
HANDLING NON-PERIODIC EVENTS
TOGETHER WITH COMPLEX CONSTRAINED

TASKS IN DISTRIBUTED REAL-TIME
SYSTEMS

Radu Dobrin1, Gerhard Fohler2

1Department of Computer Engineering Mälardalen
University, Väster̊as, Sweden

2FB Elektrotechnik und Informationstechnik, Technische
Universität Kaiserslautern, Germany

Abstract: In this paper we show how off-line scheduling and fixed priority
scheduling (FPS) can be combined to get the advantages of both - the capability
to cope with complex timing constraints while providing run-time flexibility.
We present a method to take advantage of the flexibility provided by FPS
while guaranteeing complex constraint satisfaction on periodic tasks. We provide
mechanisms to include FPS servers to our previous work, to handle non-periodic
events, while still fulfilling the original complex constraints on the periodic tasks.
In some cases, e.g., when the complex constraints can not be expressed directly
by FPS, we split tasks into instances (artifacts) to obtain a new task set with
consistent FPS attributes. Our method is optimal in the sense that it keeps the
number of artifacts minimized.

Keywords: distributed real-time systems, fixed priority scheduling, off-line
scheduling, complex timing constraints

1. INTRODUCTION

Off-line scheduling and fixed priority schedul-
ing (FPS) are often considered as having incom-
patible paradigms, but complementing properties
(Xu and Parnas, 2000). FPS has been widely
studied and used in a number of applications,
mostly due its simple run-time scheduling, small
overhead, and good flexibility for tasks with in-
completely known attributes. Modifications to
the basic scheme to handle semaphores (Sha et
al., 1990), aperiodic tasks (Sprunt et al., 1989),
static (Tindell, 1994) and dynamic (Palencia and
Harbour, 1998) offsets, and precedence constraints
(Harbour and Lehoczky, 1991), have been pre-
sented. Temporal analysis of FPS algorithms fo-
cuses on providing guarantees that all instances
of tasks will finish before their deadlines. The

actual start and completion times of execution
of tasks, however, are generally not known and
depend largely on run-time events, compromising
predictability.

Off-line scheduling for time-triggered systems, on
the other hand, provides determinism, as all times
for task executions are determined and known in
advance. In addition, complex constraints can be
solved off-line, such as distribution, end-to-end
deadlines, precedence, jitter, or instance separa-
tion. As all actions have to be planned before
startup, run-time flexibility is lacking.

In this work we present methods to combine FPS
with off-line schedule construction. A previous
work (Dobrin et al., 2001) takes an off-line sched-
ule, constructed to fulfill original complex con-
straints, and assigns FPS attributes, i.e., priority,



offset, and period, to the tasks, such that their
runtime FPS execution matches the off-line sched-
ule. It does so by deriving priority inequalities,
which are then resolved by using integer linear
programming (ILP). In this paper we extend the
previous work to provide for inclusion of existing
FPS servers such that non-periodic events can be
handled at run-time, while reenacting the original
off-line schedule. Thus, it combines FPS runtime
flexibility with the capability of off-line scheduling
to resolve complex constrained tasks.

Our method is particulary suitable, by modeling
faults as non-periodic events, in complex con-
strained distributed systems with high fault tol-
erance (FT) requirements where the FT strategy
employed is the re-execution of the faulty task.

FPS cannot reconstruct all schedules with peri-
odic tasks and servers with the same priorities for
all instances directly. The constraints expressed
via the off-line schedule may require that instances
of a given set of tasks need to be executed in
different order on different occasions. Obviously,
there exist no valid FPS priority assignment that
can achieve these different orders. Our algorithm
detects such situations, and circumvents the prob-
lem by splitting a task (or a server) into its
instances. Then, the algorithm assigns different
priorities to the newly generated ”artifact” tasks,
the former instances.

