inserted
partitions are indexed upon their corresponding calculated
WCET estimates. The function extract_max() removes
and returns the partition with the largest WCET estimate in
the queue.

B. Algorithm prerequisites

The algorithm puts some demands on the WCET ana-
lysis used. Let calc wcet(vsp) be the WCET estimate cal-
culated by a WCET analysis for a partition vsp. Further, let
meas time(vc) be the measured execution time for an input
value combination vc. For the algorithm to work correctly the
following assumptions should hold:

(1) The WCET calculation must never underestimate the
WCET, i.e.,

maxvc∈vsp meas time(vc) ≤ calc wcet(vsp)

must be true for any vsp.

(2) A WCET calculation run with a single-valued input value
partition should produce a WCET estimate equal to the time
for running the program with these inputs. I.e., if

vc ∈ vsp and |vsp| = 1

then the following holds:

calc wcet(vsp) = meas time(vc)

(3) For any two input value space partitions vsp1 and vsp2

such that vsp1 ⊆ vsp2 then

calc wcet(vsp1) ≤ calc wcet(vsp2)

should hold.

We claim that assumptions (1) and (3) are sound and
valid for most type of today’s input-sensitive WCET analysis
tools. However, assumption (2) might not always be true.
In Section V we outline how to modify our algorithm to
overcome this.

partition(vsp) :=
vsp_set <- empty;
v <- select_var_with_many_values(vsp);
l..u <- get_assigned_range(vsp, v);
m <- l + ((u - l) / 2;
vsp’ <- new_vsp(vsp, v, l..m);
vsp’’ <- new_vsp(vsp, v, m+1..u);
vsp_set.insert(vsp’);
vsp_set.insert(vsp’’);
RETURN vsp_set;

Fig. 3. Binary search using ranges

C. Binary search using ranges

A compact and efficient way of representing a set of input
value combinations is to assign a l..u range to each input
variable v. Then v ← l..u means that all input values that
can be assigned to v are ≥ l and ≤ u. Assuming that v is
an integer variable then the number of values held by the l..u
range represention is u − l + 1. Moreover, assuming that we
have n input variables each assigned a range, then the total
number of concrete input value combinations is the product
of all the range sizes.

Based on this range representation we can construct a type
of binary search over the input value space as outlined in func-
tion partition in Fig. 3. From the argument vsp, which
represent two or more concrete input value combinations,
we first select a variable v with a multi-valued range, i.e.,
u− l ≥ 1. v’s range is then extracted and used to create two
new disjunct value space partition, each with a size about half
of the argument vsp. The function new_vsp(vsp,v,r)
creates a new value space partition from the argument vsp
by replacing the range assigned to v with the new range r.
The created partitions are inserted in the vsp_set set, which
is returned.

D. An illustrative example

Fig. 4 illustrates how the algorithm works. The program has
three input variables i, j, and k and has been given the initial
value space of 〈i←0..15, j←0, k←0..1〉 which corresponds
to 16 ∗ 1 ∗ 2 = 32 concrete input value combinations. Variable
i is selected first for range division. This produces two new
partitions for which WCET calculations are made, from which
the 〈i ← 0..7, j ← 0, k ← 0..1〉 partition gives the largest
WCET estimate and the analysis therefore continues with this
partition. This time i’s range is subdivided into 0..3 and 4..7,
both producing partitions for which WCET calculations are
made.

The division of i’s range continues until the value of i
which produces the largest WCET estimate when j← 0 and
k ← 0..1 has been found. Since j only can hold a single
value, the next variable selected is k. The division of k’s range
produces two partitions, for which 〈i←5, j←0, k←0〉 gives
the largest WCET. There are no other partitions in the priority
queue with a larger WCET estimate, so the iteration stops and
this value combination is returned.

