VA
\ ¥ 4
MALARDALEN UNIVERSITY

Dimensional Analysis and Inference for gPROMS

B. Daniel Persson
Master of Science thesis
Department of Computer Science and Engineering
Milardalen University
dpn99004@student.mdh.se

Supervisor: Mikael Sandberg
Supervisor, ABB: Tomas Lindberg
Examiner: Prof. Bjorn Lisper

October 8, 2003

Abstract

In this thesis we describe a dimensional analysis and inference system for a strongly
typed language for simulation of physical systems, gPROMS. We show how gPROMS
can benefit from such a system and we believe that it will increase the physical cor-
rectness of the simulation models.

Our proposed dimensional inference system is based on generating dimensional
constraint equations from the model equations using formal inference rules. The
resulting constraints constitute a linear system of equations which is solved by
means of linear algebra. If the system of equations is solvable the simulation model
is proven to be dimensionally consistent.

We have implemented our dimensional inference algorithms in Java in the form
of a stand-alone tool. The tool will be used by the industry to quickly locate physical
errors in simulation models resulting from dimensionally inconsistent equations.

Contents

Background
1.1 Purpose e e
1.2 Outline e
Introduction
2.1 Introduction to gPROMS
2.2 Type Systems and Type Inference
2.3 Dimensional Analysis.o
2.3.1 Dimensions and Units
2.3.2 Dimensional Algebra
24 Related Work
2.4.1 Dimensional Analysis
2.4.2 Unit Checking and Unit Conversion
gPROMS
3.1 Declare
3.2 Model
3.3 Task . . . o .
3.4 Process
Analysis
4.1 Proposed Dimensional Inference System
4.1.1 Dimensional Information.
4.1.2 Dependent Types o o o e
4.2 Special Language Elements of gPROMS
421 Models
422 Tasks
4.23 Arrays
4.2.4 Streams e
4.2.5 Partial Derivatives and Integrals
4.2.6 Foreign Objects
A Dimension Type System
5.1 Dimension Types
5.2 Dimension Type Rules
5.3 Transformation to SMEL
5.3.1 Polymorphic Parameterization
5.3.2 Dimensional Information
5.3.3 Parameter Values
5.3.4 Transformation Rules
5.4 Dimensional Inference Algorithm
54.1 Overview L

e

OO UL U = W W W

5.4.2 Infer Trivial Dimensions

5.4.3 Solve Systems of Equations

6 Implementation

6.1 Overviewo
6.2 Syntax Extensions L
6.2.1 Homogenization of gPROMS Syntax
6.2.2 Dimensional Annotations
6.3 Limitations e e

7 Results

7.1 Dimensional Analysis. oo
7.2 Dimensional Inference
7.3 Dimensional Inconsistency oo Lo

8 Conclusions and Future Work

A EBNF Grammar for gPROMS

ii

27
27
27
28
28
29

30
30
31
33

35

36

List of Figures

2.1 Abelian group properties 5
3.1 A simple DECLARE entity oo v it 7
3.2 A simple MODEL entity o ottt 8
5.1 EBNF grammar for SMEL 15
6.1 EBNF grammar for dimensional annotations 28
6.2 A few different ways to annotate acceleration 28
7.1 Source specification for Testl 30
7.2 Source specification for Test2 32
7.3 Source specification for Test3 33
7.4 Source specification for Test4d 34

iii

List of Algorithms

5.1 Simplify Equations oo
5.2 Recursive Substitution of Dimensions
5.3 Partition Equations L oo 0o o,
5.4 Gauss-Jordan Row Reduction

iv

Acknowledgments

This thesis is the result of a joint venture between the Department of Computer
Science and Engineering at Malardalen University and the Department of Industrial
IT at ABB Corporate Research in Visteras.

I would like to thank ABB Corporate Research for their financial support and
my supervisors Mikael Sandberg and Tomas Lindberg for many rewarding discus-
sions. Also, many thanks to the members of the programming language group in
the Computer Science Lab at Malardalen University, especially Bjorn Lisper, Jan
Carlson and Marcus Bohlin.

Chapter 1

Background

Usually when developing simulation models, there is no way of automatically telling
whether the models are correct or not. But, since the models are specified in a formal
computer readable syntax, automatic analysis can be performed statically to verify
certain properties.

One interesting property when simulating physical systems is the dimensional
consistency of the equations that make up the system. For instance, one can never
add or subtract values of different dimensions, and the multiplication or division of
two values yields results whose dimensions are also multiplied or divided. Dimen-
sional consistency can be verified using a method known as dimensional analysis
(DA). In using DA, it will be possible to detect physical inconsistencies in the sim-
ulation model at an early stage of development, reducing the development time.

In order for a system to be as versatile as possible, it is of great importance
to allow for polymorphic models. This can be achieved through type inference
for dimension types, also known as dimensional inference (DI). DI can be used
to automatically infer the missing dimensions in the model specifications. The
missing dimensions can either be intentional, in case of polymorphic models, or
unintentional, in case of legacy models or models not developed in-house. In either
case, the system must derive the missing dimensions from the information that is
given, which may result in dimensional inconsistencies. The advantage with a DI
system is that more models will be possible to process without the need for extensive
annotation of dimensions.

1.1 Purpose

The purpose of this thesis is to develop a platform for evaluation of dimensional
analysis and dimensional inference for simulation languages. The platform will be in
the form of a stand-alone tool for dimensional analysis and dimensional inference for
gPROMS, a general PROcess Modeling System. The tool will provide a quantitative
measurement on the dimensional correctness of the models, and it will also aid in
developing large scale simulation models by reducing the amount of time normally
spent on verification and testing.

1.2 Outline

Chapter 2 gives an introduction to the gPROMS language and different areas re-
garding type systems and dimensional analysis. Moving on to Chapter 3 we describe
our proposed dimensional inference system and discuss some of the issues that have

been encountered. Chapter 4 gives a detailed explanation of our dimensional in-
ference system for gPROMS. Chapter 5 shows some results from tests on fictitious
models. In Chapter 6 we will discuss some of the limitations of our system and how
it could be improved in the future. Finally, chapter 7 concludes the thesis with a
summary.

Chapter 2

Introduction

In this chapter we will introduce the gPROMS language and its applicability in the
industry. We will also describe the background of dimensional analysis and how it
is used to derive dimensional consistency. The chapter ends with a related work
section where we review previous work in dimensional analysis and inference for
programming languages.

2.1 Introduction to gPROMS

gPROMS is a programming language for simulation, optimization and parameter
estimation of highly complex processes developed at the Center for Process Systems
Engineering at Imperial College. The user specifies the equations that make up
the simulation model using a simple syntax with no concern for the complexity
of the solution techniques. The equations are transformed into a set of Partial
Differential Algebraic Equations (PDAE’s), which are solved using an advanced
numerical solver. The solvers are designed specifically for large-scale systems and
there are no limits regarding the size of the simulation other than those imposed
by the machine running the system.

gPROMS models complex processes with operating procedures using MODELSs
and TASKs. MODELs are used to describe the physical, chemical and biological
behavior of the process. The TASKs describe the actual operating procedure that
is used to run a process, and operates on MODELs. The gPROMS TASK syn-
tax is very general and allows description of complex operating procedures, each
comprising a number of steps to be executed in sequence, parallel, conditionally or
iteratively.

gPROMS has the ability to model discontinuous processes, where changes take
place abruptly and frequently due to phase transitions, flow transitions, geometrical
limitations and so forth. The system allows the direct mathematical description of
distributed unit operations where properties vary in one or more spatial dimen-
sions. The generality of gPROMS means that it can be used for a wide variety
of applications in petrochemicals, food, pharmaceutical, specialty chemicals and
automation.

2.2 Type Systems and Type Inference

Type systems are used in programming languages to prevent the occurrences of
certain execution errors, referred to as type errors. A language is said to be type
sound if for all possible programs that can be expressed within the language there
will be no type errors.

A formal type system is based on a collection of type rules. The type rules
determine how types can be derived in the system. If there is no possible type
derivation for a term, we have a type error. In contrast, if a derivation exists the
term is given the type of the derivation, which is not necessarily unique.

Type inference enables programs that lacks type information to be safely typed,
by automatically infer the most general types. Many of the functional languages,
such as ML [MTHS89] and Haskell [Jon99, JH99| use type inference. To infer a
missing type, a derivation must be discovered using the type rules of the type
system. The algorithms involved in this process range from relatively simple to
quite complicated, depending on the underlying type system. It might even be
impossible to find an inference algorithm [Car96].

2.3 Dimensional Analysis

Dimensional analysis is a technique that has been used by physicists and engineers
for many years to obtain preliminary solutions to physical problems. It is very
useful for derivation of an analytical solution when the variables that take part
in a physical phenomenon are known, but the way they relate to each other is
unknown. DA originates from the work of Newton [New87] and Fourier [Fou22] and
has since been refined by several scientists, in particular Rayleigh [Ray15, Ray7§]
and Buckingham [Bucl4] among others.

Fourier introduced the notion of a dimensional formula and showed that equa-
tions should have dimensional homogeneity. A more formal description of dimen-
sional homogeneity was formed by Buckingham and the II-theorem [Buc14], which is
the main theorem of DA. It states that a physical law relating a set of variables can
be expressed as a function of a lesser number of dimensionless arguments, called
II-groups. Each II-group is a dimensionless product of a combination of integer
powers of the original variables. The general form of the solution is determined by
finding the function relating the II-groups, which is usually derived experimentally.

Following the II-theorem, any formula must be dimensionally homogeneous in
order to have any physical meaning. If both sides of an equation are not of the
same dimension, we have a dimensional inconsistency, which leads to the use of DA
as a dimensional consistency check.

2.3.1 Dimensions and Units

Dimensions describe the properties of physical quantities, be it length, mass, force
etc. The different physical quantities are measured in reference to a system of units.
Two quantities with different units but the same dimension differ only by a scal-
ing factor. If the scaling factor is a constant we say that the two quantities are
commensurate [KL78]. There are more complicated units that do not have sim-
ple conversions such as temperature measured in Celsius and Fahrenheit or worse,
amplitude level in decibels.

We have base dimensions and derived dimensions. Base dimensions cannot be
defined in terms of other dimensions. The International System of Units (SI) de-
fines seven base dimensions — length, mass, time, electric current, thermodynamic
temperature, amount of substance and luminous intensity. Derived dimensions are
defined in terms of base dimensions. For instance, velocity is distance divided by
time. The seven base dimensions defined in the SI system are represented by the
units — meters, kilograms, seconds, Amperes, Kelvin, moles and Candela. SI also
defines 22 derived dimensions that are given special names, for example Newtons
(N) [kg -m/s?] and Hertz (Hz) [s7].

