
FT-Feasibility in Fixed Priority Real-Time Scheduling

Hüseyin Aysan, Radu Dobrin, and Sasikumar Punnekkat
Mälardalen Real-Time Research Centre, Mälardalen University, Västerås, Sweden

{huseyin.aysan, radu.dobrin, sasikumar.punnekkat}@mdh.se

Abstract

Real-time systems typically have to satisfy complex re-
quirements mapped to the timing attributes of the tasks
that are eventually guaranteed by the underlying sched-
uler. These systems consist of a mix of hard and soft tasks
with varying criticalities as well as associated fault toler-
ance (FT) requirements. Often time redundancy techniques
are preferred in many embedded applications and hence
it is extremely important to devise appropriate methodolo-
gies for scheduling real-time tasks under fault assumptions.
Additionally, the relative criticality of tasks could undergo
changes during the evolution of the system. Hence schedul-
ing decisions under fault assumptions have to reflect all
these important factors in addition to the resource con-
straints.

In this paper we propose a framework for ’FT-
feasibility’, i.e., to provide a priori guarantees that all crit-
ical tasks in the system will meet their deadlines even in
case of faults. Our main objective here is to ensure FT-
feasibility of all critical tasks in the system and do so with
minimal costs and without any fundamental changes in the
scheduling paradigm. We demonstrate its applicability in
scenarios where the FT strategy employed is re-execution
of the affected tasks or an alternate action upon occurrence
of transient faults or software design faults. We analyse
a feasible set of tasks and propose methods to adapt it to
varying FT requirements without modifications to the un-
derlying scheduler. We do so by reassigning task attributes
to achieve FT-feasibility while keeping the costs minimised.

1. Introduction

Most embedded real-time applications typically have to
satisfy complex requirements which are mapped to the tim-
ing attributes of the tasks and taken care by the underlying
scheduler. These systems are often characterised by high
dependability requirements where fault tolerant techniques
play a crucial role towards achieving them. Traditionally

such systems found in aerospace, avionics or nuclear do-
mains were built with massive replication and redundancy,
with the objective to maintain the properties of correctness
and timeliness even in the presence of faults. However, in
majority of modern embedded applications, due to space,
weight and cost considerations it may not be feasible to pro-
vide space redundancy. Such systems often have to exploit
time redundancy techniques. At the same time, it is im-
perative that the exploitation of time redundancy does not
jeopardize the timeliness requirements on critical tasks.

Real-time scheduling theory has fairly matured over the
past two decades to be able to analyze complex and realistic
systems. One of its main research streams, viz., fixed prior-
ity scheduling has mainly focussed on the provision of fea-
sibility tests which determine if a given task set is schedu-
lable [12, 17, 7, 9]. Such tests have been developed for
increasingly less restrictive computational models, thus al-
lowing tasks to interact via shared resources,have arbitrary
deadlines, offsets and account for release jitter as well as op-
erating system overheads. However, the designers are still
left with many practical issues such as flexibility, fault toler-
ance guarantees, which are not comprehensively addressed
by any single scheduling paradigm. The daunting task of
figuring out which combination of analysis techniques and
mechanisms are appropriate within an application context
often tempts the industry to shy away from reaping the ben-
efits of real-time scheduling theory.

Despite the significant amount of research results, fea-
sibility tests often provide little or no indication of the
changes in task attributes required to achieve a feasible sys-
tem, nor any indication of the extent to which criticalities of
the tasks may be changed without causing deadlines to be
missed (in the case of a feasible system). In practice, how-
ever, it is useful to know both ’what measures are needed’
to make them schedulable, as well as ’how’ the system can
be scheduled to account for the unexpected fault scenarios.
As rightly identified in [18], co-development/integration of
real-time and fault tolerance dimensions are extremely im-
portant especially taking care that upon interaction, their in-
dependent protocols do not invalidate the pre-conditions of
each other. In this context, our research focus is to develop

a framework and analysis techniques which facilitate such
guarantees as well as provide valuable information regard-
ing design choices to the designers.

The need for feasibility analysis which provides guaran-
tees for fault-tolerant real-time task sets under the assump-
tion of a defined failure hypothesis is well known in the
past. While incorporating fault tolerance into various real-
time scheduling paradigms has been addressed by several
researchers, the proposed solutions are either ad hoc or ap-
plicable only within restrictive contexts. This paper is an
attempt to provide such an analysis taking into considera-
tion both the research perspective as well as some of the
industrial requirements and practical issues.

The systems we are concerned with typically consist of
a mix of hard and soft real-time tasks, where missing dead-
lines of any hard task could have a large negative impact
on the system, while missing the soft tasks occasionally
could be still admissible. In such systems, the fault han-
dling has to be performed in a prioritized (due to resource
constraints) way depending on the criticalities of the tasks.
Also during the evolution/life time of these systems, the rel-
ative criticalities of the tasks could undergo changes and the
designer might have the tedious task of making new sched-
ules to reflect such changes. This is especially relevant in
the case of ’system of systems’ or component based systems
where the integrator needs to make judicious choices for
assigning/fine-tuning the priorities for scheduling the tasks
of subsystems within the global context.

We use the term ’FT-feasibility’ of a schedule to indicate
how good a schedule is with respect to its ability to meet
the deadlines of critical tasks upon faults. In this paper,
we explore the FT feasibility concept where the FT strategy
employed is the re-execution of the affected task, or execu-
tion of an alternate task in the event of transient faults. Our
approach is to map the fault-induced additional timing re-
quirements at the task instance level to identify potentially
interfering high priority task instances and move them op-
timally to new execution windows. A method to transform
off-line schedules to FPS has been proposed in [4], where
the authors derive attributes suitable for FPS for sets of off-
line scheduled tasks with completely known parameters. In
this paper we are focusing on task executions under FPS in
the presence of faults which are non-deterministic by their
nature. Our analysis provides new task attributes to obtain
FT-feasible schedules whilst minimising any related costs.
The main element of cost incurred in our methodology is
due to the construction of new task artifacts from original
task instances in order to satisfy complex priority inequali-
ties.