i 0..15, j 0, k 0..1

i 0..15, j 0, k 0..1

i 0..7, j 0, k 0..1 i 8..15, j 0, k 0..1

WCET: 72 WCET: 40

i 0..15, j 0, k 0..1

i 0..7, j 0, k 0..1 i 8..15, j 0, k 0..1

WCET: 72 WCET: 40

i 4..7, j 0, k 0..1i 0..3, j 0, k 0..1

WCET: 65 WCET: 70

1

2

3….
i 0..15, j 0, k 0..1

i 0..7, j 0, k 0..1 i 8..15, j 0, k 0..1

WCET: 72 WCET: 40

i 4..7, j 0, k 0..1i 0..3, j 0, k 0..1

WCET: 65 WCET: 70

i 6..7, j 0, k 0..1i 4..5, j 0, k 0..1

WCET: 70 WCET: 68

i 5, j 0, k 0..1i 4, j 0, k 0..1

WCET: 62 WCET: 70

i 5, j 0, k 1i 5, j 0, k 0

WCET: 70 WCET: 45

5

= in prio queue

= partitioned

Fig. 4. Example of basic algorithm run

It should be noted that the range representation does not
allow constraints between the values of two or more input
variables to be expressed. Allowing such constraints makes
the division of the input value space into smaller partitions
somewhat more complicated. However, it is fully possible
to extend our WCET input search methods to handle such
constraints.

A strategy for dividing the input space must be devised for
each data type and representation. In the present implementa-
tion, we only have support for integers represented as intervals.
However, we have the following ideas for other data types:

• Floating point input variables, which can represent vast
amount of values, can be represented by intervals. The
smallest input value space will be defined as an interval
of suitable size.
• Pointer values can be represented as a combination of
pointer sets and offset intervals (see [13]), and dividing
the input space can be done using subsets and subintervals.

x 0..15, y 0..255

1

2

x 0, y 0..255

WCET: 752 WCET: 550

x 0..15, y 0..255

x 1..14, y 0..255 x 15, y 0..255

WCET: 621

WCET: 752 WCET: 550

x 1..14, y 0..255 x 15, y 0..255

WCET: 621

WCET: 752

x 0, y 1..254 x 0, y 255

WCET: 710

x 0, y 0

WCET: 744

x 0, y 0..255

= in prio queue

= partitioned

x 0..15, y 0..255

Fig. 5. Example of extreme value heuristic

E. Algorithm complexity and back-tracking

Our algorithm will, when using binary search and ranges as
outlined in Fig. 3, have a best-case behaviour (in the number
of WCET analysis runs) of Ω(2 ∗ log2|vs|) = Ω(log2|vs|),
where vs is the input value space. This is because in each step
the size of the currently selected partition is divided by two.
Unfortunately, due to overapproximations made in the WCET
analysis, this behaviour is not always the case. Sometimes both
partitions originating from the selected partition gets a WCET
estimate smaller than a WCET estimate found in the priority
queue. The analysis then has to back-track and continue with
the partition with the higher WCET. Assume that the 〈i←
5, j← 0, k← 0〉 partition in Fig. 4 gave a WCET estimate
of 65 instead of 70. Then the analysis must continue with
〈i ← 6..7, j ← 0, k ← 0..1〉 with a WCET estimate of 68
instead of terminating, since 68 > 65.

In the worst-case, this type of back-tracking causes a WCET
calculation to be made for each concrete input value combi-
nation plus a WCET calculation for each node in the binary
search tree. Thus, the algorithm has a worst-case behaviour (in
the number of WCET analysis runs) of O(2∗ |vs |) = O(|vs|).

IV. APPROACHES FOR FASTER TERMINATION

A potential problem with the binary search algorithm is that
many WCET calculations might be needed before the input
WCET values can be determined, especially when |vs| is large.
This section outlines some approaches for faster algorithm
termination.

A. Extreme-value heuristic

A general observation is that it is often either the smallest
or the largest value in an input variable’s value domain will
be the value that gives the WCET. This is especially true if
the outcome of loop conditions are dependent on this input
variable.

Our extreme-value search heuristic originates from this
observation. It modifies the algorithm in Fig. 3 as follows:
whenever a variable v is selected for the first time its l..u
range will be divided into three new ranges (if possible): l..l,
l+1..u−1, and u..u.

Fig. 5 illustrates how our extreme-value heuristic works.
The program has two integer input variables x and y, with
a given input value range of 0..15 and 0..255 respectively.
Variable x is first selected for input range division. This
produces three new partitions for which WCET estimates are
calculated. The 〈x← 0, y← 0..255〉 partition gets the largest
WCET estimate and the analysis continues with a division of
y’s range. This produces three new partitions for which WCET
estimates are calculated. The 〈x←0, y←255〉 partition gives
a WCET estimate which is larger than all other partitions in
the priority queue. Thus, the WCET is caused when x and
y were assigned its minimum and maximum input values,
respectively.