2.3.2 Dimensional Algebra

Dimensions satisfies the algebraic properties of an abelian group whose operation is
dimension product [Ken96|. For instance, the dimension [M - T~] is equivalent to
[T~ M], and [M - M '] is equivalent to the unit dimension 1. Figure 2.1 shows
the properties of abelian groups.

di-dys = ds-d; commutativity
(dy-do)-ds = dy-(dy-ds) associativity
1-d = d identity
d-d' = 1 inverses

Figure 2.1: Abelian group properties

Much like the addition, subtraction and comparison of values of different types
is a type error, the same is true for dimension types. For example, you cannot add
meters to seconds and regard the result as physically meaningful. On the other
hand, when multiplying or dividing quantities of any dimensions the result receives
a dimension which is the product or quotient of the dimensions of the two quantities.
Following this argument, the sum of two values with dimensions velocity [L - T]
and time [T] is a dimension error, whereas their product has dimension length [L].

Dimensions are often represented as vectors of the base dimensions exponents.
For example, if we have three base dimensions, M LT (Mass, Length and Time),
the dimension Force [M - L - T 2] can be represented as (1,1,—2). In this vector
form, the multiplication of two dimensions is equivalent to vector addition, and
division is equivalent to vector subtraction. The unit dimension 1 is represented
as the zero vector 0. The dimension of a variable is represented with §,4me. For
example, consider a physical equation calculating velocity as length divided by time:

l
v=-
t

The dimensions of the variables v, [, t are represented by the symbols d,,, §; and
;. 0, represents Velocity (0,1, —1), §; represents Length (0,1,0) and §; represents
Time (0,0,1). Given this information we can check the consistency of the equation
by examining both sides of the equation, using the algebraic rules for dimensions.
The dimensional consistency of the equation above is derived as follows:

0 = (0,1,0)

o = (0,0,1)

oy = &fd=
<07]—7 > - (0707 1) =
<07]-7 _1> = 60

2.4 Related Work

Extensive effort has been put into researching the area of dimensional analysis for
programming languages. A lot of articles relating to the subject have been studied in
order to grasp certain techniques used in both dimensional analysis and dimensional
inference. This includes dimensional analysis, dimensional inference, unit, checking
and unit conversion.

2.4.1 Dimensional Analysis

Dimensional analysis has been implemented for numerous different general pro-
gramming languages — Ada [Hil88], ML [Ken94, WO91], Pascal [Hou83|, C++
[CG88, BN95|, LISP [Nov95] among others. Also, Khanin has implemented a di-
mensional analysis package for Mathematica [Kha01]. However, only little has been
done regarding dimensional analysis for physical simulation languages, such as Mod-
elica and gPROMS.

House [Hou83] was one of the first to implement a polymorphic dimensional anal-
ysis system for a monomorphic language, Pascal. He used a construction, newdim,
which allowed the definition of dimensionally polymorphic arguments for proce-
dures.

Cmelik and Gehani [CG88] uses the class abstraction facilities of C++ to auto-
matically perform dimensional analysis at runtime. Barton and Nackman [BN95]
on the other hand uses templates along with classes to define a system that checks
the program statically.

Kennedy [Ken94] proposed a dimensional inference system based on ML-style
type inference and equational unification. His system uses integer exponents to rep-
resent dimensions, which restricts the expressiveness. It is not possible, for example,
to take the square root of Length. Kennedy argues that fractional exponents are
rarely seen in science and if such a thing arose it would suggest a revision of the set
of base dimensions [Ken94, Ken97].

A similar system to that of Kennedy was proposed by Wand and O’Keefe
[WO91]. The difference is that they represent dimensions using rational expo-
nents to allow for more general dimensional expressions. Their system generates
equations over dimensions, which are solved using gaussian elimination.

2.4.2 Unit Checking and Unit Conversion

Some work has also been done in the field of unit checking and automatic unit
conversion, which is very similar to dimensional analysis. It seems like most im-
plementations can only handle conversions between commensurate units. This is
not sufficient for a physical simulation system, since temperature is an important
factor.

Karr and Loveman [KL78] describes a method for finding conversion factors
between commensurate units, which involves logarithms, matrix manipulations and
linear algebra. They also present some details regarding an actual implementation
of a unit checking system.

Gordon Novak [Nov95] implemented a unit checking and unit conversion system
for LISP. His system checks that the expressions are dimensionally consistent and
automatically converts commensurable units when necessary.

Hilfinger’s dimensional analysis package for Ada can handle conversions between
commensurate units [Hil88]. It uses Ada’s strong typing together with its abstrac-
tion facilities and operator overloading to statically perform the dimensional con-
sistency check. Also, he proposes some optimizations to the compiler in order to
make the algorithm more effective.

Cmelik and Gehani’s implementation for C++ can convert commensurate units
at runtime [CG88.

Chapter 3

gPROMS

gPROMS is a strongly typed modeling language for simulation and optimization of
physical systems. These systems are often quite large and complex and therefore
difficult to model. gPROMS has an object based approach to modeling that en-
ables hierarchical sub-model decomposition which will reduce the overall complexity
and increase model reuse. This is not to say that gPROMS is an object oriented
language, but rather incorporates some object oriented features.

Simulation models in gPROMS are defined using four different entities; DECLARE,
MODEL, TASK and PROCESS. The DECLARE entity is used to declare variable types and
stream types, which will be used as templates for variables and streams. The
MODEL entity is used to describe the physical behavior of primitive elements of the
system being modeled. A system usually consists of several different MODELs that
are interconnected to form a highly complex simulation model. A TASK describes a
certain operating procedure such as opening a valve or switching on a pump. The
task concept is very similar to a procedure in a normal programming language. The
PROCESS entity is used to define the behavior of the dynamic simulation, such as
setting numeric solution parameters and initiating model parameters. A complete
EBNF syntax of the gPROMS language is shown in appendix A.

3.1 Declare

The DECLARE entity is used to declare variable types and stream types. These types
are later used to declare variables and streams in MODELs. There are two different
sections within a DECLARE entity; TYPE and STREAM. Figure 3.1 shows an example
of a DECLARE entity.

DECLARE
TYPE
Temperature = 0.0 0.0 : 1E10 OUNIT = "K"
Energy = 1.0 : -1E10 : 1E10 UNIT = "J"
FlowRate = 1.0 : -1E10 : 1E10
STREAM

InputStream IS Temperature, Energy
OutputStream IS Temperature, Energy
END

Figure 3.1: A simple DECLARE entity

Type

The TYPE section is used to define new variable types. Each variable type is asso-
ciated with a default value along with a value range. It is also possible to specify a
unit of measure to accompany the variable type. This unit of measure is however
only used when viewing graphs over the specific variable, where it is displayed along
with the quantity.

Stream

The STREAM section is used to declare stream types, which is an ordered list of
variable types. A stream is used to interconnect instances of variables in different
models.

3.2 Model

In gPROMS, primitive models are declared via the MODEL entity. A MODEL contains a
mathematical description of the physical behavior of a given system. It comprises a
number of sections, each containing a different type of information regarding the sys-
tem being modeled. The different sections are PARAMETER, DISTRIBUTION_DOMAIN,
UNIT, VARIABLE, STREAM, SELECTOR, SET, BOUNDARY and EQUATION. Figure 3.2 shows
a primitive model of a water cooler.

MODEL Cooler

PARAMETER
Cp AS REAL # Cooling capacity
Rho AS REAL # Coolant Density
v AS REAL # Cooler Volume
VARIABLE
Tin AS Temperature # Coolant inlet temperature
T AS Temperature # Coolant temperature
Q AS Energy # Heat load

F AS FlowRate # Coolant flowrate

EQUATION
$T*V*Rho*Cp = (Tin - T)*Cp*F + Q; # L VRho Cp= (T}, - T) CpF + Q
END
Figure 3.2: A simple MODEL entity
Parameter

The PARAMETER section is used to declare parameters of a MODEL. Parameters are
time-invariant quantities that will not be the result of any calculation. They can
be thought of as constants in a normal programming language. The parameters
are declared to be of one of the basic types, integer, real, logical or distributions
of these. There is also another parameter type, the foreign object (FO). A foreign
object is an external package that describes some physical properties. The foreign
objects contain methods that are invoked from within a MODEL or TASK.

Distribution domain

The DISTRIBUTION_DOMAIN section is used to declare the distribution domains of a
MODEL. A distribution domain is used to declare variables that vary with respect to
one or more intervals.

Unit

The UNIT section is used to declare the units of a MODEL. A unit is a submodel
contained within a MODEL. The units can also be declared as arrays of MODELs
whose size is determined by a parameter. In this way systems with a number of
components of the same type can easily be parameterized.

Variable

The VARIABLE section is used to declare the variables of a MODEL. These represent
quantities that describe the time-dependent behavior of a system. Each variable is
declared to be of a specific variable type.

Stream

The STREAM section is used to declare the streams of a MODEL. A stream is a subset of
the variables in a MODEL and provide a convenient mechanism for describing complex
connections between components in a physical system. The stream type determines
which variable types that can be contained within a specific stream.

The streams are only syntactic sugar for equivalence relationships between vari-
ables in different components. If two streams of the same type are connected, the
system will generate equivalence equations between the corresponding variables.

Selector

The SELECTOR section is used to declare the selectors of a MODEL. gPROMS models
discontinuous processes using State- Transition Networks (STNs) where each state
contains a set of equations describing the physical behavior in that particular state.
The selectors define the points where state transitions should occur according to
the discontinuous system being modeled. Examples of discontinuous processes are
laminar and turbulent flow, reversal of direction of flow, equipment failure etc.

Set

The SET section is used to declare initial assignments for parameters which will have
effect before the simulation starts. The initiation is done via an assign-stmnt.

Boundary

The BOUNDARY section is used to declare boundary equations of a MODEL. For exam-
ple, the boundary equations are used to describe boundary conditions for distribu-
tions.

Equation

The EQUATION section is used to declare the equations of a MODEL. The equations
are mathematical descriptions of the physical behavior of the system being mod-
eled. gPROMS extends the idea of an equation to include iterative and conditional
equations, similar to elements of a normal imperative programming languages. We
will refer to these equations as statements. The most trivial statement is the
equation-stmnt. This statement describes the mathematical equations, entered
as an equivalence relationship between general expressions. These expressions are
formed using primitive arithmetic operations along with some language specific
operations, such as partial and integral. Above the equation-stmnt are the
following statements: if-stmnt, for-stmnt and case-stmnt, where case-stmnt is
similar to the switch-case construction in C.

3.3 Task

TASKs are used to define operating procedures and they share some similarities with
functions in normal programming languages. A TASK applies equations defined in an
operating schedule on its arguments. The arguments can be general expressions or
MODEL instances. There are three different sections used within a TASK declaration;
PARAMETER, VARIABLE and SCHEDULE.

Parameter

The PARAMETER section is used to declare the actual arguments of a TASK. These
are instantiated when the TASK is invoked.

Variable
The VARIABLE section is used to declare the local variables of a TASK. Theses vari-
ables are used in the operating schedule to hold temporary calculations.

Schedule

The SCHEDULE section is used to declare the operating schedule of a TASK. The
operating schedule includes assignments and general equations defined to be applied
on the actual arguments.