Key issues in resolving the priority conflicts are
the number of artifact tasks created, and the num-
ber of priority levels. Depending on how a priority
conflict is resolved, the number of resulting tasks
may vary, depending on the periods of the split
tasks. Our algorithm minimizes the number of
artifact tasks and priority levels. By using an ILP
solver for the derivation of priorities, additional
demands such as reducing number of preemptions
levels can be added by inclusion in the goal func-
tion.

Priority assignment for FPS tasks has, for exam-
ple, been studied in (Audsley, 1991) and (Gerber
et al., 1995). (Seto et al., 1998) study the deriva-
tion of task attributes to meet overall constraints,
e.g., demanded by control performance. In FPS,
non-periodic events are commonly handled by
servers, e.g., background scheduling, polling server
(Lehoczky et al., 1987; Sprunt et al., 1989) de-
ferrable servers (Lehoczky et al., 1987), or slack
stealing (Lehoczky and Ramos-Thuel, 1992). How-
ever, in 1995, Tia et. al. (Tia et al., 1995) proved
the non optimality of the existing fixed-priority
servers, i.e., no existing approach can minimize
the response time of non-periodic tasks while still
guaranteeing the feasibility of the periodic ones.
A recent paper (Davis and Burns, 2005) provides
an exact schedulability test for application tasks

associated with servers in hierarchical scheduling
systems.

While lower priority non-periodic tasks can be
easily scheduled together with periodic tasks with
attributes derived by using our previous approach,
we propose the inclusion of existing FPS servers to
our method to provide non-periodic events a bet-
ter service than background scheduling. Our goal
is to to provide aperiodic tasks a good response
time, while not jeopardizing the complex timing
constraints of the periodic tasks guaranteed by our
transformation algorithm.

The rest of the paper is organized as follows: In
Section 2 we briefly describe the previous work.
In Section 3 we present our approach to include
non-periodic events. We exemplify our method in
Section 5 and we discuss several aspects of our
approach in Section 4. Section 6 concludes the
paper.

2. TASK ATTRIBUTE ASSIGNMENT
ALGORITHM

In this section we present an algorithm to trans-
form off-line schedules to attributes for FPS in the
absence of non-periodic events, by giving a brief
description of the method presented in (Dobrin et
al., 2001). The approach determines attributes for
tasks assigned to target windows and associated
chains such that, if executed according to fixed
priority scheduling, they will execute inside their
target window and obey the order constraint of
the task chains. Later on, we will present novel
adaptations to incorporate FPS servers to handle
run-time, non-periodic tasks.

2.1 Target windows

A target window of a task instance is defined as
the interval of time in which the instance will
execute and complete at run-time. For example,
the target window of a task scheduled by the
RM algorithm will be the period of the task. The
target window of a task scheduled off-line will
consist of the time slots that the off-line scheduler
assigned to the task.

2.2 Task and system model

We assume a distributed system where tasks are
statically allocated to processors. Tasks τi ∈
{Original Tasks} are fully preemptive and off-
line scheduled to guarantee complex constraints
expressed by target windows TWi, i = 1, 2, . . ..
Each task has a period, T (τi), and a known, upper
bound, execution requirement C(τi).



2.3 Algorithm overview

The input to our method is a taskset τi ∈
{Original Tasks}, with complex constraints ex-
pressed in:

• Off-line schedule, up to LCM, expressing the
original task constraints, that gives off-line
scheduled start times, st(τ j

i ), and finishing
times, ft(τ j

i ), for each instance τ j
i of each

task τi

• Target windows, TW (τ j
i ), representing ear-

liest start times and deadlines for each in-
stance τ j

i of each task τi:

Method core: we analyze overlappings between
target windows and derive sequences of instances
based on the order of execution specified in the off-
line schedule. We translate order constraints into
priority constraints between the new FPS tasks.
We may not be able to find a FPS schedule with
the same number of tasks as the original one, but
we may have to create new tasks by splitting some
of the original off-line tasks. The resulting number
of FPS tasks is to be minimized.