Our extreme-value heuristic will have a best-case behaviour
(in the number of WCET analysis runs) of Ω(3 ∗ n) = Ω(n)
where n is the number of multi-valued input variables. The
worst-case behaviour will, similar for our binary search algo-
rithm, be O(|vs|).
B. Proceeding depth first

When we have equal WCET estimates for two partitions,
we should proceed with the one which has processed furthest
down the tree. This is because we are closer to termination
in this node, assuming that no reduction is found. This can
be made by keeping track on the number of processing steps,
i.e., the level in the tree, for each partition.

C. Postponing WCET calculations

Another optimization is to postpone a WCET calculation
for a value space partition vspj if there is another partition
vspk which originates from the same partition, say vspi,
and calc wcet(vspi) equals calc wcet(vspk). If we find no
reduction further down the search tree, we do not have to
do a WCET calculation for vspj . This, however, requires an
additional priority queue holding non-processed items. As an
illustration, consider the processing of the 〈i ← 4..7, j ←
0, k← 0..1〉 partition in Fig. 4. Since 〈i← 4..5, j← 0, k←
0..1〉 also got 70 as WCET, we can postpone the WCET
calculation of 〈i ← 6..7, j ← 0, k ← 0..1〉 until we get a
smaller WCET.

D. Ordering the processing of variables

If some variable’s input values have larger effect on the
calculated WCET estimate than others, these variables should
be processed first. The reason is that the number of nodes to
process in the total search tree will be smaller in that case. For
example, assume that we have two variables v1 and v2, and
it is only the partitioning of the first that reduces the WCET
estimate. If we partition on v1 first, there will be no back-
tracking from the partitioning of the v2. If we take v2 first,
however, we will have to back-track to each node in the search

tree of v1. This idea is similar to the First Fail Principle with
Constraint (FFC) heuristic in constraint programming, where
the variable which is most constrained is selected first [14].
Such ordering of variables could either be made statically,
before the algorithm is run, or dynamically during run-time.

E. User interaction

Another option for improving the overall analysis time is
to let the user provide an input value space partition in which
he/she believes the worst-case input value combination is to be
found. For example, in Fig. 4 the user might believe that the
worst-case is when k = 1 and 0 ≤ i ≤ 6. The analysis
can then be started with an initial set of partitions according
to the user’s assumptions, e.g., 〈i← 0..6, j← 0, k← 1〉, 〈i←
0..6, j←0, k←0〉, and 〈i←7..16, j←0, k←0..1〉, where the
first partition corresponds to the user provided assumption.

F. Using BCET calculations

If the used WCET tool also supports a safe best-case
execution time (BCET) calculation (i.e., provides a lower
bound of the actual BCET), the overall analysis time can some-
times be shortened. When calc bcet(vsp) = calc wcet(vsp)
holds for a selected value space partition vsp, all input value
combinations in vsp have exactly the same timing. Thus, the
analysis can then stop and any input value combination in vsp
can be returned. The benefit of using this optimisation depends
on the cost of doing BCET calculation and how likely it is that
the BCET estimate becomes equal to the WCET estimate.

G. Using measurements

Another optimization is to initially make a few program
runs on some measurement equipment for some input value
combinations. The worst measured timing t is then a lower
estimate of the WCET. Then, all partitions with a WCET
estimate ≤ t can be pruned away from the priority queue,
since they are guaranteed not to include the WCET input value
combination. When calc wcet(vsp) = t holds for a selected
partition, the analysis can stop and the input value combination
which generated the measured timing t can instead be returned.

V. HANDLING OVERESTIMATIONS FOR SINGLE INPUT

VALUE COMBINATIONS

The methods outlined in Sections III and IV work under the
assumption that, when run with a single value space partition
(|vsp| = 1), the static WCET analysis should produce a value
equal to measured value for the same input combination, i.e.,
if vc ∈ vsp and |vsp| = 1 then

calc wcet(vsp) = meas time(vc)

should hold.
Unfortunately, this is not true for all type of static WCET

analyses, mainly due to overapproximations made in the flow-
and low-level analysis. Consequently, we can then only guar-
antee that for single partitions the calculated WCET estimate

will be greater than or equal to the measured time, i.e., if
vc ∈ vsp and |vsp| = 1 then

calc wcet(vsp) ≥ meas time(vc)

holds. This means that we might have two disjunct par-
titions vsp1 and vsp2, each holding a single input value
combination, i.e., vc1 ∈ vsp1, |vsp1| = 1, vc2 ∈ vsp2,
|vsp2| = 1, and that calc wcet(vsp1) ≥ calc wcet(vsp2) and
meas time(vc1) < meas time(vc2) both are simultaneously
true. Thus, vc1 might be wrongly reported as the WCET input
value combination.