3.4 Process

A dynamic simulation experiment is defined using the PROCESS entity. A PROCESS
contains several sections that is used to initiate and define the behavior of the sim-
ulation. For example, one can define solution parameters to the numeric solver and
initiate model parameters. There are ten different sections in the PROCESS entity;
UNIT, MONITOR, SET, EQUATION, ASSIGN, PRESET, SELECTOR, SOLUTIONPARAMETERS,
INITIAL and SCHEDULE.

The UNIT, SET, EQUATION and SELECTOR sections are similar to those in a MODEL
entity. The SCHEDULE section is similar to that of TASK.

Monitor
The MONITOR section is used to define which variables that are to be monitored.
Variables left out will be suppressed.

Assign
The ASSIGN section is used to assign values to simulation variables. These are
usually simulation specific.

Preset

The PRESET section is used to provide initial guesses for the variables in the simu-
lation. This will override the default values for the variable types as defined in the
DECLARE entity. These are usually related to the system being modeled.

Solutionparameters

The SOLUTIONPARAMETERS section is used to set numeric solution specific parame-
ters.

Initial
The INITIAL section is used to define the initial state of the simulation.

10

Chapter 4
Analysis

gPROMS lacks a type system with type inference, so it is not possible to extend it
with automatical dimensional analysis and inference without extending the language
itself. Our approach is to develop a semi polymorphic dimensional type inference
system for gPROMS. However, instead of calling our system a type inference system
we will refer to it as a dimensional inference system, since it is not a general type
system. Given this dimensional inference system, each symbol is associated with a
dimension type (), representing its dimension. The dimension types are then used
to infer dimensions and derive dimensional consistency.

The concept of semi-polymorphism is based on the idea of treating certain con-
structs as polymorphic and other as monomorphic. The polymorphism enables
polymorphic parameterized models to be defined, while the monomorphism is re-
quired to safely analyze the dimensional consistency of the model equations. A
polymorphic model can work on a range of different dimensions. One such exam-
ple would be a polymorphic regulator model. The same general regulator could be
applied to control a flow as well as a position. However, once the general model is
instantiated we need the quantities to be monomorphic in order to safely check the
dimensional consistency of the actual equations involved. Without the monomor-
phism certain dimensional inconsistencies would be left undetected, since that would
allow different occurrences of the same symbol to have different dimensions.

4.1 Proposed Dimensional Inference System

Our dimensional inference system will be loosely based on the work of Wand and
O’Keefe [WO91]. For instance, we will represent dimensions using rational expo-
nents and use gaussian elimination for solving equations over dimensions. Likewise,
our system will only handle dimensional analysis and inference of dimensions, and
not automatic conversion of units. The extension to automatic unit conversion
seems natural though and will be discussed in the future work section.

Basically, our system is based on transforming the equations that make up the
simulation models into equivalent equations in the dimensional space. The gener-
ated equations specifies the dimensional constraints that result from dimensional
analysis theorems. The constraints form a system of potentially independent linear
equations, which could be solved using a number of different methods, for instance
numeric algorithms, unification or gaussian elimination. We have chosen to solve
them by means of Gauss-Jordan Row Reduction. The solutions to the equations
are the inferred dimensions for the variables in order for the system to be dimen-
sionally consistent. The dimensional analysis is performed at the same time, since
a dimensionally inconsistent system does not have any solutions.

11

Our approach is only one of numerous possible, but one that seems sufficient and
elegant. We do not want to restrict the expressiveness by using integer exponents,
which is one of the issues discussed later. Also, we do not have to derive dimension
types for functions, since the user is not allowed to define new functions in gPROMS.
As a result we can use a simple gaussian elimination step for solving the equations.

4.1.1 Dimensional Information

In order for the dimensional analysis to work, the system needs information about
the dimensions of the symbols that are used in the equations. Otherwise, the only
solution we would find when solving the dimensional constraint equations would be
the trivial solution — 0, which would indicate that each symbol is dimensionless.

gPROMS enables variable types to be accompanied by a unit of measure which
would be possible to use as dimensional annotation. The drawback with this scheme
is the requirement for unit conversions and the lack of dimensional information for
the model parameters. Our solution is to extend gPROMS with the possibility to
annotate variables and parameters with dimensional information.

4.1.2 Dependent Types

There is a problem regarding dependent types, types whose values are not statically
known. For instance, one cannot know the value of a variable statically because it
changes over time. This creates a problem when a dimension depends on a variable.
One such case is expressions using the power operator. For example, consider the
expression a’. The dimension of the expression is dependent on the dimension
of a and the value of b, but if b is a variable the dimension of the expression is
undecidable. Previous work in dimensional inference for programming languages
regard such expressions as dimensionless [Ken96, Rit95]. Since we do not agree
with their view, our system has the ability to derive the correct dimensions for
expressions using statically known exponents. However, there are some limitations
to our approach — we can only handle rational exponents that are statically known
(parameters and numeric literals). An extension to irrational exponents like /2
would require a fractional representation with loss of accuracy. So, whenever the
exponent, is statically unknown for the different reasons we have described, we flag
a warning.

4.2 Special Language Elements of gPROMS

There are some issues that need to be worked out that relates to our approach
and some of the basic language elements of gPROMS. For instance, how should
we handle arrays; should we consider the possibility for each entry in an array
to have a different dimension? How do we handle partial derivatives and integral
constructions? How should we handle the intrinsic functions?

4.2.1 Models

A simulation is defined in terms of basic model entities that are constructed in a
hierarchy of interconnected model instances, where each model is declared to be of
a certain model type. A model declares certain parameters and variables which are
used in the equation section of the model.

We will flatten the model hierarchy by expanding the equations and treat each
variable and parameter instance separately. Also, it is important to create the
actual model instances, because the dimensional consistency might depend on the
value of the parameter instances.

12

4.2.2 Tasks

A function in gPROMS is defined in terms of a TASK, which describes an operating
procedure using equations. Instead of deriving a polymorphic dimension type for
each TASK, we will achieve polymorphism by treating each invocation of the task
separately. This is accomplished by expanding the equations using the instantiated
arguments and thus generating a new set of equations for each invocation relating
to the specific arguments.

4.2.3 Arrays

gPROMS supports vector operations through an array construct. The models can
contain array declarations of either parameters or variables. We have decided to
restrict the use of arrays so that each entry in an array have the same dimension.
This is assured by treating the whole array as a single variable or parameter.

4.2.4 Streams

As described earlier, streams are used to interconnect variables in different model
instances. gPROMS basically expands the streams to equality relationships between
the stream entries. We will do the same, asserting that each matching pair in the
streams have equivalent dimensions.

4.2.5 Partial Derivatives and Integrals

In gPROMS it is possible to define partial derivatives and integrals when simulating
distributed models. A variable can be declared as a distribution over one or more
domains, and it is possible to derive or integrate the variable with respect to one
or more of these domains. One can think of partial derivatives as division and
integration as multiplication, although this is a great simplification.

Partial derivatives are defined using the PARTIAL (expression, domains) con-
struct and turns out to be quite easy to handle. We will treat them much like
division and divide the dimension of the expression by the dimension of the do-
main. We will not take in account how the expression is distributed. One could
otherwise limit the use of partial by only allowing partial derivatives over the same
domains that the expression is distributed over. Derivatives w.r.t time are treated
differently and are defined with the special operator $.

Integrals are defined with the INTEGRAL (ranges ; expression) and are very
general and can even be nested to arbitrary depth. This poses some problems which
are related to the syntax and semantics of integrals in the gPROMS language. For
example, consider the following mathematical expression and it’s corresponding
transformation to gPROMS:

L
/ z-T(z)dz = INTEGRAL(z:=0:L ; z*T(z))
0

The resulting dimension is dependent on the local integration range z and the
distributed variable T'. The generality of integral expressions makes it somewhat
complex to deduce the dimension of the result. For instance, what happens if the
variable T is distributed over Mass and we are integrating with respect to Length. Is
this physically sound? Moreover, should it be possible to infer dimensions through
ranges and domains? Our view is that the dimension of the integral should depend
on the distribution that is integrated and the local distribution domain declared in
the integral expression. This design choice is subject to change if it proves to be
inconsistent with the view of the model developers.

13

4.2.6 Foreign Objects

The foreign objects are external functions that are loaded during runtime when nec-
essary. We need to know the dimensions of the input parameters and the dimension
of the output. This information can be retrieved by communicating with the FO
directly via the foreign object interface.

The foreign object interface supports a number of methods used to verify and
extract information about a method in a given package. Two verification methods
are gFOCM and gFOCMI, which verify the existence of a method in a package and
return detailed information about its structure. For instance, one can retrieve con-
version factors and the dimension of the input and output. There is one conversion
factor for each input and output. The conversion factors are represented with an
offset along with a multiplier. Therefore, gPROMS can convert, for instance, tem-
perature measured in Fahrenheit to Celsius. The dimensions are represented with
a vector of rational exponents of the fundamental or base dimensions. gPROMS
uses the SI units extended with planar and solid angle along with dollars. Dollars
is a required dimension for models that simulates economical dependencies, which
is often an important factor in the industry.

The invocation of the special verification methods in the foreign objects to an-
alyze them is not really in the scope of this thesis. The best suitable way to get
the information would be to annotate the invocations of the foreign objects, which
would be a cumbersome process. For now we will disregard the invocations of
methods in foreign objects.

14

Chapter 5

A Dimension Type System

We will formalize our Dimension Type System using a small language, SMEL (Small
Meta Equation Language), which is an implicitly typed monomorphic language
that allows annotation of dimensions. SMEL is a simple language with support
for general equations and declarations of variables with annotated dimensions. The
reason why we are introducing this language, is because it will make the definition of
our type system much more clear. Later we will show how the relevant constructions
in gPROMS can be transformed into SMEL. However, there is a restriction on the
transformation from gPROMS to SMEL. The underlying semantics of SMEL is not
equivalent to that of gPROMS. For instance there is no notion of integrals in SMEL.
It is only important that the transformation is dimensionally equivalent.
An EBNF grammar for SMEL is shown in Figure 5.1.

SMEL = {eqtn} ;
eqtn expr, ’=’, expr ’;’
id, ?::?, dim, ’:=’, (expr|"undef"), ’;’ ;
expr term, {2+ |72 |2%2|?/2|2=?) term} ;
term = [’-7], fact
fact = 2(’, {eqtn}, expr, ’)’
| id, [?(’, expr, ’)’]
| num, ’::?, dim ;
dim =<, q, {7,” q}, >’
|
|

0 (x zero vector x*)
(* unbound *) ;
[’-?]1, num, [’/’, num] ;
num = {,o,l,1,|,2,|,3’|,4,|’5,|’6,|’7,|,8’|,9’}_ ;

Figure 5.1: EBNF grammar for SMEL

As we can see from the grammar, the language is pretty small but powerful. For
instance the language supports local declarations of variables within expressions,
much like the let construction in functional languages. Also, we have added the
capability to annotate the dimensions of variables and numeric constants. The lan-
guage has been kept small by removing certain language properties usually found in
normal programming languages. For instance, there is no precedence order for arith-
metic operators. Precedence relationships are instead resolved by using compound
expressions.

