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Abstract

Microwave imaging is a non-ionizing method promising an ability of depth-
scanning different biological bodies. The research in this area started in the
late 70s and many contributions has been achieved by different groups until
present, which have influenced and open up new possibilities of the technique.
This document will review the historical work by the different groups to settle
objectives of the research in microwave imaging at the Department of Com-
puter Science and Electronics at Mälardalen University and the plan of the
author’s Ph. D. studies. The planar 2.45 GHz microwave camera located at
Supélec, France, may be a very useful platform in early studies of the three-
dimensional properties of microwave imaging for breast tumor detection. By
applying the developed Newton-Kantorovich algorithm to the planar camera
a solid state of the art platform for quantitative reconstruction of inhomoge-
neous objects may be established.
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1 Introduction

Microwave imaging is a non-ionizing method which promises the ability of depth-
scanning different dielectric bodies for biomedical applications. This method has
been proved able to detect malignant tumors as the dielectric properties of these
differ from other human tissues. The contrast in permittivity for different in-vivo
tissues (bone, fat, malign tumor, vascular tissue etc.) is much higher compared to
the density contrast X-Ray Computed Tomography (CT) can yield [1]. For this
reason, microwave imaging has been developed as a complementary modality to
mammography[2, 3]. However, microwave imaging needs a improvements in both
hardware platforms and imaging algorithms to be considered as a reliable and quan-
titative modality for biomedical application. The complexity of biomedical tissues
makes the wave propagation complicated and demanding high sensitivity in the
hardware. The scattering phenomenon in microwave imaging is highly non-linear
and demands a great amount of calculation capabilities to reconstruct an image
with reasonable quality. Impressive results in inverse scattering algorithms for two-
dimensional scenarios have been obtained by [1, 4, 5, 6], resulting in tomographic
imaging of bodies with complex dielectric permittivity[1, 5, 7, 68, 69]. The tomo-
graphic algorithms must be further developed to improve the convergence of the
inverse problem and a more stable platform must be established before the tech-
nique can be considered as a useful complementary technique in the biomedical
area.

In this document earlier research in the area of microwave imaging of biologi-
cal tissues will be reviewed and summarized, from the beginning of the 80s until
present. First the hardware development will be discussed, followed by the algo-
rithm development. In the end, the specific phantom model developing for the
breast tumor detection application is discussed. The last section points out some
possible future directions in this area.
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2 Developed Hardware Setups

Several hardware setups have been developed during the last three decades. The
first successful experiments where performed by Larsen and Jacobi in the late 70s,
resulting in images showing the internal structures of canine kidneys. These experi-
ments where made, using two antennas and measuring the transmission coefficients
between them with a mechanical rotation around the object [10]. These results
constructed a major foundation opening up the future of microwave imaging of
biological tissues.

2.1 Microwave Tomography Systems Performing in Frequency-
Domain

2.1.1 The Planar Microwave Camera

One of the first imaging systems developed was the planar microwave camera by
Bolomey et al. during the 80s. This planar microwave camera includes two large
horn-antennas, one transmitter and one receiver, with a water tank in between. The
transmitting antenna is designed to produce an approximately plane wave which is
received in the receiving antenna, depicted in Figure 1. The object is immersed of
water into the water tank and the scattered field due to the object is measured along
a plane behind the object. The camera using 1024 dipole antennas on a plane matrix
placed on the water tank in front of the receiving horn antenna, also named the
collector. The antenna matrix forms a syntectic retina where the antenna elements
distributing the plane-wave passing it. The retina is not considered as a receiver
while it disturbs the field before the receiving collector in a Modulated Scattering
Technique(MST) fashion[11]. Using this technique one antenna element is active
at the time by a modulation of 200 kHz, the received signal in the collector gives
information of the field properties at the antenna element position. By scanning
through all elements of the retina quick data acquisition is archived using a relatively
simple hardware[12]. This because the retina elements is modulated by a frequency
of 200 kHz, which modulates the planar carrier wave frequency of 2.45 GHz, only
two high frequency channels is needed for 1024 measurements points.