Output: we are looking for a set of tasks, τi ∈
{FPS Tasks}, with priorities, P (τi), offsets,
O(τi) and periods, T (τi) such that:

(1) Each instance of each task τi will execute at
run time inside its target window

(2) The order of execution enforced by the orig-
inal task constraints is preserved

2.4 Derivation of the inequalities

Given the target windows representing the origi-
nal constraints and expressed in the off-line sched-
ule, we derive sequences of tasks corresponding to
the start of each target window(figure 1).

{current instances}tk
{interfering instance}tk

�� @@@
@

@@
TW (A, B)

TW (C, D)

TW (E)

A B

C D

E

tk−1 tk tk+1

SEQk =< DAB >

Fig. 1. Sequence of tasks.

A sequence of tasks SEQk consists of task
instances ordered by increasing scheduled start
times according to the off-line schedule. A se-
quence may contain instances τ j

i of tasks τi

such that est(τ j
i ) = tk, referred to as {current

instances}tk
, or instances τ q

s of tasks τs from over-
lapping target windows such that est(τ q

s ) < tk and
ft(τ q

s ) > tk, which we refer to as {interfering
instances}tk

.

The priority assignment has to preserve the ex-
ecution order expressed in the off-line schedule.
Therefore, from each sequence of tasks SEQk =
k

S1,
k

S2, . . . ,
k

SN , N, k = 1, 2, . . ., we derive prior-
ity relations between the task instances within
SEQk.

P (
k

S1) > P (
k

S2) > . . . > P (
k

SN ) (1)

The priority inequality system derived from the
sequences of tasks, includes all task instances in
the off-line schedule.

2.5 Attribute assignment - conflicts

Based on the order of execution expressed by
the inequalities derived in Section 2.4, we derive
attributes - priorities and offsets - for each task.

Our goal is to provide tasks with fixed offsets
and fixed priorities. It may happen, however, that
we have to assign different offsets/priorities to
different instances of the same task, in order
to reenact the off-line schedule at run time. In
these cases, we split the conflicting task into
instances such that, further on, each instance will
be considered as an independent task with one
instance during LCM.

To find the optimal solution to the problem, we
use integer linear programming (ILP). The aim
of the given attribute assignment problem is to
find a task set, i.e., a minimum number of tasks
together with their priorities, that fulfills the pri-
ority relations of the sequences of the schedule.
The LP solver will provide information about the
optimal splits that satisfy the inequalities, and the
minimum number of priority levels. For a com-
plete description of the ILP problem formulation,
we refer to the results presented in (Dobrin et
al., 2001).

2.6 Periods and offsets

Based on the information provided by the LP-
solver, we assign periods and offsets to each task
in τi ∈ {FPS Tasks}, in order to ensure the
run time execution within their respective target
windows, as following:

T (τi) =
LCM

nr of instances(τi)
(2)

O(τi) = begin(TW (τ1
i ))



D(τi) = end(TW (τ1
i ))

3. USING FPS SERVERS TO HANDLE
NON-PERIODIC EVENTS

So far, we have shown how to translate off-line
schedules to attributes for FPS, i.e., how to exploit
the advantages provided by off-line scheduling
in FPS. However, one of the main advantages
obtained by using FPS is the capability to handle
non-periodic events, e.g., aperiodic tasks.

For analysis purposes, we classify the FPS servers
in two categories, depending on the behavior of
the server upon the presence (or absence) of a
non-periodic event: servers that do not preserve
their capacity during their period if no aperiodic
requests are pending, e.g., background scheduling
or polling server, and servers that do, e.g., de-
ferrable server. In the first case, if no aperiodic
tasks are waiting to be served at the beginning
of the server period, the server capacity is wasted
and replenished at the beginning of the next pe-
riod.