This concept of FT-feasibility could also be effectively
used for selecting most appropriate schedules based on the
criticality of a given set of tasks as against the traditional
priority-based approaches, which are often too pessimistic.

We analyse a feasible set of tasks and propose meth-
ods to adapt it to new FT requirements without neces-
sitating modifications to the underlying scheduler. The
proposed methodology is highly applicable during system
evolution (where criticalities and priorities could undergo
changes), subsystem integration (as in Electronic Control
Units (ECUs) in automotive applications) or in legacy ap-
plications (where one needs to preserve the original sched-
uler and scheduling policy). For example, in the case of two
ECUs, developed with pre-assigned priorities for tasks from
specified priority bands, one may want to fine-tune and get
a better schedule considering the global context during in-
tegration.

The remainder of the paper is organised as follows. In
the next section, we outline a summary of relevant back-
ground research from the literature which specifically ad-
dresses the issue of scheduling under fault assumptions.
Section 3 presents the system characteristics and task model
assumed in our paper followed by Section 4 where we spec-
ify the fault assumptions and FT strategies used in the anal-
ysis. Section 5 describes a simple example describing the
nature of the problem along with a feasible solution. Sec-
tion 6 describes our proposed methodology followed by a
running example in section 7. We evaluate the proposed
methodology in Section 8 and we conclude the paper in Sec-
tion 9 where we offer our conclusions and sketche some of
the future research dimensions.

2. Related research

Many researchers have addressed incorporating fault tol-
erance into various real-time scheduling paradigms, some
of which are briefly mentioned below.

Liestman and Campbell [10] investigated a fault tolerant
scheduling problem where they tried to schedule primary
and alternate versions of a task in the same schedule, under
the assumption that the task set consists of harmonic peri-
ods. Their goal was to maximize the number of primaries
scheduled in the system while guaranteeing at least an alter-
nate to be executed. They showed two methods to achieve
this. First method was an on-line re-scheduling mechanism
that is run after every successful completion of a primary to
make use of the time that was allocated to its alternate. In
the second method, a tree of schedules is constructed offline
and simple decisions for switching between these schedules
are made during runtime whenever primaries fail. The on-
line computational overhead imposed by the first method
and the need of large memory space to store all possible
schedules imposed by the second method are the limitations
of this approach. Furthermore, both methods provide recov-
ery for the task instances only if the primaries of these task
instances are scheduled. However, task criticalities are not
taken into account for selecting which primaries to sched-

ule.
Krishna and Shin [8] used a dynamic programming al-

gorithm to embed backup schedules into the primary sched-
ule, so that hard deadlines of critical tasks will be met in the
event of up to a specified number of processor failures.

Pandya and Malek [14] showed that single faults with
a minimum interarrival time of largest period in the task
set can be recovered if the processor utilization is less
than 0.5 under Rate Monotonic (RM) scheduling policy.
The FT technique they used was re-executing the failed
task for recovering from transient hardware or software
faults. Though it improved the intuitive utilization bound
of 0.345, its applicability is rather restricted to rate mono-
tonic scheduling only.

Ramos-Thuel and Strosnider [16] used Transient Server
approach to handle transient errors which arrive as aperiodic
recovery requests. They investigated the spare capacity to
be given to the server at each priority level in the task set.
They also studied the effect of task shedding to the maxi-
mum server capacity and task criticality is used for deciding
which task to shed. Ghosh et al. [5] presented a method for
guaranteeing that the real-time tasks will meet the deadlines
under transient faults, by resorting to reserving sufficient
slack in queue-based schedules.

Burns et. al. [1] provided exact schedulability tests
for fault-tolerant task sets under specified failure hypoth-
esis where the time redundancy is employed in the form of
recovery blocks, re-execution of the affected task, check-
pointing schemes(refined analysis by Punnekkat et al. [15])
or forward recovery methods like exception handlers. Two
important features of these analysis were that it is applica-
ble for any fixed priority scheduling scheme and that being
an exact analysis it can guarantee even task sets with higher
utilization factors than was possible by Pandya and Malek’s
test [14]. Subsequently Lima and Burns [11] extended this
analysis in case of multiple faults as well as for the case
of increasing the priority of a critical task’s alternate upon
fault occurrences.

Han et al. [6] extended the last chance strategy described
by Chetto and Chetto [3] for fixed priority driven preemp-
tive scheduling scheme. They assume primary and alternate
versions of each task with imprecise computation model,
and aim to guarantee either the primary or alternate ver-
sion of each task to be executed before deadlines, and try
to achieve as many primary executions as possible. A fixed
priority driven preemptive scheduling scheme is used to re-
serve times for the alternates by assigning notification times
for each alternate. This time is the latest time for a primary
to complete its execution successfully. Then, on-line part
of the algorithm checks if the primaries are successfully ex-
ecuted before notification times. If not, the corresponding
alternates are executed. In the opposite case, the reserved
time intervals for these alternates are freed by reconstruct-

ing the schedule which results in a significant amount of
online computational overhead.

Each of the above works have advanced the field of fault
tolerant scheduling within the contexts mentioned above.
Some of the disadvantages are restrictive task and fault
models, non-consideration of mixed criticality task sets,
high computational requirements of complex online mech-
anisms, and scheduler modifications which may be unac-
ceptable from an industrial perspective.