Using lower frequency the multiplexer controlling the sensor matrix may be
simplified. This camera was developed with the main goal to produce qualitative
images of the temperature distribution of biological tissues to control the effect
during hyperthermia treatment [13, 14]. The camera has been further developed
since then to produce quantitative results [15] as well as qualitative results in a quasi
real-time manner [16]. Ann Franchois was able to produce quantitative results of
a homogenous cylinder, with the conclusion that the calibration of the incident
field was one of the main issues to improve the quantitative result [15]. While a
quasi real-time acquisition time of the image is a useful issue in many biological
applications Alain Joisel have further developed the real-time functionality of the
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Figure 1: Microwave planar camera developed by Bolomey et al. [12].

system. In [16] qualitative results have been reported with a rate of 15 images/sec.

2.1.2 The 64 Antenna Circular Microwave Camera

In parallel with the later part of the planar camera development Jofre et al. de-
veloped the first circular microwave camera able to do multi-view measurements
without mechanical movements. The microwave camera operates at a frequency of
2.45 GHz using 64 horn-antennas operating in TE10 mode, arranged in a circle with
a diameter of 25 cm, depicted in Figure 2. The antennas is used in both transmit-
ting and receiving mode, with one transmitting antenna at the time and measuring
the scattered field at the opposite 33 antennas. By changing transmitting antenna
around the circle a rotation around the object may be done electrically. This is
one of the major advantages of this circular setup compared to the Bolomey et
al. planar setup and Jacobi et al. mechanical system. A transmitting/receiving
multiplexer for 2.45 GHz signals is a challenging issue to develop. In this case the
antennas are divided into four one-to-16 multiplexors, created by trees of PIN diodes
[17]. These four multiplexors is then connected to the transmit/receive equipment
through a two- to four-way switching matrix. However, the leakage between the
transmitting and receiving part requires a non-practical isolation. The isolation
problem is solved by using a low-frequency modulation to separate the useful sig-
nals from interferences[18]. A double amplitude modulation is archived close the
transitter/receiver antennas together with a demodulation in the data acquisition
unit, through this process the wanted signal path is isolated trough . This equip-
ment is able to measure 64 views around an object in 3 s, but using averaging to
reduce noise in the measurements one measurement cycle takes about 45 s.

This equipment was also used to produce qualitative results in the beginning
using the diffraction tomography algorithm [18], but have also been used to obtain
data for iterative algorithms for quantitative results at a lower operating frequency

3



Figure 2: The circular microwave camera developed by Jofre et al. with 64 trans-
mitting/receiving horn-antennas [12, 17, 18].

of 2.33 GHz [5, 7, 69, 71]. Using an iterative non-linear algorithm the resolution is
not limited to λ/2 as in the diffraction tomography case, using a priori information
the resolution may be improved. However, the result is highly dependent of the
SNR of the system [7]. In [7] a SNR of 20 dB was obtained in the system and still
quantitative results of a human forearm was archived with good convergence.

2.1.3 The 32/32 Antenna Circular Microwave Scanner

In the mid 90s Semenov et al. developed a 64 antenna circular microwave scanner
using waveguide-antennas operating on a frequency of 2.45 GHz [20]. This system
is based upon a cylindrical cavity with a diameter of 37 cm, depicted in Figure
3. at this time it was well known that creating a system with antennas able to
alternate between transmitting and receiving mode causes a major isolation prob-
lem between the channels. Therefore this group divided the antennas between 32
transmitting antennas and 32 receiving antennas with separate transmitt/receive
channels. However this is of course a step backwards in number of possible input
data for the algorithms, compared to the barcelona setup.

The waveguide-antennas are constructed with a three time wider field pattern in
the horizontal plane compared to the vertical plane. The dimensions of the antenna
is 30 mm*9 mm operating in TE10 mode. With this system they tried to use a 2-D
model of the diffraction to create 2-D images slicing a 3-D object. However, they
conclude in [20] that it is not successful to slice a 3-D object using a 2-D model.
They propose that a 3-D object should be reconstructed in as a fully 3-D structure
in a 3-D model to avoid 3-D artifacts, but the final result may then be visualized
as a 2-D sliced image of structure [20]. Note, that a 3-D structure containing
spatial and dielectric variations along the vertical axis, if a 2-D model is used for
the image reconstruction those variations are not including causing artifacts in the
reconstructed image. Using this system Semenov et al. produced qualitative result
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in quasi real-time of a beating canine heart with a data acquisition from all 32
transmitting antennas around the object in less than 500 ms. They summarize
that a 3-D model is needed to create quantitative results of a biomedical object as
in their study of a heart [20].

Figure 3: The circular microwave camera developed by Semenov et al. with 32
transmitting and 32 receiving waveguide-antennas [20].