The ability to define equations within expressions is used to declare local vari-
ables and corresponding constraints on the values they can be assigned. For in-
stance, INTEGRAL expressions in gPROMS define local domains. The domain dec-

15

larations are transformed into a variable declaration and a set of equations in the
value domain, that restricts or specifies the values used for the domain.

5.1 Dimension Types

Each symbol is associated with a dimension variable (cf), which represents a vector
of rational numbers, {(q1,...,qn,), where n is the number of base dimensions. Each
rational number corresponds to the exponent of a base dimension, determined by
the position in the vector. A dimensionless quantity is represented with the zero
vector (0). Dimension types (¢) are built from linear combinations of dimension
variables and constants closed under a vector space.

We will use the terms dimension types and dimensional expressions interchange-
ably. A dimension type is a dimensional expression and the generated constraints
are thought of as equations relating two dimensional expressions.

The variables and parameters in gPROMS must not have polymorphic types,
because our basic theorem states that dimensions are temporal invariant, which
results in that each occurrence of a certain variable instance must have the same
dimension. Therefore we have designed SMEL to be monomorphic. It turns out
though, that the intrinsic functions must be given polymorphic types in order to
work with all dimensions. Another exception is that gPROMS allows a limited
kind of polymorphism by supporting parameterized models. This parameterization
is easily handled during the transformation from gPROMS to SMEL.

SMEL implements the same intrinsic functions as gPROMS which include for
example: exponential, trigonometric and scalar functions. The intrinsic functions
are given polymorphic dimension types, represented by the type scheme: o5 =
Vd1.01 — d2. According to the II-theorem, the result of the exponential function
must be dimensionless [WO91, Rit95]. The results of the trigonometric functions
may also safely be assigned the dimensionless type. For example, the trigonometric
functions are given the following type scheme:

SIN : V4.(6 — 0)
Since our system is based on rational exponents, the square root function can
be given the following type:
1
SQRT : V6.(6 — 55)

The scalar functions MIN, MAX, PRODUCT and SIGMA are all given the
identity type. For example, the function SIGMA is used to sum all the elements in
a vector. The dimension of the resulting scalar should be the same as the dimension
of the vector. The identity type is defined in the following way:

MIN : V6.(5 — 6)

The arithmetic operators are given the following types:

= V(%6 —0)
* : V6152.(61 X 62 — 61 + (52)
/ : V6162.(61 X 62 — (51 — (52)

It would be possible to assign a type scheme to each operator and treat them
as ordinary functions. However, we will instead associate separate inference rules
with each operator, since it is much more informative.

16

5.2 Dimension Type Rules

We now present, a formal definition of the type rules that constitutes our dimension
type system. Basically, the language elements of SMEL are associated with corre-
sponding dimension type rules in our dimensional type system. Such type rules are
often called judgments and are formalized in the following way:

C,Tke:d

In this judgment, C is a set of linear equations relating dimension type variables,
I is a typing environment, e is an expression and ¢ is a dimension type. It reads “if
identifiers are dimensionally constrained by C with respect to typing environment
I, expression e has dimension §”. Each equation represents an equivalence relation
between two dimension types, effectively forcing them to represent the same dimen-
sion. For instance, two quantities that are added must have the same dimension.
The purpose of the type rules is to derive such a system of equations, constraining
the dimensions and thus ensuring dimensional consistency for the entire simulation
specification.

The typing environment (I') maps identifiers to their corresponding dimension
variables (cf), and provides a context in which the dimensional inference takes
place. T'is a composition of two separate environments, I'; and I';,, according
tol' = T'yUTl,,. ['; contains mappings between variables and their associated

-

dimension variables, [id — d], and [';; contains mappings between functions and
their polymorphic dimensions, [id — o5]. Bindings are looked up in T with the
following semantics:

. d. idis a variable;
D[id]T’ = ’ ’
[id] { os, id is a function;

This implies that we cannot have variables with the same name as intrinsic
functions, which is true for both gPROMS and SMEL.

Another environment, env,,, maps variables to their values. If an entry in enwv,
is bound, the value of the corresponding variable is statically known and can thus
be used to infer the dimension of the exponent rule. A binding is looked up using
a similar semantics as that for dimensions, V[symbol]env, = value. If the variable
is unbound, the lookup results in undef. The property of undef is the following:

undef + x = « + undef = undef

which is lifted to the obvious congruence over arithmetic operators.

We will also consider a function 1 that takes as argument a general expression
in SMEL and computes its value, using the environment env, together with the
usual semantics for arithmetic. The return values of function calls are undef.

Now we will present our typing judgments used for deriving the set of linear
equations C. They are as follows:

17

—

eqtn;eqtn : Ci,DFeqtng :0 Co,T'F egtny : 0
’ ' CiUCs, 't eqtny ; eqiny : 0

e : Ci,I'Fexpry : 01 Co,T'F expry : b
- C1UCyU {01 =62}, T+ expry = exprs : 0

Ci,TFegtns: 0 Co,T'F expr: 6

d
compotn C1UCo, T+ (egtns ; expr): o
decl env, = 671% u [id_:—) ql §
0, T U[id— d|* id:d := q: 0
add Cl,Fl—el:él CQ,F"@QMSQ
C1UC2U{(51 :62},F|—61 + €9 :(51
sub Cl,r|—61 2(51 CQ,F"@QC(SQ
C1UCQU{61:62},F|—61 —62:51
Cl,Fl—el :51 CQ,F"@QMSQ
mul
61UCQ,F|—61 *621614-62
di Cl,r|—61 2(51 CQ,F"@QC(SQ
v 61UCQ,F|—61/62161—62
Cl,Fl—el :6 CQ,F'—GQZ(SQ
power -y
61UC2,F|—61 TGQZO
Cl,Fl—el:él CQ,F"@QZ&Q '19(62):0
powers -y
61UC2,F|—61 TGQZO
Ci,TkFe:61 Cy,TFey:da VY(ex) # undef
ower,
p 3 C1UCQ,F|—61T62:19(62)'61
. C,kexpr:61 O,T'Fid:5; — 0
PP C,T'Fid (expr):dy
0, T+ id: o,
spec
P 0, F id: 05,[0/01]
id

0,T + id : Did]T

5.3 Transformation to SMEL

Now we will show how gPROMS can be transformed into SMEL. We will give
an informal description of the transformation for the different language elements
of gPROMS, as well as define the transformation rules. A transformation rule
maps a syntactic construction in gPROMS to a dimensionally equivalent syntactic
construction in SMEL. Parts of the gPROMS language that are not dependent
on dimensional consistency are skipped during the transformation simply by not
defining the corresponding transformation rules. Basically, after the transformation
we are left with the equations in the simulation models and the symbols that occur
in them. The symbols are either parameters or variables in gPROMS, which are
treated the same in SMEL.

18

5.3.1 Polymorphic Parameterization

During the transformation, the polymorphic parameterization must be taken care of.
This is asserted by treating each instance separately. The symbols in the resulting
dimensional equations are based on instance specific information. For example, if
we have a parameter b in MODEL a we refer to this symbol as a.b. This could be
viewed as creating an instance of a type scheme for that symbol, which resembles
how a polymorphic type system would be constructed. However, our approach limits
the polymorphism so that for a given symbol instance it will at most be bound to
one specific dimension.

5.3.2 Dimensional Information

Each symbol in gPROMS can either be associated with an annotated dimension,
or left unbound. Unbound symbols can later be bound to what ever dimensions
are necessary to uphold dimensional consistency. The limitation is that due to the
temporal invariance, they can only be bound once. Therefore it would be wrong to
say that the symbols are polymorphic.

The annotations in gPROMS are transformed into equivalent annotations in
SMEL, by annotating the corresponding declarations. It is important to notice
that there are no parameters in SMEL, only variables. For instance if a parameter
a in model b is annotated to m/s, the corresponding variable in SMEL, a.b, is
also annotated to m/s. The same applies for variables in gPROMS, only now the
annotated dimension for the specific variable type is used. For instance if a variable
type Meter in gPROMS is annotated to m, all instances of type Meter are also
annotated to m. If a variable type is unbound, all variable instances will also be
unbound, which ensures the possibility to create polymorphic parameterized models.

Numeric Constants

Numeric constants are explicitly typed during the transformation depending on the
context. If a numeric constant is part of a multiplicative expression it must be
dimensionless, but if it is part of an additive expressions it must be polymorphic.
The effect of this scheme is that the numeric constants cannot be used to infer
dimensions or balance formulas. We believe that it is more safe to infer dimensions
for statically known quantities through parameters.

In practice, each physical constant that is used should be defined as a parame-
ter in gPROMS. In this way it is assured that the constant is used dimensionally
consistently.

5.3.3 Parameter Values

In gPROMS, parameters can be set to constant values statically before the simula-
tion begins. These value assignments are moved to the declarations of the param-
eters. For instance, consider a dimensionless parameter b in model a (a.b) which is
statically assigned a value of 100. The corresponding declaration of a.b in SMEL
would be:

a.b::0 := 100;

In the same way, we must prevent that variables are assigned values. Therefore
all variables are declared as undef, like follows:

variable: :dimension := undef;

19

5.3.4 Transformation Rules

We will now formalize the transformation from gPROMS to SMEL by defining the
transformation rules. As described earlier, the transformation rules are used to
map dimensionally equivalent syntactic constructs in gPROMS to SMEL. We will
define the rules by using a mapping function, f, which ranges over the different
syntactical constructs of gPROMS. We will only define the output mappings of f
for the mathematical operations of gPROMS, as the other constructions are trivial
and most of them are not needed anyway.

Mathematical Operators

As previously mentioned we need to treat the numeric constants differently depend-
ing on the context. They are explicitly typed to dimensionless in multiplicative
constructs (::0) and explicitly typed to polymorphic in additive constructs using
the special polymorphic typing (::). Since the arithmetic operators are associative
we will not specify each possible input combination.

flexpr (<|>|<=|>=|=) expr) = expr = expr

f(expr (and|or) expr) = expr = expr

flexpr (x|/|+|-) expr) = (expr (x|/|+|-) expr)

f(num (*|/) expr) = (num::0 (*|/) expr)

f(num (+|-) expr) = (num:: (+|-) expr)

f(expr =~ expr) = (expr ~ expr)
Derivatives

The special derivative with respect to time ($) is handled by dividing the expression
with a numeric constant of dimension Time ((0,0,1)). The partial derivative is
simply treated as a division.

f($ expr) (expr / 1::<0,0,1>)
f(PARTIAL (expr,domain)) = (expr / domain)

Integrals

Integrals are treated much like normal multiplication with the addition of local do-
main declarations. These declarations are translated to additional equations within
the integral expression. In case of multidimensional integrals one or more domains
might be declared, which is not a problem during the translation.

f(INTEGRAL (dom:=el:e2;expr)) = (dom:: :=el;dom:: :=e2;expr*dom)

5.4 Dimensional Inference Algorithm

We will now give a description of our dimensional inference system. Later in this
chapter we will give a more thorough explanation of the algorithms involved at each
step. These are the basic steps of our inference engine:

1. Derive system of equations, C.
2. Infer trivial dimensions.

3. Solve systems of equations.

20

5.4.1 Overview

Before we go into the details about our algorithms, we will briefly describe each of
the involved steps.