3. System and task model

In this paper we consider only a uniprocessor sys-
tem, the results are however equally applicable to dis-
tributed/multiprocessor systems, where task allocation to
individual processors is performed statically. We assume
a task set, Γ = {τ1, τ2, .., τn}, where each task represents
a real-time thread of execution. Each task τi is assumed to
have a minimum inter-arrival time T (τi), meaning that task
arrivals may be either periodic or sporadic. Each task τi has
a known worst case execution time (WCET) C(τi), an earli-
est start time est(τi) and a deadline D(τi). We assume that
D(τi) ≤ T (τi) for i = 1, 2, . . . , n. Often the earliest
start times are also referred to as offset and represented by
O(τi).

Each task can also have an alternate task τ̄i with a worst
case execution time (WCET) C̄(τi) with a deadline D̄(τi)
equal to the original task deadline D(τi). This alternate
can typically be a re-execution of the same task, a recovery
block, an exception handler or an alternate with imprecise
computations.

We assume that each task τi has a priority P (τi) as-
signed to it. The computational model assumed does not
impose any restrictions on the priority assignment algorithm
used. This could be Rate Monotonic, Deadline Monotonic
or any other fixed priority assignment algorithm. We as-
sume that each task is assigned a unique priority and that
a task can be immediately preempted by a higher priority
task. At run time, the highest priority task from the set of
runnable tasks is allocated the processor time. The critical-
ity of a task could be thought of as a measure of the impact
of its correct (or incorrect) functioning on the overall sys-
tem correctness. The priorities and criticalities need not be
the same in the strict sense, especially when one employs
different scheduling policies. Let Γc represent the subset of
critical tasks out of the original task set and Γnc represent
the subset of non-critical tasks, so that Γ = Γc ∪ Γnc. We
use Γ̄c to represent the subset of all the alternates of criti-
cal tasks. Our framework permits varying criticality levels
for tasks, but to simplify the illustration, we use only binary
values for criticality in this paper.

We assume that the original task set is schedulable and
that the combined utilization of critical tasks is less than

or equal to 0.5. The maximum utilization of the system
can never exceed 1 at any instant of time including those of
the non-critical tasks. In the event of faults, execution of
an alternate of a critical task might call for shedding some
non-critical tasks during the overload period. We assume
that the scheduler has adequate support for flagging non-
critical tasks as unschedulable during such scenarios, along
with appropriate error detection mechanisms in the operat-
ing system.

4. Fault model and fault tolerance strategy

Our primary concern is providing schedulability guar-
antees to all the critical tasks in fault-tolerant real-time sys-
tems which employ temporal redundancy for error recovery.
The basic assumption here is that a large variety of transient
and intermittent hardware faults can effectively be tolerated
by a simple re-execution of the affected task whilst software
design faults could be tolerated by executing an alternate
action such as recovery blocks or exception handlers. Both
of these situations could be considered as execution of an-
other task (either the primary itself or an alternate) with a
specified computation time requirement.

We assume that a fault can adversely affect only one task
at a time and is detected before the termination of the cur-
rent execution of the affected task instance. This would nat-
urally include error detection before any context switches
due to release of a high priority task. Although somewhat
pessimistic, this assumption is realistic since in many im-
plementations, task errors are detected by acceptance tests
which are executed at the end of task execution or by watch-
dog timers that interrupt the task once it has exhausted its
budgeted worst case execution time. In case of tasks com-
municating via shared resources, we assume that an ac-
ceptance test is executed before passing an output value
to another task to avoid fault propagations and subsequent
domino effects.

Our assumption of at most one fault per task instances,
is a much harder assumption than what is found in many
previous works such as one fault per hyper period (LCM) or
an explicit minimum inter-arrival time requirement between
consecutive fault occurrences.

One can envisage many possible variations to the fault
model and fault tolerance strategies. Though the present
work does not categorically mention each of them, our
framework is designed in such a way as to accommodate fu-
ture anticipated changes in the fault model, fault tolerance
strategies as well as probabilistic guarantees [2].

5 Motivating example

Let our task set consists of 2 tasks, A and B, where
T (A) = 3, T (B) = 6, C(A) = 2 and C(B) = 2, sched-

uled according to the RM policy (Figure 1) where B is the
critical task subject to failures. We also assume that a sim-
ple re-execution of the affected task is the fault tolerance
strategy.

A

B

A

B

0 6

B

A

0 6

dl miss!

A1

B

A2

0 63

A1

B

A2

0 63

B

Figure 1. Original task set

To be able to re-execute B upon a fault occurrence, B
must complete before D(B)− C(B). In this case, B’s new
deadline will be 4. One possibility is to assign B a higher
priority than A. However, the new priority ordering between
A and B will lead to a deadline miss on the first instance of
A even if no fault occurs during B’s execution (Figure 2).

A

B

A

B

0 6

B

A

0 6

dl miss!

A1

B

A2

0 63

A1

B

A2

0 63

B

Figure 2. B fault tolerant - A misses deadline

In our approach we propose transforming A’s former in-
stances over LCM into 2 artifacts, i.e., A1 and A2. In this
case, A1 will be assigned the highest priority followed by B,
and finally A2 with the lowest priority. Additionally, we re-
assign offsets and deadlines to the artifact tasks to ensure the
executions within their original feasibility windows (Figure
3).

This new set of attributes will guarantee the task comple-
tions before their deadlines in the absence of faults. On the
other hand, if a fault occurs during B’s execution, B will still
have time to re-execute before its deadline at the expense of
a possible deadline miss on A2. However, the assumption
of fault occurrence and detection at the end of B’s execution
is highly pessimistic, as well as at run-time the task execu-
tions will be most likely shorter than the assumed WCET.
In this case, both the re-execution of B and the execution of
A2 will most likely meet their deadlines (Figure 4).