3.1 Motivating example

Ideally, we would like to assign the servers the
highest priority to ensure that aperiodic requests
are provided a fast service. However, we have to
take into consideration the schedulability of the
periodic tasks as well, i.e., we can not minimize
the reaction time to serve aperiodic requests on
the expense of any of the periodic, constrained
tasks. Moreover, in our task model we have to
deal not only with periodic RM scheduled tasks,
but with tasks with complex constraints for which
the attribute assignment has been performed ac-
cording to the previously described method.

Let’s assume we have a set of 3 tasks (table 1)
and we want to fix the execution times of, e.g.,
task B at fixed points in time, e.g., an instance
separation of 11 time units between the first two
instances of B.

Table 1. Original tasks

Task T C

A 5 1
B 10 3
C 20 6

However, since B does not have the shortest pe-
riod, priority assignment according to RM would
not guarantee the constraint satisfaction. Instead
we use our method and assign the second instance
of B an offset equal to 1 (table 2). As an attribute
inconsistency occurs between B’s instances, we
create artifacts for these as shown in table 2.

Table 2. FPS attributes

Task T C P O D

A 5 1 2 0 5
B1 20 3 3 0 10
B2 20 3 3 11 20
C 20 6 1 0 20

In this system, if we do not need to handle non-
periodic events, the tasks will execute under FPS
fulfilling the original constraint on task B (figure
2). Let us now assume we want to be able to

A

0 10 time5 15 20

11

A A A

B1

C

B2

C C

p
ri
o
ri
ty

Fig. 2. Motivating example - original task set

handle non-periodic events as well, together with
our tasks. The processor utilization in the system
is 75%. Thus, there are 5 time units of slack up to
LCM (20), if the tasks execute for WCET. We can
use, for example, a polling server with a period
of 5 and a capacity equal to 1 to distribute the
capacity evenly over LCM. Now, if the server is
not aware of the constraint on the instances of
B, it could have the highest priority and, if there
are any aperiodic jobs pending at the start of
the server period, they will be served immediately
while the periodic tasks will meet their deadlines.
However, if an aperiodic task J arrives at time
0, it will be scheduled by the server and the
constraint on B’s instances will no longer hold
(figure 3). In our example, the server was one

A A A A

<11

B1 B2

0 10 time5 15 20

C C

J

p
ri
o
ri
ty

J

Fig. 3. Motivating example - problem

that does not preserve its capacity. In the case
that the chosen server is a capacity-preserving
one, e.g., deferrable server, things could get even
worse. That is because the server will not become
active either at the beginning of its period or not
at all, but anywhere within its period. In that case
its potential interference interval is drastically
increased. The server execution will interfere with
the periodic tasks for a period of time not longer
than its capacity, but starting anywhere within its
period



3.2 Proposed solution - overview

What we can conclude from the example above is
that if the server is not aware of the constraints
on the periodic tasks, i.e., the server parameter
assignment is performed after the attribute as-
signment to the periodic tasks, the constraints
cannot be guaranteed. However, if the server is
aware of the original constraints, i.e., the system
designer assigns server parameters by taking into
consideration the constraint on the periodic tasks,
the server execution can be controlled such that
its interference with the constrained periodic tasks
will not cause any violations to the constraint
satisfaction achieved so far.

To do so, we propose to take the server(s) into
account together with the constrained period
tasks when constructing the off-line schedule.
Thus, both complex constrained periodic tasks
and server(s) will be used as input to our method.

3.3 Server attribute assignment

To perform the server attribute assignment, by
taking into account the available resources in the
system, as well as the original constraints on
the periodic tasks, we divided the servers in two
groups: servers that preserve their capacity during
their period, and servers that do not.

Servers that do not preserve their capacity In
this case the server will become active at the
beginning of its period, if any aperiodic request
is pending, and will execute when it will have
the highest priority among the tasks in the ready
queue. In that sense, the server will behave exactly
as a periodic task with a worst case execution time
equal to its capacity and a best case execution
time equal to 0, making the procedure of off-
line schedule construction for the periodic tasks
and server quite trivial. Then, our method takes
the off-line schedule and assigns FPS attributes
to both tasks and server(s) such that their run-
time execution under FPS reenacts the off-line
schedule.