This problematic situation can be handled by complement-
ing our method with some type of measurement equipment.
When a partition only holds a single input value combination,
the program is run with this combination on the measurement
equipment, instead of using the static WCET analysis. Thus,
the

wcet <- calc_wcet(prog, vsp’);

line in the Fig. 2 algorithm gets replaced with:

IF cardinality(vsp’) == 1 THEN

wcet <- meas_time(prog, vsp’.pop_vc());

ELSE

wcet <- calc_wcet(prog, vsp’);

In general, if the cost for doing static WCET analysis
is much higher than the cost for doing measurements, it
might be better to do exhaustive measurements for a value
space partition when the number of included input value
combinations is small enough.

It should however be noted that accurate timing measure-
ment in itself is a challenging problem. On complex hardware
architectures there are often many possible hardware states in
which a program might start its execution, and many of these
states might result in a different timing even though the input
variable’s values are fixed [16]. We do not consider setting up
the intial worst-case hardware state for a measurement in this
article. Instead, we refer to e.g., [4], [15], [24] for approaches
to handle this problem.

VI. EXPERIMENTAL EVALUATIONS

A. The SWEET tool

The outlined methods have been implemented in our WCET
analysis tool SWEET (SWEdish Execution time Tool) [7],
[13]. SWEET performs flow analysis on an intermediate code
representation (NIC) emitted by a research compiler [26]. The
NIC code has a one-to-one mapping to the control-flow graph
structure of the compiler generated object code. Flow analysis
results derived on NIC can therefore be directly mapped to
entities in the object code.

SWEET includes a flow analysis called Abstract Execution
(AE) [13], which is a form of symbolic execution based on
Abstract Interpretation (AI) [3], [20]. The AI is used to derive
safe bounds on the possible values of variables at different
program points. The AE is capable of deriving various type
of flow information and can handle almost full ANSI-C,
including pointers, bit operations, and aggregate data structures

Program Description LOC Funcs Loops Conds Ann IAnn |VS|
crc Cyclic redundancy check computation. 128 3 3 9 4 4 16
edn Finite impulse response filter calculations. 285 9 12 12 3 3 44
jcomplex Nested loop program. 64 2 2 5 2 2 512
lcdnum Read ten values, output half to LCD. 64 2 1 26 2 2 160
ns Search in a multi-dimensional array. 535 2 5 5 1 1 2
nsichneu Simulates an extended Petri net. 4253 1 1 625 6 6 54
task1 Industrial task developed by Volvo CE 55 1 0 4 6 3 36
task2 Industrial task developed by Volvo CE 56 1 0 4 11 6 3.24 ∗ 108

task3 Industrial task developed by Volvo CE 58 3 0 4 12 7 9.38 ∗ 1010

task4 Industrial task developed by Volvo CE 72 1 0 13 20 13 4.24 ∗ 1017

task5 Industrial task developed by Volvo CE 86 2 0 9 11 6 4.71 ∗ 1010

task6 Industrial task developed by Volvo CE 43 5 1 10 12 7 2.47 ∗ 1013

task7 Industrial task developed by Volvo CE 123 4 1 32 24 15 2.10 ∗ 1019

task8 Industrial task developed by Volvo CE 119 5 0 17 12 4 3.48 ∗ 1011

task9 Industrial task developed by Volvo CE 49 5 0 9 4 4 3.24 ∗ 107

task10 Industrial task developed by Volvo CE 195 3 0 40 24 9 1.00 ∗ 1012

TABLE I
INPUT-SENSITIVE BENCHMARKS USED

such as structs and arrays [13], [19]. AE has several options
for trading precision and analysis time and can take constraints
on input variable’s values into account (thus being an input-
sensitive flow analysis).

Constraints on input values are given in SWEET’s anno-
tation language. Numeric variables are constrained by in-
tervals. Pointer constraints are sets of abstract addresses,
each representing a range of NIC addresses. We can also
give annotations on the content of (fields of) aggregate data
structures, such as structs and arrays. The annotations can
constrain variable values in specific program points. Normally,
inputs are constrained at the program entry point.