The new FT-schedulable task set is presented in table 1.

A

B

A

B

0 6

B

A

0 6

dl miss!

A1

B

A2

0 63

A1

B

A2

0 63

B

Figure 3. B fault tolerant - no deadline misses

A

B

A

B

0 6

B

A

0 6

dl miss!

A1

B

A2

0 63

A1

B

A2

0 63

B

Figure 4. B re-executes - no deadline misses

The associated cost towards achieving FT-schedulability
in this example is an increase in the number of tasks by one.

6. Our methodology

We assume a periodic task set schedulable by standard
FPS. Each task instance τ j

i has an original earliest start time
est(τ j

i) and deadline D(τ j
i).

6.1 Overview

We aim to find new deadlines for each critical and non-
critical task, such that each critical task instance can be re-
executed before its original deadline upon a fault occurrence
while the resource allocation to non-critical tasks is maxi-
mized, i.e., non-critical tasks execute at the highest possible

Task T C O D P
A1 6 2 0 3 3(highest)
A2 6 2 3 6 1
B 6 3 0 6 2

Table 1. FT-feasible FPS tasks

priority that will not jeopardize the FT feasibility of the crit-
ical ones.

Derivation of fault-tolerant
feasibility windows for critical tasks

Derivation of fault-aware feasiblity
windows for non-critical tasks

Formulation of optimization problem to
minimize potential costs

Integer Linear Programming (ILP)

Fault Model

Task Criticalities

Original
Task Attributes

FT feasible
Task attributes

Figure 5. Overview of methodology

The major steps of the proposed methodology are shown
in Figure 5 and explained below:

1. Input: Original task set Γ = {τ1, τ2, . . . , τn}, schedu-
lable by FPS, with earliest start times and deadlines

2. Calculate fault tolerant (FT) deadlines for each critical
task instance

(a) Select subset of critical tasks Γc out of the origi-
nal task set

(b) Calculate latest start times, lst(τ j
i), for each crit-

ical task instance τ j
i under EDF scheduling

(c) Calculate new FT-deadlines for each critical task
instance, DFT (τ j

i), based on the latest start times
previously derived

3. Calculate fault aware (FA) deadlines for each non-
critical task instannce

(a) Select subset of non-critical tasks Γnc out of the
original task set

(b) Calculate new FA deadlines for each non-critical
task instance, DFA(τ j

i), based on the previously
derived FT feasibility windows of critical task in-
stances

4. Output: FT and FA feasibility windows,

FT FW (τ j
i) = [est(τ j

i), DFT (τ j
i)], if τ j

i ∈ Γc

and

FT FA(τ j
i) = [est(τ j

i), DFA(τ j
i)], if τ j

i ∈ Γnc

for each task instance τ j
i ∈ Γ

6.2 Proposed approach

Our goal is to derive feasibility windows for each tasks
instance τ j

i ∈ Γ to guarantee fault tolerance for the critical
tasks. However, depending on the criticality of the original
tasks, the feasibility windows we are looking for differ as:

1. fault tolerant (FT) feasibility windows for critical tasks
and

2. fault aware (FA) feasibility windows for non-critical
ones.

At the same time, we want to maximize the size of the feasi-
bility windows to maximize the flexibility of the tasks. The
size of the FA feasibility windows of the non-critical tasks is
highly dependent on the size of the FT feasibility windows
of the critical ones. Hence, we first calculate FT feasibility
windows for the critical tasks, and then, the FA feasibility
windows for the non-critical ones.

Derivation of FT deadlines: We consider the subset Γc ∈
Γ and assume a single criticality level for all critical tasks.
We assume C(τi) = 2WCET (τi) for each critical task
to account for re-execution upon a fault occurrence per
task instance. First, we schedule the set of critical tasks
by EDF and derive the completion times of each instance,
finish time(τ j

i). We use EDF to exploit its ability to guar-
antee task schedulability up to 100% processor utilization.
Then, ”by mirroring” the EDF schedule, we obtain the lat-
est start times for each task instance such that it can feasibly
execute 2 times its WCET before its original deadline. In
other words:

lst(τ j
i) = LCM − finish time(τk

i)

where

k =
LCM

T (τi)
+ j − 1

At this point we want to find the new deadlines,
DFT (τ j

i), for the critical tasks instances such that each can
be re-executed before its original deadline. For a single task
instance without any interference from other tasks, the new
deadline is DFT (τ j

i) = lst(τ j
i) + C(τ j

i). However, when
calculating the new deadlines, we have to take into account
potential interference from other critical tasks, i.e., if the
task is preempted after its latest start time.

∀ τ j
i , τ l

k ∈ Γc

DFT (τ j
i) = D(τ j

i)− C(τ j
i)−

n∑
k,l=1

interference(τ l
k)

where
∀k, l, est(τ j

i) < lst(τ l
k) ≤ D(τ j

i)

and

interference(τ l
k) = min[2C(τ l

k), (D(τ j
i)− lst(τ l

k))]

The FT feasibility windows for each critical task instance
are defined as: ∀τ j

i ∈ Γc,

FT FW (τ j
i) = [est(τ j

i), DFT (τ j
i)]

Additionally, we denote the latest finishing time of the
alternate task as DFT (τ j

i).

Derivation of FA deadlines: The underlaying FT mecha-
nism will shed non-critical tasks upon re-executions of crit-
ical ones if the non-critical tasks will miss their deadlines.
However, the original non-critical task deadlines are not
fault-aware in the presence of critical tasks. Hence, a non-
critical task execution can be delayed by a critical task re-
execution, potentially causing another critical task to miss
its deadline.