In cases of attribute inconsistencies between dif-
ferent instances of the same task, or between dif-
ferent server instances, we create artifacts for the
instances to achieve consistent FPS attributes, as
described earlier.

Capacity preserving servers In this case, the
server can start to serve an aperiodic request
anywhere within its period. That makes it difficult
to schedule it off-line, i.e., to construct an off-line
schedule for both constrained periodic tasks and
server while taking full advantage of the server

flexibility to handle aperiodic tasks. Instead, we
propose to limit the execution scenarios for the
server, in order to guarantee the constraints on the
periodic tasks, while still providing for flexibility.

Ideally, we would like to have a priority as high as
possible on the server, but not on the expense of
the periodic tasks and their constraints.

At the same time, the system designer should be
aware of the behavior of the server as well, i.e.,
the mapping of complex constraints, resolved in
off-line schedules, to FPS attributes should be
performed by taking into account the possibility
that the server may start executing at any time
during its period.

In figure 4, A and B do not interfere with each
other and no priority relation is derived between
them. Hence, ILP could assign A a priority higher
than B or vice versa, depending on the rest of
the priority inequalities. In case A is assigned a
priority higher than B and if a deferrable server
is executing at a higher priority than A, then
the execution of A can be delayed, interfering
with B and, thus, B will miss its deadline. On
the other hand, if A has been assigned a lower
priority than B, the order of execution specified
in the off-line schedule will be changed, as A will
be preempted by B. A possible solution to this

A

B

timeSEQtk=<A> SEQtk+1=<B>

Fig. 4. Sequences in the absence of servers - no
priority relation between A and B

issue is to take into account possible interference
between instances caused by server executions. In
our case a new priority inequality, e.g., between
A and B, will be added to the IPL formulation.
This, however, is a highly pessimistic assumption
that will over-constrain the ILP solver. That is,
the more priority inequalities we send to ILP, the
lower chance we have to obtain a good solution
in terms of the final number of FPS tasks and
priority levels.

Instead, we propose to assign deadlines to the
tasks to reflect the latest time at which the tasks
must complete in order to guarantee the original
complex constraints and to prevent unexpected
additional interference:

D(τ j
i ) = min(end(TW (τ j

i )), tk) (3)

where

tk−1 < ft(τ j
i ) ≤ tk



and tk, k = 1, 2, . . ., represent the starts of the
target windows in ascending order, t1 < t2 < . . ..
In our example in figure 4, A will never become
an interfering instance at time tk+1 without miss-
ing its new deadline (figure 5). Hence, no mod-
ifications to the original sequence derivation are
required and no extra priority inequalities will
be added to the ILP formulation. At this point,

A

B

timeSEQtk=<A> SEQtk+1=<B>

D(A)

Fig. 5. Deadline assignment to prevent interfer-
ence in the presence of servers

any feasible attribute assignment can be used on
the servers as long as the designer can guarantee
the completion of the periodic tasks before their
deadlines. That is because, in our off-line to FPS
transformation, we specified the release times and
deadline of the tasks, i.e., the target windows,
in which if the tasks execute and complete, the
original constraints are guaranteed. Further more,
by controlling the server impact on periodic task
executions, the order of execution of the period
tasks, specified in the off-line schedule, will be
preserved. Thus, the original constraints are guar-
anteed when scheduling the tasks by FPS.

3.4 Evaluation

Due to the lack of space, we refer to (Dobrin et
al., 2001) for the complete proof of correctness for
the proposed methodology.

4. DISCUSSION

From the implementation point of view, when
we create artifacts for task instances to resolve
attribute conflicts, we create only new TCB’s with
fixed FPS attributes with pointers to the same
code and data segments as the original task.