2.1.4 The Clinical Circular Prototype Scanner for Biological Imaging

In parallel with the Semenov et al. Meaney et al. started their development of a
circular microwave imaging system for reconstruction of 2-D electrical property dis-
tributions. In their first system 8 antennas were used. Four transmitting waveguide
antennas and 4 receiving monopole antennas. The system operates on a frequency-
band between 300 - 1100 MHz. The motivation for a multi-frequency system was
that the system could be used in a experimental investigation to find the optimal
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frequency for the imaging process as well using different frequencies to improve im-
age quality and the system’s usability[21]. The antenna system operates in the TM
mode, where the most of the E-field is assumed to be vertical polarized. This data
acquisition system also use amplitude modulation to increase the isolation between
the transmitting and receiving channel.

The long term objective of this system is also the thermal imaging during hy-
perthermia treatment, like Bolomey and Jofre et al.. At this time no group had
been able to produce experimental quantitative results of the temperature inside
larger objects with high dielectric contrast, using the quasi real-time diffraction
tomography methods. Only the differential issue of temperature differences with-
out quantitative information had been obtained [17]. The approach for Meany et
al. was to develop a system able produce static quantitative images of biological
tissues. For this reason they started with an iterative inverse scattering method
which is more time-consuming than the earlier spectral diffraction methods [6]. The
algorithm used was developed from the Newton-based method using a hybrid of the
Finite Element and the Boundary Element method to compute the electric field at
each iteration [22, 23]. This to lower the number of unknowns and lowering the
calculation effort in the forward solver. In this step the quasi real-time function-
ality is lost but what is gained is the ability to handle more complex objects with
many scatterers and high electrical property variations. In [21] the first experi-
mental results are presented together with a calibration technique. In this early
step quantitative results where produced for objects with an approximate size of
one-half wavelength.

This setup was further developed in the late 90s with a circular antenna array
with a diameter of 25 cm containing 32 monopole-antennas. In this setup the
monopole-antennas where used as both transmitters and receivers in the TM-mode
using the same data acquisition system as in the earlier system, depicted in Figure
4. One antenna is a transmitter while the other antennas can act as receivers, so
a circular scan is performed by changing transmitting antenna along the the circle
in the same manner as the Jofre et al. system [24]. The paper describes how the
imaging result is improved while a simpler transmitting antenna is used. This is
mainly because the monopole antenna is easier to model. The forward solution
gives a better result in the comparison with the experimental measurement, which
in fact improves the convergence of the imaging algorithm. They propose to use
monopole-antennas with the motivation that it is possible to locate the object in
the near-field region and still get an acceptable field pattern inside the object. A
waveguide-antenna have better antenna gain but need some non-interfering space in
the near-field region. Using only monopole-antennas the system may be minimized
around the object and some of the losses in SNR due to the lack of antenna gain
is regained, due to the shorter distance between the transmitting and the receiving
antenna. Improved results are achieved in both the real and imaginary part of the
permittivity in a comparison to the earlier waveguide system [24]. Furthermore,
the monopole-antenna may be easily modeled as a line source. A new kind of
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calibration is also proposed which is useful for all antenna types. This calibration
technique improved the result even more[24].

Figure 4: The active microwave circular camera for imaging of biological materials,
developed by Meaney et al. [21, 24]. (a) The tank with the 32-channel data
acquisition system in laboratory operation. (b) View of the 32 monopole-antenna
array. (c) A view of the data acquisition system mounted on a transportable chart.

The first clinical prototype for active microwave imaging of the breast was de-
veloped in the early 2000s by Meaney et al. [25]. The objective of this system
is quantitative images of the breast to detect early stage breast tumors. The sys-
tem is based on the earlier developed system where the system is mounted on a
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transportable bed with a hole for the breast insertion, see Figure 5. In this case
they only use 16 of the 32 available channels in the system by using a smaller 16
antenna circular array with the diameter of 15 cm. In the study [25] breast images
of 5 real patients with different ages is performed. One session lasted between 10-15
min per breast, where the data acquisition at seven different antenna heights with
seven different frequencies at each antenna array height was included. The initial
results gives sliced 2-D images of the human breast with a reasonable resolution. It
is clearly shown that the permittivity of the breast tissues differs between different
patients and with the age of the patient. This was explained to correlate with
the amount of fatty tissues compared to the glandular and fibrous tissues. They
also propose that the in vivo tissues have a higher permittivity compared to the
published ex vivo studies. In this setup the nonactive antennas where modeled as
microwave sinks so the entering E-field is absorbed and not re-radiated [62][63]. In
the hardware they are using matched switches so when an antenna is in nonactive
stage any entering signal is transferred trough the coax-cables into the switch with
a matched termination, which eliminates the re-radiation.