Derive System of Equations

First, the system of equations C is derived using the type rules described earlier. In
practice, the transformed gPROMS source specification is parsed and converted into
an abstract syntax tree (AST) whereafter the type rules are applied recursively on
the structure. The resulting system of equations contains all dependencies necessary
to analyze the dimensional consistency.

Infer Trivial Dimensions

Before we solve the system of equations we use the statically annotated information
to recursively infer new dimensions, by an extended back substitution algorithm.
The process is based on finding equations with only one unknown, which are trivially
solved. When such an equation is found, the binding for the unknown dimension
variable is updated and all occurrences of it are substituted for its dimension. Any
resulting redundant equations are removed. This part of the algorithm terminates
when there are no more trivial equations to solve.

During this step it is possible to detect dimensional inconsistencies simply by
finding equations where the two sides are not dimensionally equivalent. Such a
property is easily checked once all dimension variables in an equation are known.

One of the main reasons why we introduce this step is because we believe that
given enough dimensional annotations, this step will reduce the overall execution
time and at the same time offer qualitative dimensional inconsistency reports. The
dimensional inconsistencies found during Gauss-Jordan Row Reduction are hard to
trace, since the structure of the system is destroyed during Row Reduction.

Solve Systems of Equations

If not all equations were removed in the previous step, the system of equations is
divided into one or more partitions which can be solved independently. A partition is
defined as the least system of equations satisfying the condition that each dimension
variable must only occur in the equations of one specific partition.

The partitioned systems of equations are finally solved using Gauss-Jordan Row
Reduction. If the systems prove to be uniquely solvable, we end up with the in-
ferred dimensions for the unknown variables. Otherwise we have either no solutions
or infinite number of solutions. In case of no solutions we have dimensional inconsis-
tency, and in case of infinite number of solutions the system is consistent, but there
are still unknown dimensions. We do not experience any of the numerical problems
usually attributed to Gaussian elimination since we have based our computations
on rational numbers.

5.4.2 Infer Trivial Dimensions

By using the annotated dimensions, we can statically derive new dimensions by
means of equational unification and substitution. Depending on the amount of
known dimensions and how the equations interact the complexity of the final in-
ference step by Gaussian elimination can be greatly reduced. In fact, if enough
dimensions are annotated we can solve the entire system by means of recursive
substitution and unification.

21

Representation

The dimensional constraint equations are represented as a 3-tuple (7T, ciSET, q), where
T is a list of terms, d_;ET is a set of the occurring dimension variables and ¢ is the
accumulated result of the substituted dimensions. Each term is represented as a
2-tuple, {(q,d), where ¢ is a rational factor and d is a dimension variable. For
example, the equation 2d, = d, is represented as ([(2,&;),(—l,cﬂ)],{Ja,%},ﬁ),
since?d_;:d_;,<:>2d;—d_;,:6.

The dimension variables are usually represented by their identifiers, but they
also have other information associated with them. The actual representation of a
dimension variable is a 3-tuple (id, 7, known), where id is the identifier, ¢ is the di-
mension it represents and known is a boolean flag indicating whether the dimension
is known or not.

Later, as we describe our algorithms, we will need to refer to the in_qlividual

elements of these compound data types. For instance, if ¢ is a term then d[t] is its
dimension variable, and if v is a dimension variable then §[v] is its dimension.

Algorithms

We have developed two algorithms that are invoked in sequence on the set of equa-
tions. The first algorithm will simplify the equations so that each symbol in an
equation only occurs once. The second algorithm will recursively substitute terms
in the equations for known dimensions. After these two algorithms have been ap-
plied, we are left with a possibly reduced set of equations containing only unknown
variables, depending on the amount of known dimensions.

Simplifying the Equations

First we are going to reduce the equations using Algorithm 5.1. This algorithm
works by iterating through the terms of each equation and merging terms repre-
senting the same symbol, thereby forcing each symbol to only occur once in an
equation.

Algorithm 5.1: Simplify Equations
SIMPLIFYEQUATIONS(Es)
input : FEs, the set of equations to be reduced
output : FEs, the set of reduced equations

begin
foreach equation e; € Es do
foreach term t; € Tle;] do
foreach term ti, € Tle;| A ti #t; do
if d[t;] = d[t;] then
qlt;] < qlt;] + alts]
T[el] <« T[el] — {tk}
if ¢[t;] = 0 then
Tled « Tled - {t}}
dser[ei] < dser[ei] — {d[t;]}
if |T]e;]| =0 then
Es <+ Es— {e;}
end

© 0 Ne TR W N -

1

[y
= o

By using simple algebraic techniques it is also possible to remove equations that
are completely redundant. For example, consider the following equation:

22

- -

2d, = dy+d, =

d
2d, —d, —d, = 0

It is easy to realize that this equation is redundant independently of the di-
mension of a, since the terms will cancel each other out and we are left with the
following equation:

—

od, = 0

Clearly this equation does not add any information and can safely be discarded.
We do not have to check that the dimension really is dimensionless, since we have
not expanded any statically known dimensions yet.

Recursive Substitution of Dimensions

When the equations are reduced we can apply Algorithm 5.2 in order to expand the
statically known dimensions.

Algorithm 5.2: Recursive Substitution of Dimensions
RECURSIVESUBSTITUTION(Es, E)
input : FEs, the set of all equations

input : E, the set of equations to process
output : Fs, the set of resulting equations
begin
foreach equation e; € E do
/*Substitute for known dimensions*/

[y

2 foreach term t; € T[e;] do
3 if known[ci[tj]] = true then
a qlei] < dlei] — qlt;] = qld[t;]]
5 T[el] — T[el] — {tj}
/¥If there are no terms left in equation — remove it */
6 if |T]e;]| =0 then
7 Es <+ Es—{e;}
8 E+ E —{e;}
9 if Gle;] # 0 then
10 REPORTERROR("Dimensional inconsistency”)

/¥If there is exactly one term in equation — unify dimension*/
11 if |T[e;]| =1 then

12 t € Tlei]

13 qldft]] « qleil/qlt]
14 known[d[t]] « true
15 Es <+ Es—{e;}

16 E+ E —{e;}

/*Build the set of equations that are dependent on this symbol and
solve the variables in these equations recursively */
17 NewSet + {e: (e € Es A d[t] € dserle])}

18 RECURSIVESUBSTITUTION(Es, NewSet)
end

Algorithm 5.2 recursively substitutes variables for their known dimensions until
there are no more dimensions to substitute. New dimensions are derived by finding
equations with only one unknown and then trivially solve for its dimension. The
equation is then removed from the set of equations, since there is no further infor-
mation in it. The algorithm then recurses over the equations that are dependent on

23

the previously unknown variable. This whole process is executed iteratively until
there are no more dimensions to substitute.
For example, consider the following two dimensional equations:
J (07]-7 _2>
2dy —d, = (0,0,0)

S
|

The two variables, J; and cib are unknown, and thus placed to the left. The
algorithm will find the first equation and trivially solve for the dimension of d,,
which is (0,1, —2). Now, each occurrence of d, is substituted for ¢[d,] and the first
equation is removed, resulting in the following equation:

2d—;1 = <07 17_2>

This equation is trivially solved by the algorithm and the solution is the dimen-
sion of dj, (0,%,—1). The equation is removed and the algorithm terminates since
there are no more equations. In this case, the system was proved to be consistent
and complete.

However, what if the dimension of J;, is also known in the equation above. For
example, consider the case where the dimension of ci;, is equal to (0,0, —1). When
the dimension is substituted in the equation above, we end up with the following

equation:
(0,0,00 = (0,1,0)

Clearly we now have a dimensional inconsistency, since the sum of all the di-
mensions must be dimensionless. So in this case the system was proved to be incon-
sistent. Also, the inconsistency can be traced to this particular equation. This is
not quite right though, but will give some pointer to where things might be wrong.

5.4.3 Solve Systems of Equations

In order to infer the missing dimensions, we must solve the system of equations
for the unknowns. The system of equations is solved using Gauss-Jordan Row
Reduction method, since it is easily computerized and relatively efficient.

There are three possible outcomes, a single solution, an infinite number of solu-
tions or no solutions. In case of no solutions, we have an inconsistent system, which
can never be satisfied. If we have exactly one solution, the system is solved and each
previously unknown variable is now known with a most general dimension. If we
have infinite number of solutions, we have a consistent system with dependencies
between the unknown variables. The case of infinite solutions will be explained in
more detail later.

Partition Equations

Before we apply Gauss-Jordan Row Reduction, the equations are partitioned into
several independent systems of equations using Algorithm 5.3. It is important to
partition the equations since the complexity of Gauss-Jordan Row Reduction is
heavily dependent on the size of the system of equations. Thus, we can minimize
the the total amount of time necessary to solve the equations by minimizing the
size of each independent system. Also, the partitioning enables us to trace the
dimensional errors to their origin (all equations in the partition).

24

Algorithm 5.3: Partition Equations
PARTITIONEQUATIONS(Es)
input : Fs, the set of equations to be partitioned
output : Ps, the set of resulting partitions

begin
OldList <
while |Es| > 0 do
/*Pick some arbitrary equation e in Es*/

N =

3 e+ eckEs
4 Es+ Es— {e}
5 P+ {e}
6 WorkList < {s : (s € dssrle])}
/* Build partition originating from equation e*/
7 while |WorkList| > 0 do
8 symbol < s € WorkList
WorkList < WorkList — {symbol }
10 OldList < OldList U {symbol }
/*Add equations that symbol occurs in to partition*/
11 foreach ¢; € Fs do
12 if symbol € ci;ET[ei] then
13 P+ PU{e;}
14 Es+ Es—{e;}
15 WorkList < WorkList U {s : (s € dsgrles] A s & OldList)}
16 Ps < PsU{P}
end

Gauss-Jordan Row Reduction

The Gauss-Jordan Row Reduction method is a highly systematic algorithm for
solving systems of linear equations. The equations are organized in an augmented
matrix, where each row corresponds to an equation. The basic steps of the algorithm
is the row operations. These operations are performed on the augmented matrix for
a linear system until it is transformed into a new augmented matrix, called reduced
row echelon form. The reduced row echelon form reveals the solutions without
any need for back substitution, which is otherwise required for normal Gaussian
elimination.
The following three operations are legal operations on the rows:

1. Multiplying a row by a nonzero scalar.
2. Adding a scalar multiple of one row to another row.

3. Switching the positions of two rows in the matrix.

When simplifying the augmented matrix associated with a system, we work on
one column at a time. Initially we begin with the first nonzero column of the matrix.
After a column is completely simplified, we move to the next column to the right.
While working on a particular column, one row is singled out as special. This is
called the homerow. We begin with the first row as homerow and move down as
the reduction progresses. The matrix entry that lies in both the current homerow
and in the current column is called the pivot. The algorithm terminates either
when we run out of rows to use as the homerow, or run out of columns before the
augmentation bar. See Algorithm 5.4.