If we use servers that do not preserve their ca-
pacities, we can easily include them in the off-
line schedule construction and our method will
find optimal FPS attributes to them together with
the periodic tasks. On the other hand, if the user
choose to use capacity-preserving servers, we pro-
vide deadlines to the tasks to prevent their execu-
tion to interfere with ”later” target windows, that
would potentially lead to changes in the order of
execution specified in the off-line schedule. Then,
the server can be assigned any feasible attributes
as long as the periodic tasks are guaranteed to

complete before their deadlines. Hence, the orig-
inal complex constraints are guaranteed. Slack
stealing (Lehoczky and Ramos-Thuel, 1992; Davis
et al., 1993), for example, can be successfully used
with our method as it keeps track and uses the
available slack in the system without causing any
deadline misses among the periodic tasks. Since
the task deadlines represent the latest point in
time at which periodic tasks can complete their
execution such that their complex constraints are
fulfilled, slack stealing can be successfully used to
handle non-periodic events.

In our method, we specify new deadlines for the
task only if we know that a capacity-preserving
server is to be used with our tasks. By specifying
new deadlines for the tasks, we do not introduce
additional splits, as the purpose of the deadline is
only to aid the user to assign feasible attributes
to the server without jeopardizing the complex
constraints guaranteed so far.

In our method we propose to choose server periods
and capacities to distribute the exploitations of
the amount of slack in the system over LCM.
The main advantage of equally distributing the
server execution over LCM, i.e., short periods that
imply an increased number of server instances up
to LCM, is that we increase the chances to provide
the aperiodic tasks a prompt service by assigning
the server a high priority. In some cases, we may
have to create artifacts for the server instances
to achieve a high priority setting. This is because
the server can have temporary high priorities over
short period of times, but not during the entire
LCM. If, on the other hand, we choose to assign
a server a period equal to LCM and a capacity
up to full processor utilization together with the
periodic tasks, we may end up in a situation where
the server must be assigned the lowest priority,
since it interferes with all periodic task instances,
ending up with background scheduling.

5. EXAMPLE

We illustrate the ability of the method to deal
with periodic tasks with complex constraints to-
geher with non-periodic ones, with an example.

Table 3. Periodic tasks

Task T C Node

A 15 2 1
B 15 1 1
C 15 5 1
D 10 3 1
E 15 3 2
F 15 4 2

We assume we have a taskset distributed on two
nodes as described in Table 3. A first set of



constraints consist of a number of precedence
relations as following:

A → B → C;E → F ;E → C

and it takes one slot to send a message between
2 nodes. Secondly, we want the FPS execution
of task A to be fixed between (est(A) + 2) and
(est(A)+4). Additionally, we want to use a polling
server on node 1 in the final FPS scheme to be
able to handle run-time events as well. As the
utilization on node 1 is 83%, we can, for example,
use a server with a period of 6 and capacity of
1 to fairly allocate the slack in the schedule over
LCM for servicing non periodic tasks. The off-line
schedule and the target windows (delimited by the
arrows) for tasks and the polling server (S) are
illustrated in Figure 6.

S S S S S

A A A A

B B

C C C C C C C C C C

D D D D D D D D D

N1

EE E EE E

F F F

300

N2

F F F F F

0 30

Fig. 6. Off-line schedule and target windows for
periodic tasks and one polling server

The priority inequalities between the instances
are derived in the same way as in the example
presented in Section 2 and shown in Figure 4.

Table 4. Derivation of inequalities

tk Node

{
current

inst.

}
tk

{
intf.

inst.