We aim to provide new fault-aware deadlines to non-
critical tasks to protect critical ones from being hit. We
attempt to derive new deadlines for each non-critical task
instance in order to restrict them from interfering with the
critical tasks in case of critical task failure. As a part of
recovery action upon failure, the underlaying fault tolerant
on-line mechanism checks if there is enough time left for
the non-critical task instances to complete before their new
deadlines. If not, these instances are not executed.

Here, we can not schedule the tasks in reverse order
according to EDF as previously, by simply mirroring the
schedule constructed by EDF, since the critical tasks may
not have deadlines equal to the end of the periods due to
the previously described deadline assignment procedure.
Hence, we can no longer benefit form the full processor uti-
lization guarantee provided by EDF.

In our method, we schedule the non-critical tasks by re-
versed EDF in the remaining slack after the critical tasks
are scheduled to execute as late as possible. In some cases,
we may fail finding valid FA deadlines on some non-critical
task instances. We say that a FA deadline, DFA(τ j

i), is not
valid if DFA(τ j

i) − est(τ j
i) < C(τ j

i). In these cases, we
keep the original deadline, and we assign the non-critical
task a background priority, i.e., a lower priority than any
other critical task, and any other non-critical task with a
valid FA deadline.

6.3 FPS attribute assignment

Next, we derive FPS attributes such that the original
scheduler can be used without further modifications while
the critical tasks can feasibly be re-executed or an alternate
action can be run upon a fault occurrence.

To do so, we analyze the task set with new deadlines and
identify priority relations for each point in time tk at which
at least one task instance is released. We create priority in-
equalities between instances to reflect the order of execution
under EDF. Then we produce a task set with attributes for
FPS. As, typically, EDF schedules cannot be translated di-
rectly to attributes for FPS, we may have to create new tasks
(artifacts) of former task instances. The resulting number of
FPS tasks is to be minimized.

At this point, our task model, essentially, consists of
four types of task instances: critical task instances, Γc

consisting of primaries Γpri
c and alternates Γalt

c , and non-
critical task instances with and without valid FA deadlines,
Γnc = ΓFA

nc ∪ Γnon FA
nc .

Every tk ∈ [0, LCM) such that tk equals the release time
of at least one task, we consider a subset Γtk

⊆ Γ consisting
of:

1. {current instances}tk
- instances τ j

i of tasks τi, re-
leased at the time tk: est(τ j

i) = tk

2. {interfering instances}tk
- instances τ q

s of task τs

released before tk but potentially executing after tk.

est(τ q
s) < tk < D(τ q

s)

where

D(τ q
s) =

DFT (τ q

s), if τ q
s ∈ Γpri

c

DFT (τ q
s), if τ q

s ∈ Γalt
c

DFA(τ q
s), if τ q

s ∈ ΓFA
nc

D(τ q
s), if τ q

s ∈ Γnon FA
nc

We derive priority relations within each subset Γtk
:

∀tk,∀τ j
i , τ q

s ∈ Γtk
, where i 6= s.

1. if τ j
i , τ q

s ∈ Γc ∪ ΓFA
nc , or if τ j

i , τ q
s ∈ Γnon FA

nc

P (τ j
i) > P (τ q

s), where D(τ j
i) < D(τ q

s)

2. if τ j
i ∈ Γc ∪ ΓFA

nc and τ q
s ∈ Γnon FA

nc

P (τ j
i) > P (τ q

s)

In tie situations, e.g., when the instances τ j
i and τ q

s have
same deadlines, we prioritize the one with the earliest start
times. In case even the earliest start times are equal, we
derive the priority inequalities consistently.

Our goal is to provide tasks with fixed offsets and fixed
priorities. When we solve the priority inequalities derived
so far, it may happen that we have to assign different pri-
orities to different instances of the same task, in order to
reenact the EDF schedule. These cases cannot be expressed
directly with fixed priorities and are the sources for prior-
ity assignment conflicts. We solve this issue by splitting the
task with the inconsistent priority assignment into a number
of new periodic tasks with different priorities. The instances
of the new tasks comprise all instances of the original task.
Our goal is to find the splits which yield the smallest num-
ber of FPS tasks.

An optimization issue is which task to split to yield the
least number of artifacts. Since a priority assignment con-
flict involves at least two different tasks, there is typically a
choice of which task to split. For example, if two instances
of two tasks, e.g., A and B are involved in a priority conflict,
we can split either A or B into their instances to resolve the
conflict. For instance, if A has 4 instances over LCM and B
6 instances, the local optimum would be to split A resulting
in creating 3 artifacts. However, due to a later conflicting
situation, B may have to be split anyway leading to addi-
tional 5 artifacts, resulting in 8 total. Hence, the optimum
solution would have been to split B at the first conflicting
situation to minimize the total number of artifacts.

Hence, in order to minimize the number of artifact tasks,
we create an integer linear programming problem from the
derived system of priority inequalities to first identify which
instances to split, if any, and to derive priorities for the re-
sulting FPS tasks. The flexibility of the ILP solver allows
for simple inclusion of other criteria via goal functions.

6.4 ILP problem representation

A linear programming (LP) problem consists of a linear
goal function in a number of variables and a set of linear
inequality relations of the variables. LP solving searches a
value assignment for all variables (solution) that optimizes
(minimizes or maximizes) the given goal function under the
given constraints. If the values of a solution have to be in-
tegral the problem is called an integer linear programming
(ILP) problem.

The aim of the given attribute assignment problem is to
find a task set, i.e., a minimum number of tasks together
with their priorities, that fulfills the priority relations of the
sequences of the schedule. As mentioned above, each task
of the task set is either one of the original tasks or an artifact
task created from one of the instances of an original task
selected for splitting.