25

Algorithm 5.4: Gauss-Jordan Row Reduction
GAUSSJORDANROWREDUCTION (M)
input : M, a matrix representing the system of equations
output : M, the resulting matrix in row echelon form

begin
1 homerow < 0
2 1+ 0
3 n ¢+ rows[M]
4 m <+ cols[M]
5 while homerow < nAi <m do
6 Find pivot p, such that (Mp; > 0 A homerow < p < n)
7 if p found then
8 Switch Mpomerow With M,
9 for ¢ < i to m do
10 Mlﬂtlply Mhomerow,c with]-/Mhomerow,i
11 foreach row r € M Ar # homerow do
12 for ¢c =i tom do
13 Add _Mni * Mhomerow,c to Mnc
14 homerow < homerow + 1
15 1+ 1+1
end

Infinite Number of Solutions

After row reduction, columns with nonzero pivot elements are often labeled as
pivot columns, and the others are called non pivot columns. The variables for non
pivot columns are called independent variables, and the others are called depen-
dent variables. If a given system is consistent, solutions are found by letting each
independent variable take on any real value (or rational value). The values of the
dependent variables can then be computed from these choices.

In our case, for the system to be complete it needs information about these
independent variables. This information can be entered in form of annotations. An
important factor is what variables that should be annotated, and it is our system
that must suggest these variables. This requires some form of heuristics. We want
the user to annotate the variables that affects the system the most, i.e the ones
that occur most frequently. However, these variables must be chosen among the
independent, since these control the value of the dependent ones. Therefore we
must come up with a heuristic that favors the variables that occur the most to
become independent variables. A simple heuristic that works in most cases is to
sort the variables according to the number of equations that they appear in, so
that the ones that occur the most are placed to the right. This works, because the
Gauss-Jordan Row Reduction works its way from left to right. It is more likely
for a variable that is chosen first to become a dependent variable than one that is
selected last.

26

Chapter 6

Implementation

We have implemented our dimensional inference algorithms for gPROMS using Java.
The implementation is in the form of a stand-alone tool that statically analyzes
the dimensional consistency of a gPROMS simulation model. We decided to omit
certain language features due to mostly time constraints. The limitations will be
discussed further in this chapter.

The algorithms are implemented slightly different from the pseudo-code shown
previously, since we have used an object oriented approach. Also, our representation
of the interconnections between the equations and the variables form a dependence
graph. The use of a dependence graph removed some of the iterations, reducing the
overall computational complexity of the algorithms.

6.1 Overview

First the gPROMS source program is parsed and converted into an intermediate
representation of SMEL in the form of an AST. During this transformation re-
dundant language constructions are skipped. Also, in order to simplify derivation
of certain dimensions the static expressions are evaluated and reduced to numeric
literals.

The dimensional constraint equations are derived by traversing the AST and
applying the type rules of our dimension type system to each node. Since much of
the work is done during the transformation, such as flattening the model hierarchy,
the derivation of the system of constraint equations is fairly easy. When each node
is traversed, the dimensional consistency is analyzed using the algorithms described
previously.

Our tool also provides detailed descriptions of the dimensional errors that are
found and directs the user into the specific lines in the source where the error is
located. The system also provides the heuristics for deciding which parameters or
variables that should be annotated. This will most likely be of great use for the
users in order to localize errors in their source.

6.2 Syntax Extensions
The original gPROMS syntax was altered in a few ways, which we will describe
here. First off, it was made more similar to normal programming languages with-

out affecting compatibility with the gPROMS environment. We also added the
annotation capability that is needed for the dimensions.

27

6.2.1 Homogenization of gPROMS Syntax

In order to simplify the analysis, the original gPROMS syntax has been altered to
make the syntax more homogeneous. Some constructions have been merged together
in order to minimize the number of special cases that otherwise would need to be
handled. At the same time the syntax has been made more similar to a normal
imperative programming language.

The new syntax is a proper superset of gPROMS, so it can process a larger set
of input data than the original syntax. The downfall is that it is possible for the
system to process input data that is not a proper gPROMS file. This is not such a
large problem however, since we require that each input must be a proper gPROMS
input file.

6.2.2 Dimensional Annotations

We have decided to use the SI system of units as acronyms for the actual physical
dimensions. This means that instead of using, for instance, the dimension Mass, the
ST unit kilogram is used instead. The reason for this convention is because gPROMS
uses SI units internally when communicating with the foreign objects, and the fact
that the SI system of units is standardized and commonly used in the industry. We
have chosen to use the 7 standard units, the 22 derived units and dollars.

Also, we do not use the unit specification to annotate dimensions, since the
model developers might want to use it for their own unit of measures. Instead,
we have extended the gPROMS language with annotation of dimensions for both
variable types and parameters. These annotations are placed within comments
so the source program will still be compatible with the gPROMS environment.
There are two types of comments in gPROMS, line comment and block comment.
We have chosen to use the block comment {...} for dimensional annotation. The
special annotation comment looks like this: {@dim ... }, with ... replaced by the
actual dimension.

dimAnnot = "{@dim" dimEntity, {(>/’ | ’.’), dimEntity} ’}’
dimEntity = ident, [’"’, rational]
rational = [’-’], integer, [’/’, integer]

Figure 6.1: EBNF grammar for dimensional annotations

An important issue regarding the annotations is that they must be intuitive, to
make it easier to annotate the symbols. Otherwise, model developers might skip
using the tool at all. To accommodate this a simple syntax was developed, where
complex derived units can be expressed with ease. For instance the derived SI unit
N can be annotated in the following way: {@dim kg.m/s~2}. An EBNF grammar
describing the syntax is shown in figure 6.1.

{@dim m/s~2}
{@dim m.s~-2}

{@dim m/s.s}
{@dim m/s/s}

Figure 6.2: A few different ways to annotate acceleration

The operators ’-? and ’/’ are both right associative in order to implement the
correct semantics for annotations like the following: {@dim m/s/s}, which shows

28

one way to annotate acceleration. Basically both operators are forms of unary
negation where >/’ is used to negate a compound dimensional entity, whereas ’>-’
is used to negate the rational exponent of a simple dimension. See Figure 6.2 for a
list of some of the different ways one can annotate the dimension for acceleration
in.

6.3 Limitations

Our system does not handle every construction in the gPROMS language. For in-
stance, we decided to skip the foreign objects, since it is just a matter of software
engineering and could easily be added later. Also, we skipped MODEL inheri-
tance capabilities. We are only considering the variables and parameters explicitly
declared within a MODEL. This feature could also be added later.

29

Chapter 7

Results

In this chapter we will show some simple models and the corresponding result after
running them through the dimensional analysis tool, which will enlighten some of
the capabilities of our system. The models are small fictitious models constructed
solely to serve the above mentioned purpose. Although the models are fictitious
they are built upon physical formulas commonly used in engineering. The chapter
will be divided into a few different scenarios, each scenario enlightening some specific
feature or features of our system. Also, see [DPLO03| for an example of a buffered
tank model.

1 DECLARE

2 TYPE

3 Current = 1.0 -1E10 : 1E10 {@dim A}
4 Voltage = 1.0 : -1E10 : 1E10 {@dim V}
5 Resistance = 1.0 -1E10 : 1E10 {@dim ohm}
6 END

7

8 MODEL Testl

9 VARIABLE

10 I AS Current

11 U AS Voltage

12 R AS Resistance

13 EQUATION

14 U=R * I;

15 END

16

17 PROCESS Simulate

18 UNIT

19 Test AS Testl

20 END

Figure 7.1: Source specification for Test1

7.1 Dimensional Analysis
One of the main features of our system is the capability to statically analyze the

dimensional homogeneity of a simulation model. A pure dimensional analysis check
requires that all dependent symbols occurring in the model equations are annotated

30

with the proper dimensions.

In this scenario the model specified in Figure 7.1 will be used, which makes
use of ohms’ law, describing the relation between electric current, voltage and resis-
tance. As we can see, each symbol is associated with an annotated dimension, which
makes it possible to determine the dimensional consistency of the model, using only
dimensional analysis. The following result was reported from our system:

Parsed DECLARE
Parsed MODEL TEST1
Parsed PROCESS SIMULATE

System is consistent and complete.
No warnings.

As we can see, the system had no difficulty deducing the dimensional consistency,
given that all the symbols were annotated.

7.2 Dimensional Inference

We have seen that the system is able to handle models in which all symbols are
properly annotated. But, what happens if we remove the dimensional annotation of
Voltage in the previous scenario, yielding the model according to Figure 7.2. The
following output was reported:

Parsed DECLARE
Parsed MODEL TEST2
Parsed PROCESS SIMULATE

Inferred Dimensions:
TEST.U = V = <m2.kg.s-3.A-1>

System is consistent and complete.
No warnings.

The output is not so surprising considering we have one equation with only one
unknown, which is trivially solved. The system infers the dimension of the Voltage
symbol during the "application of known dimensions" step.

If we were to remove yet another annotation in the scenario above, that for
Current, we end up with the following output:

Parsed DECLARE
Parsed MODEL TEST2
Parsed PROCESS SIMULATE

Unknown Symbol(s):
CURRENT @ 3
VOLTAGE @ 4

Symbol(s) To Annotate:
CURRENT @ 3

System is consistent but not complete.
No warnings.

31

1 DECLARE

2 TYPE

3 Current = 1.0 -1E10 : 1E10 {@dim A}
4 Voltage =1.0 -1E10 : 1E10

5 Resistance = 1.0 -1E10 : 1E10 {@dim ohm}
6 END

7

8 MODEL Test2

9 VARIABLE

10 I AS Current

11 U AS Voltage

12 R AS Resistance

13 EQUATION

14 U=R* I;

15 END

16

17 PROCESS Simulate

18 UNIT

19 Test AS Test2

20 END

Figure 7.2: Source specification for Test2

This is not so surprising either, since we now have only one equation but two
unknowns, which has infinite number of solutions. However, the system is still
consistent though, and the dimensions of the two symbols Current and Voltage
can be described as a linear combination in terms of other symbols. Instead of
expressing the relationship between the dependent symbols, the system heuristically
proposes that the symbol Current should be annotated.

We know that annotating the symbol Current would solve the problem, since
that is exactly the case above. But, what if we add a new equation also relating the
unknown symbols Current and Voltage, so we end up with two equations and two
unknowns? We added an equation relating electric power as the product of voltage
and current, Power = Voltage x Current. Since we do not have the symbol Power
we also added this. The altered model is specified in Figure 7.3. The following
output was generated:

Parsed DECLARE
Parsed MODEL TEST3
Parsed PROCESS SIMULATE

Inferred Dimensions:
CURRENT A = <A>
VOLTAGE V = <m2.kg.s-3.A-1>

System is consistent and complete.
No warnings.