}
tk

SEQk inequalities

0 1 S1, D1 None S1, D1 P (S1) > P (D1)

2 E1, F 1 None E1, F 1 P (E1) > P (F 1)

2 1 A1, B1 D1 A1, D1, B1 P (A1) > P (D1)

P (D1) > P (B1)

4 1 C1 B1, D1 D1, B1, C1 P (D1) > P (B1)

P (B1) > P (C1)

6 1 S2 B1, C1 S2, B1, C1 P (S2) > P (B1)

P (B1) > P (C1)

10 1 D2 C1 C1, D2 P (C1) > P (D2)

12 1 S3 C1, D2 S3, C1, D2 P (S3) > P (C1)

P (C1) > P (D2)

15 2 E2, F 2 None E2, F 2 P (E2) > P (F 2)

17 1 A2, B2 None A2, B2 P (A2) > P (B2)

18 1 S4 A2, B2 A2, S4, B2 P (A2) > P (S4)

P (S4) > P (B2)

19 1 C2 S4, B2 S4, B2, C2 P (S4) > P (B2)

P (B2) > P (C2)

20 1 D3 B2, C2 B2, C2, D3 P (B2) > P (C2)

P (C2) > P (D3)

24 1 S5 C2, D3 S5, C2, D3 P (S5) > P (C2)

P (C2) > P (D3)

Next step is to analyze the overlappings between
the target windows and to derive sequences of

instances corresponding to each start of each
target windows. In our example, these time points
are: 0, 2, 4, 6, 10, 12, 15, 17, 18, 19, 20, and 24. The
sequences and associated sequences are presented
in table 4.

From the inequalities, we can see that we have
a number of priority assignment conflicts, i.e.,
P (D1) > P (B1) > P (C1) resulting from SEQ3

corresponding to t3 = 4, and P (C1) > P (D2)
from SEQ5 corresponding to t5 = 10, meaning
that we have a cycle of inequalities consisting of
P (D1) > P (B1) > . . . > P (D2). We formulate
the optimization problem with a goal function to
minimize the number of artifact tasks, in case any
have to be created. In exchange, the LP solver
provides us information about which task(s) to
split, in this case D, and priorities for the final
FPS tasks. Finally we assign offsets and periods
to the FPS tasks in order to ensure the execution
within their original target windows (Figure 5).

Table 5. FPS tasks and a polling server

τi T C O D P

S 6 1 0 6 5
A 15 2 2 4 6 (highest)
B 15 1 2 15 3
C 15 5 4 15 2
D1 30 3 0 10 4
D2 30 3 10 20 1
D3 30 3 20 30 1
E 30 2 0 10 2
F 15 3 0 3 1

The schedule obtained by scheduling the final
taskset by FPS is illustrated in Figure 7 where,
additionally, we have two non-periodic requests,
J1 and J2 at time 5 and 23 respectively. The
execution requirements of J1 and J2 are 2 and
1 respectively.

J1 J1

A A

B B

C C

D1 D1

N1

E E

F

300

N2
F

J1 J2

J2

C

D2

D3

Fig. 7. FPS tasks at runtime

As we can see, at run-time, the tasks will ex-
ecute flexibly obeying the FPS policy, meeting
their original complex constraints, while providing
for inclusion of events with incompletely known
attributes.



6. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a method
that combines off-line schedule construction with
fixed priority run-time scheduling. We use off-line
schedules and target windows to express complex
constraints and predictability, and derive task at-
tributes, such that if applying FPS at run-time,
the tasks will execute within the specified tar-
get windows and fulfil the original constraints.
However, to fully take advantage of the flexibil-
ity offered by FPS, we proposed the inclusion of
existing FPS servers to our method to provide
a good service for non-periodic requests, while
guaranteeing the original complex constraints on
the periodic tasks.

We have shown that servers that do not preserve
their capacity during their periods can be easily
incorporated in our method while guaranteeing
the constraints of the periodic tasks. In this case,
the servers are treated as periodic tasks that do
not suspend themselves. The only difference be-
tween the server and the periodic tasks is that
the server may not execute at all if no aperiodic
requests are pending at the beginning of its pe-
riod.