The problem is translated into an ILP problem, because
we are only interested in integral priority assignments and
solutions. In the ILP problem the goal function G to be
minimized computes the number of tasks to be used in the

FPS scheduler

G = N +
N∑

i=1

(ki − 1) ∗ bi +
N∑

i=1

n∑
j=1

bj
ia

here N is the number of original tasks, n is the number
of instances of τi over LCM, ki is the number of instances
of task τi, bi is a binary integral variable that indicates if τi

needs to be split into its instances and bj
ia is a binary vari-

able that indicates if the alternate of the critical task instance
τ j
i can be executed at the same priority as it primary.

The constraints of the ILP problem reflect the restric-
tions on the task priorities as imposed by scheduling prob-
lem. To account for the case of priority conflicts, i.e., when
tasks have to be split, the constraints between the original
tasks, including task re-executions, are extended to include
the constraints of the artifact tasks. Thus each priority rela-
tion P (τ j

i) > P (τ q
p) between two tasks is translated into an

ILP constraint:

pi + pj
i > pp + pq

p,

where the variables pi and pp stand for the priorities of
the FPS tasks representing the original tasks or alternates
τi and τp, respectively, and pj

i , pq
p stand for the priorities

of the artifact tasks τ j
i and τ q

p (in case it is necessary to
split the original tasks or to run an alternate at a different
priority). Although this may look like a constraint between
four tasks (τi, τ j

i , τp, τ q
p) it is in fact a constraint between

two tasks – for each task only its original (τi resp. τp) or its
artifact tasks (τ j

i resp. τ q
p) can exist in the FPS schedule. In

case the priority relation involves task re-executions, e g.,
P (τ j

i a) > P (τ q
p) the resulting constraint is:

pj
ia > pp + pq

p,

where τ j
i a represents the alternate execution of τ j

i . Our
goal is to be able to re-execute a task instance without
changing its priority.

A further set of constraints for each task τi ensure that
only either the original tasks or its instances (artifact) are
assigned valid priorities (greater than 0) by the ILP solver.
All other priorities are set to zero.

pi ≤ (1− bi) ∗M

∀j : pj
i ≤ bi ∗M

On the other hand, both primaries and alternates can co-
exist at different valid priorities. Moreover, a primary can
be an original task instance or an artifact. The last set of
constraints aims to yield same priorities for both of them.
Otherwise, the alternate will be assigned a different priority
than its primary.

(pi + pj
i)− pj

ia ≤ bj
ia ∗M

In these constraints M is a large number, larger than the
total number of instances and alternates in the original task
set. The variable bi for task τi, which also occurs in the
goal function, is the binary variables that indicates if τi has
to be split, i.e., bi allows only a task or its artifact tasks
to assume valid priorities. On the other hand, the variable
bj
ia ia a binary variable that indicates if the alternate of τ j

i

can be scheduled at the same priority as its primary. Since
the goal function associates a penalty for each bi and bj

ia
that has to be set to 1, the ILP problem indeed searches for
a solution that produces a minimum number of task splits.
The constraints on the binary variables complete the ILP
constraints:

∀i, j : bi, b
j
ia ≤ 1

The solution of the ILP problem yields the total number
of tasks as the result of the goal function. The values of the
variables represent a priority assignment for tasks and arti-
fact tasks that satisfies the priority relations of the schedul-
ing problem.

6.5 Periods and offsets

Since the priorities of the FP tasks have been assigned
by the LP-solver, we can now focus on the assignment
of periods and offsets. Now we have a set of tasks with
FPS attributes, ΓFPS . Based on the information provided
by the LP-solver, we assign periods and offsets to each
task τi ∈ ΓFPS , in order to ensure the run time execution
under FPS within their respective FT feasibility windows,
as following:

for 1 ≤ i ≤ nr of tasks in ΓFPS

T (τi) =
LCM

nr of instances(τi)
O(τi) = est(τ1

i))

7. Example

We illustrate our method by an example. Let us assume
we have a task set schedulable by RM as described in table
2 and Figure 6.

Let us now assume B and C are the critical tasks. In this
example, RM priority assignment can not guarantee fault
tolerance on every critical task instance, e.g., if the first 2 in-
stances of B are hit by a fault and have to be re-executed, C

Task T C
A 3 1
B 4 1
C 12 3

Table 2. Original task set

A

B B

0

B

4 12

C C

0

C

12

8

3 6 9 12

A A A

B B

0

B

4 12

C C

0

C

12

8

B B B

A
3 6 9 12

A A AFigure 6. Original RM schedule

will not be able to re-execute without missing its deadline if
a fault occurs during its execution. In our method we derive
FPS attributes to guarantee fault tolerance on each critical
task instance by first deriving FT feasibility windows for the
critical tasks. We do so by first scheduling the critical tasks
by EDF ”in the mirror” (Figure 7). The dashed blocks rep-
resent the re-execution of the critical tasks instances upon a
fault.

B B B
4 12

C C C

12

8

B B B

A
3 6 9 12

A A A

B
0 4 11

C
0

8

B B

5

71

Figure 7. EDF schedule for critical tasks and
re-executions

The FT feasibility windows for the critical tasks are pre-
sented in Figure 8.

At this point we derive FA feasibility windows for non-
critical task instances (in our case, for the instances of A),
by schedule them by ”ED as late as possible” together with
the critical ones (Figure 9). Based on the derived FT and
FA feasibility windows for the critical and non-critical tasks
respectively, we analyze the sets of current and interfering
instances for each release time in the tasks set and we derive
priority relations between the instances as described in Sec-
tion 6.3. The resulting priority inequalities are presented in
Figure 3.