The low-level analysis of SWEET [6] supports the
NECV850E and ARM9 processors, each including a pipeline
but no cache. The low-level analysis is not input-sensitive, i.e.,
the upper timing bounds derived for instructions, will not be
affected by constraints on the program’s input values. Three
calculation methods are supported: a path-based method, a
global IPET method, and a hybrid clustered method [7], [8].

B. Evaluation issues

We have implemented the binary- and the extreme-value
search, both using ranges for representing variable’s values
(see Section III and Section IV). In all our evaluations we
used the depth-first and postponing optimizations. However,
we have not used any user provided annotations to make an
initial partition of the input value space, nor have we used
BCET calculations or measurements optimizations to reduce
the search time (see Section IV).

We have not complemented our evaluations with any mea-
surement equipment, as described in Section V. However, sim-
ilar to a time-accurate simulator, SWEET’s low-level analysis
include the possibility get the timing of instruction traces.
Thus, for each worst-case input value combination derived by
our search methods, we also derived a corresponding instruc-
tion trace. The timing for the trace, derived using SWEET’s

instruction trace simulation facility, was then compared to the
calculated WCET estimate.

For all our experiments we used a less precise version
of AE2, optimising the WCET calculations for speed. This
means that we may have encountered more back-tracking,
compared to when using a more precise AE. We used the
ARM9 processor model in the low-level analysis, and the
clustered calculation method.

We have used programs from the Mälardalen WCET Bench-
mark suite [22], together with some task codes [1], [17]
provided, together with associated input value annotations, by
our industrial partner [21], to evaluate our methods3.

Tab. I gives some details of the benchmark used. LOC
gives lines of C code. Ann gives number of input annotations,
while IAnn gives number of integer input annotations. The
integer annotations where provided using ranges, thus suitable
for partitioning. The annotations for the industrial tasks also
included some pointer annotations. These annotations held,
however, only one pointer value each, and did therefore not
need any partitioning. Many of the task code annotations
referred to 8-, 16- or 32-bit fields of aggregate data structures.
No floating point annotations where provided. |VS| gives the
size of the input value space, derived as the product of all the
value sizes of the integer input variables annotations.

All evaluations where run in Cygwin and Windows XP
on a Dell Precision M4300, with an Intel Core2 T7500
CPU, running at 2.2GHz and with 3.5GB of RAM. Since
a lot of tool communication were needed, we used Bash
shell programming and Cygwin built-in shell commands to
implement our algorithms.

2We used full merging and generated only upper loop bounds and global
upper bounds on the number of times different nodes in the program can be
executed. For details on AE’s analysis options, please see: [12], [13].

3Compared to [1] only tasks 1–10 were included in our experiments. Tasks
11–13 were excluded due to incomplete input annotations files.

Program Binary Extreme
OrgW WC BT MnT MxT WT AT WC BT MnT MxT WT AT FinW RedW SimW

crc 83275 5 0 10 12 56 105 5 0 10 11 54 91 83275 0% 83275
edn 9241 6 0 20 27 134 217 4 0 20 21 82 121 9241 0% 9241

jcomplex 4557 383 279 1 8 1404 3496 391 288 2 8 1447 3620 561 87.7% 561
lcdnum 858 17 9 2 5 55 163 5 2 2 4 13 40 858 0% 858

ns 1603 2 0 4 31 35 53 2 0 4 28 32 49 1603 0% 1603
nsichneu 16242 12 7 91 101 1153 1238 12 7 93 103 1177 1296 16242 0% 16242

task1 82 7 1 12 17 98 163 5 1 12 17 69 116 82 0% 82
task2 60 30 2 1 7 93 365 11 5 1 5 33 129 60 0% 60
task3 156 39 4 36 53 1462 1938 23 15 36 52 868 1124 156 0% 156
task4 576 77 20 15 25 1673 2342 55 43 15 23 1169 1511 514 10.8% 514
task5 378 - - - - - - - - - - - - 376 0.5% -
task6 237 57 15 3 6 241 803 40 32 3 6 173 446 226 4.6% 226
task7 756 418 359 6 15 3361 6983 742 726 6 12 5894 11476 639 15.5% 639
task8 256 265 226 5 10 1592 3366 274 269 5 16 1688 3473 229 10.5% 229
task9 367 32 7 3 8 152 471 18 13 3 6 80 207 295 19.6% 295