At the same time, we provide users additional
information to be able to handle non-periodic
events by using capacity preserving servers. The
difficulty of scheduling this type of servers to-
gether with periodic, complex constrained tasks,
is that the server execution, i.e., at which time the
server starts its execution within its period, can
not be predicted such that it can be included in
the off-line schedule construction. The additional
information provided to the users consist in new
deadlines to reflect the latest points in time at
which periodic tasks must complete to fulfill their
complex requirements. At this point, any feasible
server attribute assignment can be used, as long as
the designer can guarantee the completion of the
periodic tasks before their new deadlines. Hence,
the original complex constraints expressed in the
off-line schedule are guaranteed when scheduling
the tasks by FPS.

Future work will include extensions of the work
to complex constrained systems with high fault
tolerance requirements.

REFERENCES

Audsley, N.C. (1991). Optimal Priority Assign-
ment and Feasibility of Static Priority Tasks
With Arbitrary Start Times. Technical re-
port. Departament of Computer Science, Uni-
versity of York.

Davis, R. I. and A. Burns (2005). Hierarchical
fixed priority pre-emptive scheduling. In: Pro-

ceedings of the 26th IEEE International Real-
Time Systems Symposium. pp. 389–398.

Davis, R.I., K.W. Tindell and A. Burns (1993).
Scheduling slack time in fixed priority pre-
emptive systems. In: Proceddings of the Real-
Time Symposium. pp. 222–231.

Dobrin, Radu, Gerhard
Fohler and Peter Puschner (2001). Translat-
ing off-line schedules into task attributes for
fixed priority scheduling. In: Proceedings of
the 22nd IEEE Real-Time Systems Sympo-
sium. London, UK.

Gerber, R., S. Hong and M. Saksena (1995).
Guaranteeing Real-Time Requirements with
Resource-Based Calibration of Periodic Pro-
cesses. IEEE Transactions on Software Engi-
neering.

Harbour, M. Gonzalez and J.P. Lehoczky (1991).
Fixed Priority Scheduling of Periodic Task
Sets with Varying Execution Priority. In: Pro-
ceedings of Real-Time Systems Symposium.
pp. 116–128.

Lehoczky, J.P. and Sandra Ramos-Thuel (1992).
An optimal algorithm for scheduling soft-
aperiodic tasks in fixed-priority preemptive
systems. In: Proceddings of the Real-Time
Systems Symposium. pp. 110–123.

Lehoczky, J.P., L. Sha and J.K. Strosnider (1987).
Enhanced aperiodic responsiveness in hard
real-time environments. In: Proceddings of the
Real-Time Symposium. pp. 261–270.

Palencia, J.C. and M. Gonzalez Harbour (1998).
Schedulability Analysis for Tasks with Static
and Dynamic Offsets. In: Proceedings of
19th IEEE Real-Time Systems Symposium.
pp. 26–37.

Seto, D., J.P. Lehoczky and L. Sha (1998). Task
Period Selection and Schedulability in Real-
Time Systems. In: Proceedings of Real-Time
Systems Symposium. pp. 188–198.

Sha, L., R. Rajkumar and J.P. Lehoczky (1990).
Priority Inheritance Protocols: an Approach
to Real-Time Synchronization. IEEE Trans-
actions on Computer 39(9), 1175–1185.

Sprunt, B., L. Sha and J. Lehoczky (1989). Ape-
riodic task scheduling for hard real-time sys-
tems. Real-Time Systems Journal 1(1), 27–
60.

Tia, T., W.S. Liu and M. Shankar (1995). Algo-
rithms and optimality of scheduling aperiodic
requests in fixed-priority preemptive systems.
Journal of Real-Time Systems.

Tindell, K. (1994). Adding Time Offsets to
Schedulability Analysis. Technical report. De-
partament of Computer Science, University of
York.

Xu, J. and D. L. Parnas (2000). Priority Schedul-
ing versus Pre-run-time Scheduling. Real-
Time Systems.