Next, we formulate the optimization problem as de-

B B B
4 12

C C C

12

8

B B B

A
3 6 9 12

A A A

B
0 4 11

C
0

8

B B

5

71

Figure 8. FT feasibility windows for B and C

B B B
4 12

C C C

12

8

B B B

A
3 6 9 12

A A A

B
0 4 11

C
0

8

B B

5

71

A
3 6 9 12

A A A
0

Figure 9. FA feasibility windows for A

scribed in section 6.4. The LP solver provides us a set of
fault tolerant tasks suitable for FPS to which we assign pe-
riods and offsets as described in section 6.5. The resulting
task set is presented in table 4.

In our example, since the utilization is already 100%
without any faults, the LP solver yields a solution consist-
ing of 9 tasks, i.e., 8 from the original tasks instances, and
one additional consisting of the alternate task belonging to
C that has to be executed at a lower priority than C.

The resulting task set is directly schedulable by the orig-
inal scheduler while the critical tasks can tolerate one fault
per instance. Moreover, non-critical tasks can be scheduled
up to full processor utilization in the absence of faults. In
case of a fault, however, the non-critical tasks will be sus-
pended by the underlaying scheduler until the faulty task
has been re-executed.

8. Evaluation

In real-time systems where both critical and non-critical
tasks co-exist, missing a single deadline of a critical task in-
stance can result in more severe consequences than missing
several deadlines of non-critical task instances. Based on
this point of view, we define our primary success criteria as
the percentage of successfully met critical deadlines in our
evaluation. Meeting the deadlines of non-critical task in-
stances is assumed to be the secondary success criteria and
amount of deadline misses of such tasks can be seen as the
cost of meeting more critical deadlines.

In this section we evaluate the performance of our
method in comparison with rate monotonic (RM) schedul-

50

60

70

80

90

100

0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5

critical task utilization range

av
er

ag
e

pe
rc

en
ta

ge

critical deadlines met (rate monotonic)

critical deadlines met (our method)

total deadlines met (rate monotonic)

total deadlines met (our method)

Figure 10. Average percentage of success-
fully met deadlines (Total utilization is be-
tween 0.6 and 0.7)

50

60

70

80

90

100

0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5

critical task utilization range

av
er

ag
e

pe
rc

en
ta

ge

critical deadlines met (rate monotonic)

critical deadlines met (our method)

total deadlines met (rate monotonic)

total deadlines met (our method)

Figure 11. Average percentage of success-
fully met deadlines (Total utilization is be-
tween 0.7 and 0.8)

50

60

70

80

90

100

0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5

critical task utilization range

av
er

ag
e

pe
rc

en
ta

ge

critical deadlines met (rate monotonic)

critical deadlines met (our method)

total deadlines met (rate monotonic)

total deadlines met (our method)

Figure 12. Average percentage of success-
fully met deadlines (Total utilization is be-
tween 0.8 and 0.9)

tk

{
current

inst.

}
tk

{
intf.
inst.

}
tk

inequalities

0 A1, B1, B
1
, C1, C

1
None P (B1) > P (A1)

P (B
1
) > P (C1)

P (A1) > P (C1)

3 A2 C1 P (C1) > P (A2)

4 B2, B
2

A2, C1, C
1

P (C1) > P (A2)
P (A2) > P (B2)

P (B2) > P (C
1
)

P (B
2
) > P (C

1
)

6 A3 B2, B
2
C

1
P (B2) > P (A3)

P (B2) > P (C
1
)

P (B
2
) > P (C

1
)

8 B3, B
3

A3, C
1

P (A3) > P (B3)

P (C
1
) > P (B3)

P (C
1
) > P (B

3
)

9 A4 B3, B
3
, C

1
P (B3) > P (A4)

P (C1) > P (B3)

P (C1) > P (B
3
)

Table 3. Derivation of inequalities

τi T C O D P
A1 12 1 0 3 7
A2 12 1 3 6 5
A3 12 1 3 9 2
A4 12 1 9 12 0
B1 12 1 0 1 8 (highest)
B2 12 1 4 7 4
B3 12 1 8 11 1
C 12 3 0 5 6
C 12 3 0 10 3

Table 4. FT FPS Tasks

ing policy upon occurrence of faults. We conducted a num-
ber of simulations on synthetic task sets as the lack of a
priori knowledge about when the faults occur and the result-
ing task interactions make the comparison procedure rather
complex to be performed mathematically. We simulated the
worst case scenario where every critical task instance is hit
by a fault at the end of its execution and then re-executed.

2000 task sets were generated where the total number
of tasks in every task set is 10 and the number of critical
tasks is varying randomly from 1 to 10. The LCM is cho-
sen randomly between 20 and 200 time units which seems
sufficient to compare the behavior of two approaches. One
reason of choosing the constant value 10 for the number
of tasks is related to the LCM range. With this constant
value and the given LCM range, we are able to create tasks
sets with a wide range of total utilization from 0.5 to 1
even when the LCM is selected as minimum. Furthermore,
the limited number of tasks increases the traceability of the
scheduling decisions made by the approaches under obser-

50

60

70

80

90

100

0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5

critical task utilization range

av
er

ag
e

pe
rc

en
ta

ge

critical deadlines met (rate monotonic)

critical deadlines met (our method)

total deadlines met (rate monotonic)

total deadlines met (our method)

Figure 13. Average percentage of success-
fully met deadlines (Total utilization is be-
tween 0.9 and 1)

vation. After finding the LCM, task periods are randomly
chosen among the divisors of LCM. Randomization is re-
alized by Mersenne Twister pseudorandom number gener-
ator with 32-bit word length [13]. Total processor utiliza-
tions of the task sets were kept within intervals of 0.1 for
every group of 500 task sets starting from the range 0.6-
0.7. Within each group, processor utilizations of the critical
tasks were also kept within intervals of 0.1 for every sub-
group of 100 task sets varying between the range 0-0.1 and
0.4-0.5. The average execution time of our implementation
to create FT feasible task attributes is around 100 millisec-
onds on a 1GHz PC when a task set generated as described
above is used as an input.