task10 446 252 213 19 46 7381 9065 243 234 22 38 7143 8964 403 9.6% 403

TABLE II
ANALYSIS RESULTS FOR INPUT-SENSITIVE BENCHMARKS

C. Obtained results

Tab. II shows analysis results. Binary gives results for the
basic input derivation method, while Extreme gives results for
our extreme value search method. OrgW gives the original
WCET estimate (in clockcycles) derived by SWEET with all
input value combinations. WC gives the number of WCET
calculations performed, and BT gives the number of WCET
calculations due to back-tracking. We here (pessimistically)
define a back-track as any WCET calculation performed
outside the algorithm’s best-case path. Thus, for the binary
search the amount of back-tracking is

WC − ((Σv∈IAnn
log(|v|)�) + 1)

while for the extreme heuristic it is

WC − ((Σv∈IAnn1) + 1)

The +1 term comes from the fact that we, in our evaluations,
made an additional WCET calculation for the original input
value space.

MnT and MxT gives the minimum and maximum analysis
time, in seconds, used for any of the WCET calculations. WT
gives the total time, in seconds, spent in WCET calculations,
while AT gives the total analysis time in seconds (including
file processing and shell-command runs). FinW gives the final
WCET estimate obtained for the derived worst-case input
value combination (for all terminating analyses we got the
same FinW for both binary and extreme) and RedW gives the
WCET reduction compared to OrgW in percent. SimW gives
the timing, in clockcycles, obtained using SWEET’s trace
simulation facility for the derived worst-case input values, as
described above.

We conclude that our methods are able to derive a WCET
input combination for most of the analyzed programs. Further,
the number of WCET calculations needed grow with the size
of the input value space.

All programs experience varying WCET calculation time.
In general, when the input value size decreases, the time for
performing the WCET calculation also decreases. Thus, the
first analysis generally consumes most time, while subsequent
analyses are faster.

We see that the Binary and Extreme heuristics are highly
dependent on the input value(s) that gives the worst-case
behaviour. For most of the programs it is beneficial to use
the extreme heuristic, but not for all (jcomplex, task7,
and task8 being notable exceptions).

D. Categories of analysis runs

When investigating our analysis traces we could distinguish
three major categories of analysis runs. For the first category,
examplified in Fig. 6(a), the FinW became equal to the OrgW.
This means that there exists at least one path through the tree
from the root to a leaf where all the branch-nodes holds the
same WCET. Thus, the WCET input value can be derived with
no, or rather small amount of back-tracking. All benchmarks
with RedW equal to 0% belongs to this category, such as
lcdnum, and task1, task2, and task3.

For the second category of analysis runs, examplified in
Fig. 6(b), we get a reduction of WCET compared to the
OrgW. Thus, overapproximations in our flow analysis, due to
a large input value space, made the initial OrgW pessimistic.
Moreover, there is a path through the tree from the root to the
worst-case leaf which can be taken with rather little amount
of back-tracking. Thus, even though nodes in this path get
smaller WCETs when the input value size decreases, this is
“compensated” by the fact that all other tree nodes have got
even smaller WCETs. task9 belongs to this category.

For the third category of analysis runs, examplified in
Fig. 6(c), we experienced a large amount of back-tracking. As
for category 2, we generate a overly pessimistic WCET for the
initial input value space. Moreover, we also get a reduction in
WCET when propagating further down the tree that is larger

752

= analyzed= WCET candidates

752

= not reached

752

752

750

750 710 732

750

740 750

740 700 750 750

(a) Example of fast termination with no WCET reduction

752

740

737

737

730

730 710 732

742

730 722

730 700 720 722

(b) Example of fast termination with WCET reduction

752

752

752

740

752

740 740 742

752

752 752

730 730 747 742

(c) Example of slow termination with WCET reduction

Fig. 6. Types of analysis runs encountered

than the WCET reduction for branches higher up in the tree.
jcomplex, task4, task5, task6, task7, task8, and
task10 all belong to this category. When running these pro-
grams with their initially given annotations, only jcomplex’s
analysis terminated within reasonable time4. By changing the
processing order, making variables with smaller input domains
get processed before variables with large input domains, we
got the analysis results in Tab. II for task7 and task8. For
task4, task6, and task10 we had to investigate printouts
of previous analysis runs, and put the variables, that when
partitioned gave the largest reduction, first in the processing
order. Thus, we conclude, that the order in which variables are
processed may have a large impact on the analysis time.