Since Power and Resistance are known, we end up with two equations and
two unknowns which forms a system of equations solvable by means of linear alge-
bra. The solution reveals the dimensions for the unknown symbols, Current and
Voltage.

32

1 DECLARE

2 TYPE

3 Current =1.0 -1E10 : 1E10
4 Voltage =1.0 -1E10 : 1E10
5 Resistance = 1.0 : -1E10 : 1E10 {@dim ohm}
6 Power =1.0 -1E10 : 1E10 {edim W}
7 END

8

9 MODEL Test3

10 VARIABLE

11 I AS Current

12 U AS Voltage

13 R AS Resistance

14 P AS Power

15 EQUATION

16 U=R * I;

17 P=U=x%1I;

18 END

19

20 PROCESS Simulate

21 UNIT

22 Test AS Test3

23 END

Figure 7.3: Source specification for Test3

7.3 Dimensional Inconsistency

In this scenario we will demonstrate what happens if a simulation model is not
dimensionally consistent. The user will get some warnings indicating what kind of
conflict or inconsistency that occurred and where in the source specification it is lo-
cated. Dimensional inconsistencies are best detected if as many symbols as possible
are annotated, otherwise we might just end up inferring erroneous dimensions.

We will consider a simple simulation model containing dimensional inconsisten-
cies and take appropriate actions based on the results from our system. The model
we will be using is specified in Figure 7.4. The following output was reported:

Parsed DECLARE
Parsed MODEL TEST4
Parsed PROCESS SIMULATE

WARNING @ 23: Inconsistent equation. dimension = <m>
WARNING @ 25: Inconsistent equation. dimension = <s-1>

System is inconsistent.
2 warnings.

The two warnings we see correspond to dimensional inconsistencies in the sim-
ulation model. At line 23 we have the equation P = F / d which is supposed to
compute the pressure P. The dimension specification in the warning informs of the
dimensional difference between the two sides of the equation, in this case <m>. In
this case it is easy to realize that we have made a typing error, since Pressure is
defined in terms of force per square length. Therefore we adjust the equation at

33

1 DECLARE

2 TYPE

3 Velocity = 1.0 : -1E10 : 1E10 {@dim m/s}
4 Length = 1.0 : -1E10 : 1E10 {@dim m}
5 Mass = 1.0 : -1E10 : 1E10 {@dim kg}
6 Acceleration = 1.0 : -1E10 : 1E10 {@dim m/s~2}
7 Work =1.0 : -1E10 : 1E10 {@dim N.m}
8 Force =1.0 : -1E10 : 1E10 {@dim N}
9 Pressure =1.0 : -1E10 : 1E10 {@dim Pa}
10 END

11

12 MODEL Test4

13 VARIABLE

14 m AS Mass

15 a AS Acceleration

16 d AS Length

17 W AS Work

18 F AS Force

19 P AS Pressure

20 v AS Velocity

21 EQUATION

22 F=m=x* aj;

23 P=F/d;

24 W=F % d;

25 vV = aj;

26 END

27

28 PROCESS Simulate

29 UNIT

30 Test AS Test4

31 END

Figure 7.4: Source specification for Test4

line 23 to the following: P = F / d~2, adjusting for the missing <m>. Similarly it
is easily discovered that the equation at line 25 is erroneous, since velocity does not
equal acceleration. Instead, acceleration is defined as the time derivative of velocity,
indicated by the dimension <s-1> in the warning. Therefore we alter the equation
to the following: $v = a. When we run the simulation model again we end up with
the following output:

Parsed DECLARE
Parsed MODEL TEST4
Parsed PROCESS SIMULATE

System is consistent and complete.
No warnings.

Clearly, guided with the warnings it was possible to locate the dimensional
inconsistencies and resolve them. Given more complex simulation models it might
not be this easy to locate the actual source of a possible dimensional inconsistency,
but the warnings will point in the right direction.

34

Chapter 8

Conclusions and Future Work

In this thesis we have shown a dimensional inference system for gPROMS and moti-
vated its usefulness in the industry. Our proposed system has been implemented as
a stand-alone tool in Java, which is to be used for evaluation of dimensional analysis
and inference in modeling languages. So, it is only when the model developers have
been using our tool for some time that we can actually draw any conclusions on how
useful our tool really is. If the system proves to be valuable in model developing, a
future extension might be to incorporate it into the gPROMS environment.

However, there are some pieces missing in our system which might be added
later on. These include the use of foreign objects and model inheritance. Also, the
way the dimensions are annotated might also be changed along with the internal
representation of dimensions. The user might want to use another set of base
dimensions than the ones defined in SI.

It would also be interesting to extend our system with the capabilities of au-
tomatic unit conversion. This could be added by extending our data structures to
hold scaling information for each unit to the corresponding SI unit. However, if
the system should be able to handle conversions between other than commensurate
units one need to generalize the conversion factors into conversion functions. These
functions could be annotated in a simple syntax along with the unit of measure.

35

Appendix A

EBNF Grammar for gPROMS

(* 2002-04-10 Daniel Persson *)

gPROMS = {
declareBlock
| modelEntity
| taskEntity
| processEntity } ;

(* - DECLARE entity --------=-—---—-———-——~— *)
declareBlock = "declare", {declareSection}, "end"
declareSection = ("type", {variableTypeDecl})

| ("stream", {streamTypeDecl}) ;
variableTypeDecl = ident, variableInitiation, [unitAnnot] ;
variableInitiation =

’=?, expression, ’:’, expression, ’:’, expression ;
unitAnnot = "unit", ’=’, strLiteral ;
streamTypeDecl = ident, "is", identifierList ;
(* - MODEL entity ------=-----—---—ommmm *)

modelEntity = "model", ident, ["inherits", ident]
, {modelElementDecls}, {setSection}, {boundarySection}
, {equationSection}, "end" ;
modelElementDecls = parameterSection
| distributionDomainSection
| unitSection
| variableSection
| streamSection
| selectorSection ;

(* Parameters *)
parameterSection = "parameter", {parameterDecl}- ;

"as'", parameterType ;

parameterDecl = identifierlist, "

parameterType = basicParameterType
| arraySpec, basicParameterType

| foreignObjectParameterType ;

basicParameterType = basicType, [defaultValue] ;
defaultValue = "default", expression ;

36

foreignObjectParameterType =
"foreign_object", [strLiteral], ["default", strLiteral] ;

(* Distribution_domains *)
distributionDomainSection =
"distribution_domain", {domainDecl}- ;
domainDecl = identifierList, "as", domainType ;
domainType = [arraySpec], basicDomain ;
basicDomain = (’(’, domainExpression, ’)’
| °[’, domainExpression, ’]’) ;

elementDistributionSpec = : arraySpec | distributionSpec ;
arraySpec = "array", ’(’, distributionlList, ’)’, "of"
distributionSpec =
"distribution", ’(’, distributionList, ’)’, "of" ;
distributionlList = distributionEntity
, {’,?, distributionEntity} ;

distributionEntity = domainExpression | expression ;

(* Units *)
unitSection = "unit", {unitDecl}- ;
unitDecl =
identifierList, "as", [elementDistributionSpec], ident ;

(* Variables *)
variableSection = "variable", {variableDecl}- ;
variableDecl =

identifierList, "as", [elementDistributionSpec], ident ;

(* Streams *)

streamSection = "stream", {streamDecl}- ;
streamDecl = (ident, "is", pathName)
| (ident, ’:’, pathNameList, "as", streamType) ;
streamType =
[elementDistributionSpec], (ident | "connection") ;

(* Selectors *)
selectorSection = "selector", {selectorDecl}- ;
selectorDecl = identifierList, "as", selectorType ;
selectorType = [elementDistributionSpec], basicSelector ;
basicSelector =

’(?, identifierList, ’)?, ["default", ident] ;

(*x Set *)

setSection = "set", {stmnt}- ;

domainSolutionMethods = ’[’, discretisationMethod, ’,’
, expression, ’,’, expression, ’]’

discretisationMethod =
("bfdm" | "cfdm" | "ffdm" | "ufdm" | "ocfem") ;

(* Boundary equations *)
boundarySection = "boundary", {stmnt}- ;

(* Equations *)
equationSection = "equation", {stmnt}- ;

37

(* - TASK entity —-—---——--———-——mmmmm e *)
taskEntity = "task", ident, {taskParameterSection}
, {taskVariableSection}, {scheduleSection}, "end" ;

(* Parameters *)
taskParameterSection = "parameter", {taskParameterDecl}- ;
taskParameterDecl = identifierList, "as", taskParameterType ;
taskParameterType = basicTaskParameter | ("model", ident) ;
basicTaskParameter = basicType

| "integer_expression"

| "real_expression"

| "logical_expression" ;

(* Variables %)

taskVariableSection = "variable", {taskVariableDecl}- ;
taskVariableDecl = identifierList, "as", basicType ;

(* Schedule *)

scheduleSection = "schedule", scheduledTask ;
(* - PROCESS entity ---------—-———-———-—~—— *)
processEntity = "process", ident, {processElementDecl}

, {monitorSection}, {setSection}, {equationSection}

, {assignSection}, {presetSection}

, {selectorAssignmentSection}, {initialConditionSection}

, {processOptions}, {processSchedule}, "end" ;
processElementDecl = parameterSection

| unitSection

| randomSection ;

(* Random *)

randomSection = "random_stream", {randomStreamDecl} ;
randomStreamDecl = identifierList, (("as", "seed", expression)
| ("as", "irreproducible")) ;

(* Monitor *)

monitorSection = "monitor", patternlList ;

patternlList = patternEntity, {’,’, patternEntity} ;
patternEntity = {patternBase}-, ’;’ ;

patternBase = ident | numLiteral | >’ | ?)2 | ?%> | *%’

| 7-’ | 7” ;
(* Assign *)
assignSection = ":=", {stmnt}- ;

(* Preset *)
presetSection =
"preset'", restorePreset, [{stmnt}-, restorePreset] ;
restorePreset = {simpRestore, [’;’]1} ;
simpRestore =
"restore", [storeTypeOption], strExpressionlist ;

38

(* SelectorAssignment *)
selectorAssignmentSection = "selector", {stmnt}- ;

(* InitialCondition *)
initialConditionSection = ("initial", {stmnt}-)
| ("initial", "steady_state") ;

(* ProcessOptions *

)

processOptions = "solutionparameters", {execParaAssignment} ;

execParaAssignment
execParameter,

:=", simpleParaValue, [’;’] ;

execParameter = ident | "monitor" ;

simpleParaValue =

"initial" | expression | namedValAttributes ;

namedValAttributes
strLiteral, ’[?
namedAttributelList

s

[namedAttributeList], ’]°’ ;
namedAttributeAssign

, {C,? | ?;?), namedAttributeAssign} ;
namedAttributeAssign
attributeValue = expression | namedValAttributes ;