Figures 10 to 13 show the average percentage of success-
fully met deadlines with respect to critical task utilization.
Each figure shows a different range of total CPU utilization
starting from the range 0.6-0.7. As the CPU utilization in-
creases, it can be seen that the success of our method also
increases with the cost of missing more non-critical dead-
lines.

In the processor utilization range 0.6-0.7, our method
starts to give better results than RM when critical task uti-
lization is above 0.3 (Figure 10). In the range 0.8-0.9 this
threshold decreases to 0.2 (Figure 12). When the processor
utilization is between 0.9 and 1 (Figure 13), critical task in-
stances scheduled by RM start to miss their deadlines even
the critical task utilization very low while our method still
guarantees meeting all the critical deadlines.

9. Conclusions and future work

We have presented a framework which allows the sys-
tem designer to schedule a set of real-time tasks with mixed
criticalities and fault tolerance requirements. Our main con-
tribution is the methodology which eliminates shortcomings

of the earlier works and schedules tasks of mixed critical-
ities and their alternates with a performance level equiva-
lent to online algorithms like EDF, but in an fixed priority-
based system incurring much less overheads. The proposed
method can guarantee that all the critical tasks (primaries
or alternates upon faults) will meet their deadlines provided
their combined utilization is less than 1. Additionally our
methodology can schedule the non critical tasks in a fault-
aware manner to achieve the best possible utilization of the
system.

Our ongoing work attempts to incorporate more complex
fault models and provision of probabilistic guarantees [2] to
non critical tasks. Another research direction is to map the
related works in our framework to compare and formally
prove that this framework is capable of performing at least
as good as all of them. We are also working on formaliz-
ing an FT-feasibility index which can distinguish different
schedules in terms of feasibility and associated costs to help
the designer in choosing the optimal schedule.

References

[1] A. Burns, R. I. Davis, and S. Punnekkat. Feasibility analysis
of fault-tolerant real-time task sets. Euromicro Real-Time
Systems Workshop, pages 29–33, June 1996.

[2] A. Burns, S. Punnekkat, L. Strigini, and D. Wright. Proba-
bilistic Scheduling Guarantees for Fault-Tolerant Real-Time
Systems. In Proceedings of DCCS-7,IFIP International
Conference on Dependable Computing for Critical Appli-
cations, California, January 1999.

[3] H. Chetto and M.Chetto. Some results of the earliest dead-
line scheduling algorithm. IEEE Transactions on Software
Engineering, 15(10):1261–1269, October 1989.

[4] R. Dobrin, G. Fohler, and P. Puschner. Translating offline
schedules into task attributes for fixed priority scheduling.
In Proc. 22nd IEEE Real-Time Systems Symposium, pages
225–234, Dec. 2001.

[5] S. Ghosh, R. Melhem, and D. Mosse. Enhancing real-time
schedules to tolerate transient faults. Proceedings Real-Time
Systems Symposium, December 1995.

[6] C.-C. Han, K. G. Shin, and J. Wu. A fault-tolerant schedul-
ing algorithm for real-time periodic tasks with possible soft-
ware faults. IEEE Trans. Computers, 52(3):362–372, 2003.

[7] M. Joseph and P. Pandya. Finding response times in a real-
time system. The Computer Journal - British Computer So-
ciety, 29(5):390–395, October 1986.

[8] C. Krishna and K. Shin. On scheduling tasks with a quick
recovery from failure. IEEE Transactions on Computers,
35(5):448–455, May 1986.

[9] J. Lehoczky, L. Sha, and Y. Ding. The Rate Monotonic
Scheduling Algorithm - Exact characterization and average
case behaviour. Proceedings of IEEE Real-Time Systems
Symposium, pages 166,171, December 1989.

[10] A. L. Liestman and R. H. Campbell. A Fault-Tolerant
Scheduling Problem. IEEE Transactions on Software En-
gineering, 12(11):1089–95, November 1986.

[11] G. Lima and A. Burns. An optimal fixed-priority assign-
ment algorithm for supporting fault-tolerant hard real-time
systems. IEEE Transactions on Computers, 52(10):1332–
1346, October 2003.

[12] C. L. Liu and J. W. Layland. Scheduling Algorithms for
Multiprogramming in a Hard Real-Time Environment. Jour-
nal of the ACM, 20(1):40–61, 1973.

[13] M. Matsumoto and T. Nishimura. Mersenne twister: a
623-dimensionally equidistributed uniform pseudo-random
number generator. ACM Trans. Model. Comput. Simul.,
8(1):3–30, 1998.

[14] M. Pandya and M. Malek. Minimum achievable utilization
for fault-tolerant processing of periodic tasks. IEEE Trans.
on Computers, 47(10), 1998.

[15] S. Punnekkat, A. Burns, and R. I. Davis. Analysis of
checkpointing for real-time systems. Real-Time Systems,
20(1):83–102, 2001.

[16] S. Ramos-Thuel and J. Strosnider. The transient server ap-
proach to scheduling time-critical recovery operations. In
Proceedings of IEEE Real-Time Systems Symposium, pages
286–295, December 4-6 1991.

[17] O. Serlin. Scheduling of Time Critical Processes. Proceed-
ings AFIPS Spring Computing Conference, pages 925–932,
1972.

[18] L. Sha, T. F. Abdelzaher, K.-E. Årzén, A. Cervin, T. P.
Baker, A. Burns, G. C. Buttazzo, M. Caccamo, J. P.
Lehoczky, and A. K. Mok. Real time scheduling theory: A
historical perspective. Real-Time Systems, 28(2-3):101–155,
2004.