For task5 we could not get the analyses to terminate
within reasonable time, even by changing the processing order.
The WCET reported for this task is therefore the largest
WCET value stored in the priority queue when the analyses
were halted.

The huge amount of back-tracking for jcomplex can be
explained by the fact that jcomplex has a very complex

4We used 4 hours as an upper time limit for our analyses.

input-dependant execution behaviour. Basically, each concrete
value combination of the two input variables results in a dif-
ferent execution time. Thus, for such type of (rather artificial)
programs our methods may experience a lot of back-tracking.

To summarize: for benchmarks belonging to category 1 our
methods are able to rather quickly derive the WCET input
values. For benchmarks belonging to category 2 and 3, it might
take longer time to derive the WCET input values. For the third
category, we could use our methods to get a tighter WCET,
even without having to wait for the analysis to terminate.
Moreover, for some benchmarks we were able to manually
“convert” the program from the third to the second category.
The WCET reduction for benchmarks belonging to category
2 and 3 for which our analyses terminated ranged from 4.6%
(task6) to 87.7% (jcomplex).

VII. CONCLUSIONS AND FUTURE WORK

This paper has introduced several novel methods to derive
the concrete input values that cause the WCET of a program,
which – though important – has hardly been addressed before.
Our evaluations show that for most of our benchmarks the
WCET input variables can be relatively quickly derived, even
for those with very large input value space. We have also
shown that our methods can be used to get tighter WCET
estimates, even without having to wait for the analysis to
terminate.

For future work we plan to investigate classical search
methods, such as simulated annealing, to find a good ini-
tial partition of the input value space. Moreover, we would
like to investigate methods originating from the constraint-
programming community to derive good ordering of variables
for our search algorithms. We would also like to investigate
the causes of overapproximation in our WCET analysis.
With higher precision in our initial WCET estimates the
amount of backtracking should decrease. We would also like
to investigate the usage of our methods to quickly narrow
down the search space for measurement-based WCET analysis
approaches.

VIII. ACKNOWLEDGMENTS

The authors would like to thank Volvo CE [21] for letting us
use their industrial task codes in our experimental evaluations.

REFERENCES

[1] Dani Barkah, Andreas Ermedahl, Jan Gustafsson, Björn Lisper, and
Christer Sandberg. Evaluation of automatic flow analysis for WCET
calculation on industrial real-time system code. In Proc. 20th Euromicro
Conference of Real-Time Systems, July 2008.

[2] Guillem Bernat, Antoine Colin, and Stefan Petters. pWCET: a tool
for probabilistic worst-case execution time analysis. In Proc. ACM
SIGPLAN Workshop on Languages, Compilers and Tools for Embedded
Systems (LCTES’03), 2003.

[3] Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified
lattice model for static analysis of programs by construction or approx-
imation of fixpoints. In Proc. 4th ACM Symposium on Principles of
Programming Languages, pages 238–252, Los Angeles, January 1977.

[4] Jean-François Deverge and Isabelle Puaut. Safe measurement-based
WCET estimation. In Proc. 5th International Workshop on Worst-Case
Execution Time Analysis (WCET’2005), 2005.

[5] J. Engblom. Static Properties of Embedded Real-Time Programs,
and Their Implications for Worst-Case Execution Time Analysis. In
Proc. 5th IEEE Real-Time Technology and Applications Symposium
(RTAS’99). IEEE Computer Society Press, June 1999.

[6] Jakob Engblom. Processor Pipelines and Static Worst-Case Execution
Time Analysis. PhD thesis, Uppsala University, Dept. of Information
Technology, Uppsala, Sweden, April 2002. ISBN 91-554-5228-0.

[7] Andreas Ermedahl. A Modular Tool Architecture for Worst-Case
Execution Time Analysis. PhD thesis, Uppsala University, Dept. of
Information Technology, Uppsala University, Sweden, June 2003.

[8] Andreas Ermedahl, Friedhelm Stappert, and Jakob Engblom. Clustered
worst-case execution-time calculation. IEEE Transaction on Computers,
54(9):1104–1122, September 2005.