(* Schedule *)

= strLiteral, ":=", attributeValue ;

processSchedule = scheduleSection ;

(* - Statements ----——-———-———————-

stmnt = assignStmnt
| equationStmnt
| withinStmnt
| forStmnt
| ifStmnt
| caseStmnt ;

assignStmnt = qualifiedName, ":=", setValues ’;’ ;
equationStmnt = [ident, ":"] additiveExpression

s {("iS" | ’=" |

>N | ny=n | 150 | ne="n | ,<,)

, additiveExpression}- ’;’ ;
withinStmnt = "within", pathName, "do", {stmnt}-, "end" ;

forStmnt =

"for", forInit, [forStep], "do", {stmnt}-, "end"

forInit = ident, ":

, additiveExpression, "to", additiveExpression ;

forStep = "step", additiveExpression, ;
ifStmnt = "if", expression, "then", {stmnt}-, "else"
, {stmnt}-, "end"
caseStmnt = "case", pathName, "of", {caseClause}- "end" ;
caseClause =

"when", pathName, ’:’, {stmnt}-, {caseSwitchTo} ;

caseSwitchTo =
"switch" R "o R

qualifiedName, "if", expression, ’;’ ;

(* - Schedule operations ------——————————~———~——
scheduledTask = invocationTask

| AssignmentTask
| sequenceTask
| parallelTask

39

| whileTask
| ifTask
| continueTask
| resetTask
| replaceTask
| reinitialTask
| messageTask
| switchTask
| monitorTask
| stopTask
| saveTask
| restoreTask
| resetResultsTask
| getTask
| sendTask
| sendMathInfoTask
| lineariseTask
| pauseTask ;

invocationTask =

ident, ["(", taskParameterAssignList, ")"]1, [’;’] ;
taskParameterAssignlist =

taskParameterAssign, {’,’, taskParameterAssign} ;

taskParameterAssign = ident, "is", expression ;
AssignmentTask = ident, ":=", setValues, ’;’
sequenceTask = "sequence", {scheduledTask}-, "end"
parallelTask = "parallel", {scheduledTask}-, "end" ;
whileTask = "while", expression, "do", scheduledTask, "end"
ifTask = "if", expression, "then"

, scheduledTask, ["else", scheduledTask], "end"
continueTask = ("continue", "for", additiveExpression

, [("and" | "or"), "until", expression], [’;’])

| ("continue", "until", expression, [’;’]) ;
resetTask = "reset", {stmnt}-, "end"
replaceTask =

"replace", pathNameList, "with", {stmnt}-, "end"
reinitialTask =
"reinitial", pathNameList, "with", {stmnt}-, "end" ;

messageTask = "message", strLiteral, [’;’] ;
monitorTask = ("monitor", ident, [?;’])
| ("monitor", "frequency", expression, [’;’]) ;

stopTask = "stop", [?;’] ;
switchTask = "switch", {stmnt}-, "end" ;
saveTask =
"save", [storeTypeOption], strExpressionList, [’;’] ;
restoreTask =
"restore", [storeTypeOption], strExpressionList, [’;’] ;
storeTypeOption = (’(’, identifierList, ’)’)
| identifierList ;
resetResultsTask = "resetresults", identifierList, [?;’] ;
getTask = "get", [[foreignSignal], [foreignStatus]
, {getEntity}-], "end"
getEntity = pathName, [":=", foreignPathNamel, ’;’ ;
sendTask = "send", [[foreignSignall], [foreignStatus]
, {sendEntity}-], "end" ;

40

sendEntity = (foreignPathName, ":=", setValues, ’;’)
| (pathName, ’;’) ;

lineariseTask = "linearise", [[foreignSignall]
, [foreignStatus], ident, {linearEntity}-, ident
, {linearEntity}-], "end"

linearEntity = [foreignPathName, ":="], pathName, ’;’ ;
pauseTask = "pause" [foreignSignal] [foreignStatus] ;
sendMathInfoTask =

"sendmathinfo", [foreignSignall], [foreignStatus], [’;’] ;
foreignSignal = "signalid", strlLiteral ;
foreignStatus = "status", ident ;

foreignPathName = foreignPath, {DOT, foreignPath} ;
foreignPath = strLiteral, [’(’, expressionList, ’)’]

(* SetValues and expressionLists *)
setValues = domainSolutionMethods

| (°[’, expressionList, ’]?)

| (expression, [?:’, [expression], ’:’, [expression]]) ;
expressionlist = expressionInlist, {’,’, expressionInList} ;
expressionInlist = domainExpression | expression | ;
strExpressionlist = strlLiteral, {’,’, strLiterall} ;

(* - Expressions —-—---—-—--——--mmmmmmm *)
expression = logicalOrExpression ;
logicalOrExpression = logicalAndExpression
, {"or", logicalAndExpression} ;
logicalAndExpression = relationalExpression
, {"and", relationalExpression} ;
relationalExpression = additiveExpression
O e B IS BRE U IERS)
, additiveExpression} ;
additiveExpression = multiplicativeExpression,

{C+> | ’-?), multiplicativeExpression} ;
multiplicativeExpression = unaryExpression,

{Cx*> | 2/> | "div" | "mod"), unaryExpression} ;
unaryExpression = [’+’ | ’-’] factorExpression ;
factorExpression = ("not", primaryExpression)

| primaryExpression, [("[+" | "|-" | ?|?)
| (°~’, primaryExpression)] ;
primaryExpression = (constantExpression)
| (°C, logicalOrExpression, ’)’)
| ("time")
| ("old", ’(’, logicalOrExpression, ’)’)
| ("partial", ’(’, additiveExpression, ’,’,
pathNameList, ’)?)
| ("integral", ’(’, integralOperandList, ’;’,
additiveExpression, ’)’)
| (*$’, °(’, logicalOrExpression, ’)?’)
| (qualifiedName) ;
constantExpression = numLiteral | strLiteral | logicLiteral ;

integralOperandlList =
integralOperand, {’,’, integralOperand} ;
integralOperand = ident, ":=", domainExpression ;

41

domainExpression =
additiveExpression, ’:’, additiveExpression ;

(* Qualified names *)
pathNameList = pathName, {’,’, pathName} ;
qualifiedName = (derivativeIdentifier)

| (path, ’.’, derivativeldentifier)

| (pathName) ;
derivativeIdentifier = ’$’, pathEntity ;
pathName = path ;
path = pathEntity, {’.’, pathEntity} ;
pathEntity = ident, [’(’, expressionlList, ’)°’] ;
identifierList = ident, {’,’, ident} ;

(x Identifier *)

ident = letter, {letter | digit} ;

letter = ’a’|’b’|’c’|’d’I’e’I’f’I’g’l’h’l’i’l’j’l’k’l’l’
|’m’|’n’|’o’|’q’|’r’|’s’|’t’I’u’I’V’I’W’I’X’I’y’l’z’I’A’
[°B?|°C? |’D? |’E? |°F? |°G? |’H? | T’ |°J? |°K? | °L? | °M? | °N? | ° 0
|’P’|’Q’|’R’|’S’|’T’|’U’|’V’|’X’|’Y’|’Z’ :

digit = 20|%1|°27]°3%]%4°|°5°|°67|°7’|’8?|’9?

(* Basic types *)
basicType = "integer" | "real" | "logical" ;
logicLiteral = "true" | "false"

(* Literals *)

numLiteral = {digit}, [’>.’, {digit}, [exponent]] ;
exponent = (’e’|’E?), [’+’|’-°], {digit}- ;
strlLiteral = ’"?, {character - 2"}, "’

42

Bibliography

[BNO5]

[Bucl4]

[Car96]

[CGSS]

[DPLO3]

[Fou22|

[Hil88]

[Hou83]

[JH99]

[Jon99)

[Ken94]

[Ken96]

[Ken97]

[KhaO1]

[KL78)

J. J. Barton and L. R. Nackman. Dimensional analysis. C++ Report,
7(1):39-40, 42-43, 1995.

E. Buckingham. On physically similar systems: illustrations of the use of
dimensional equations. Phys. Rev. Ser., 2(4):345-356, 1914.

L. Cardelli. Type systems. ACM Computing Surveys (CSUR), 28(1):263—
264, 1996.

R. F. Cmelik and N. H. Gehani. Dimensional analysis with c++. IEEFE
Software, 5(3):21-27, 1988.

M. Sandberg D. Persson and B. Lisper. Automatic dimensional consis-
tency checking for simulation specifications. In 44th Scandinavian Con-
ference on Simulation and Modeling, pages 13—18. SIMS, 2003.

J. B. Fourier. Theorie analytique de la chaleur. Paris: Gauthier-Villars,
1822.

P. N. Hilfinger. An ada package for dimensional analysis. ACM Transac-
tions on Programming Languages and Systems, 10(2):189-203, 1988.

R. T. House. A proposal for an extended form of type checking of expres-
sions. The computer journal, 26(4):366-374, 1983.

S. P. Jones and J. Hughes. Report on the functional lan-
guage haskell98, a non-strict, purely functional language.
http://haskell.org/definition /haskell98-report.pdf, 1999.

M. P. Jones. Typing haskell in haskell. In Proceedings of the 1999 Haskell
Workshop, 1999.

A. J. Kennedy. Dimension types. In Proceedings of the 5th European Sym-
posium. on Programming, volume 788, pages 348-362. Springer-Verlag,
1994.

A. J. Kennedy. Physical dimensions and programming languages. Phd
thesis, Univ. of Cambridge, UK, 1996.

A. J. Kennedy. Relational parametricity and units of measure. pages
442-455. ACM, 1997.

R. Khanin. Dimensional analysis in computer algebra. In Proceedings of
the 2001 international symposium on Symbolic and algebraic computation,
pages 201-208. ACM Press, 2001.

M. Karr and D. B. Loveman. Incorporation of units into programming
languages. Communications of the ACM, 21(5):385-391, 1978.

43

[MTHS89] R. Milner, M. Tofte, and R. Harper. The definition of standard ml. MIT

[New87]

[Nov9s]

[Ray 78|
[Ray15]
[Rit95]

[WO91]

Press, Cambridge, Mass., 1989.

I. Newton. Philosophiae naturalis principia mathematica. Streeter, Lon-
don, 1687.

G. S. Novak. Conversion of units of measurement. Software Engineering,
IEEE Transactions on, 21(8):651-661, 1995.

Lord. Rayleigh. The theory of sound. London, 1878.
Lord. Rayleigh. The principle of similitude. Nature, 95(2368):66—68, 1915.

M. Rittri. Dimension inference under polymorphic recursion. In 7th
Conference on Functional Programming Languages and Computer Archi-
tecture, pages 147-159. ACM, 1995.

M. Wand and P. M. O’Keefe. Automatic dimensional inference. Compu-
tational Logic: in honor of J. Alan Robinson, pages 479-486, 1991.

44