[9] Christian Ferdinand and Reinhold Heckmann. Worst-case execution time
– a tool provider’s perspective. In 11th IEEE Symposium on Object
Oriented Real-Time Distributed Computing (ISORC2008), pages 340–
345, 2008.

[10] Johan Fredriksson, Thomas Nolte, Andreas Ermedahl, and Mikael Nolin.
Clustering worst-case execution times for software components. In Proc.
7th International Workshop on Worst-Case Execution Time Analysis
(WCET’2007), Pisa, Italy, July 2007.

[11] Johan Fredriksson, Thomas Nolte, Mikael Nolin, and Heinz Schmidt.
Contract-based reusable worst-case execution time estimate. In Proc.
14th International Conference on Real-Time Computing Systems and
Applications (RTCSA’07), August 2007.

[12] Jan Gustafsson and Andreas Ermedahl. Merging techniques for faster
derivation of WCET flow information using abstract execution. In Proc.
8th International Workshop on Worst-Case Execution Time Analysis
(WCET’08), July 2008.

[13] Jan Gustafsson, Andreas Ermedahl, Christer Sandberg, and Björn Lisper.
Automatic derivation of loop bounds and infeasible paths for WCET
analysis using abstract execution. In Proc. 27th IEEE Real-Time Systems
Symposium (RTSS’06), December 2006.

[14] Kim. Marriott and P. J. Stuckey. Programming with constraints : an
introduction / Kim Marriott and Peter J. Stuckey. MIT Press, Cambridge,
Mass. :, 1998.

[15] Stefan Petters. Worst Case Execution Time Estimation for Advanced
Processor Architectures. PhD thesis, Institute for Real-Time Computer
Systems, Technische Universiät München, Germany, September 2002.

[16] Jan Reineke and Daniel Grund. Sensitivity analysis of cache replacement
policies. Technical Report 36, Automatic Verification and Analysis of
Complex Systems (AVACS) - project, March 2008. ISSN: 1860-9821.

[17] Daniel Sehlberg, Andreas Ermedahl, Jan Gustafsson, Björn Lisper, and
Steffen Wiegratz. Static WCET analysis of real-time task-oriented
code in vehicle control systems. In Tiziana Margaria, Anna Philippou,
and Bernhard Steffen, editors, Proc. 2nd International Symposium
on Leveraging Applications of Formal Methods (ISOLA’06), Paphos,
Cyprus, November 2006.

[18] Jan Staschulat, Rolf Ernst, Andreas Schulze, and Fabian Wolf. Con-
text sensitive performance analysis of automotive applications. In
Proceedings of the conference on Design, Automation and Test in
Europe (DATE’05), pages 165–170, Washington, DC, USA, 2005. IEEE
Computer Society.

[19] Lili Tan. The worst case execution time tool challenge 2006. Technical
report, AbsInt GmbH, 2006.

[20] S. Thesing. Safe and Precise WCET Determination by Abstract Inter-
pretation of Pipeline Models. PhD thesis, Saarland University, 2004.

[21] Volvo CE (construction equipment) homepage, 2008.
www.volvo.com/constructionequipment.

[22] Mälardalen WCET benchmarks homepage, 2006.
http://www.mrtc.mdh.se/projects/wcet/
benchmarks.html.

[23] Ingomar Wenzel, Bernhard Rieder, Raimund Kirner, and Peter P.
Puschner. Automatic timing model generation by CFG partitioning
and model checking. In Proc. Design, Automation and Test in Europe
(DATE’05), volume 1, pages 606–611, March 2005.

[24] Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti,
Stephan Thesing, David Whalley, Guillem Bernat, Christian Ferdinand,
Reinhold Heckmann, Tulika Mitra, Frank Mueller, Isabelle Puaut, Peter
Puschner, Jan Staschulat, and Per Stenström. The worst-case execution
time problem — overview of methods and survey of tools. ACM
Transactions on Embedded Computing Systems (TECS), 7(3):1–53,
2008.

[25] F. Wolf, J. Kruse, and R. Ernst. Timing and power measurement in static
software analysis. Microelectronics Journal, Special Issue on Design,
Modeling and Simulation in Microelectronics and MEMS, 6:91–100,
2002.

[26] The Whole-Program Optimization project homepage, 2001.
www.astec.uu.se/etapp3/.