Figure 5: The clinical prototype for active microwave imaging of the breast in
application of breast tumor detection, developed by Meaney et al. [25].

Many improvements on the system’s software has then be done, while using
the same hardware. One approach is to use the unwrapped phase in the imaging
algorithm instead of using only the limited 2π phase shift in one Rieman sheet in the
complex plane [28]. This improves the image quality while imaging high-contrast
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objects without the same demands of the a priori information about object size
and permittivity. Further, the measured log magnitude is used directly in their
algorithms, which improves the error-rate in the measured data [3]. Using this
system studies has been done of the 3-D artifacts caused while using a 2-D model of
a 3-D object [29], while the iterative algorithm is a fully 2-D algorithm. With the
experience from these studies a scalar 3-D/2-D algorithm has been implemented
[1] to lower the 3-D artifacts in the 2-D imaging. Furthermore, improved image
quality has also been accomplished by finding the boundary of the object. If the
exact boundary is found it is then possible to model the boundary properties as a
step function, while the surrounding medium is known [2]. In this method, first,
the object boundary must be fond to adjust the size of the FE-region to fit the
object with heterogenous medium. Outside this region the homogeneous medium
is modeled using the boundary element method. In [2] it is shown that this method
improves the images, especially if the inhomogeneities is located near the boundary
of the object. Finally, Meaney et al. have done some effort to produce a new
prototype system with a frequency band of 0.5 – 3 GHz [30]. Using this system the
group has been able to produce images of a breast using a frequency band between
600 MHz – 2.1 GHz. The bandwidth is limited by the dynamic degradation of the
data acquisition system and by the high attenuation of the lossy medium at higher
frequencies. One important point of their contribution is the fact that a simple
antenna, as a monopole antenna, can be used with success in this context with a
fairly wide band and simple models.

2.1.5 The 434 MHz Circular Microwave Scanner

In the late 90s Geffrin et al. developed a circular scanner operating at a frequency
of 434 MHz. This configuration consists of 64 antennas attached inside a metallic
cylinder with a diameter of 59 cm [31, 32]. This setup was intended to be able to
perform a full-body scan of the human body, but may be useful in other applications
as well. Under the development the camera where equipped with 64 printed circuit
H-type E-polarized antennas [31]. However, the final version is equipped with 64
biconical antennas [32], depicted in Figure 6. This is the first developed microwave
scanner with a metal enclosure, which of course having both advantages and disad-
vantages. This system is surrounded by a metallic cylinder. The metallic enclosure
will increase the standing wave pattern outside the object and the coupling affect
between the enclosure and the antennas. Earlier non-metallic enclosures made a in-
finity approximation useable in the algorithms while using lossy immersion medium,
where all secondary effects are suppressed. While this metallic surrounded scenario
must use a metallic boundary in a finite description of the equipment including the
reflection effects and the standing wave pattern in the region between the metallic
wall and the object. This choice increasing the computation effort, however, this
system is more stable with a more shielded and well defined environment. Approxi-
mating the environment as an cavity of infinite height, many simplifications may be
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Figure 6: The circular 434 MHz microwave scanner developed by Geffrin et al. [32].

done when the standing wave pattern outside the object is not an issue and in many
cases the effect from the unused antennas may be neglected with a satisfactory re-
sult. Ann Franchois has developed a Newton-type 2-D reconstruction algorithm for
this system, where the antenna integration and the effects of the metallic shield is
included [33].

2.1.6 Fully 3-D Microwave Scanners

The 3-D microwave imaging is still a quite open area of researched in biomedical
imaging. Many simulation studies have been done in the fully 3-D vectorial case
[6, 34] and some experimental studies have been done with the 3-D scalar case
[1, 69, 35]. Note, the difference between the scalar and vectorial case is that in a
scalar case the E-field is assumed to be polarized in one dimension, while in the
vectorial case the E-field polarization may vary in all three spatial dimensions. The
later case makes the computations much more complex and needs a lot of calculation
effort. Further, the vectorial case also introduce a complex situation in hardware
development. One needs to be able to measure the E-field in two components,
the horizontal and vertical polarization, to maintain the imaging algorithm with
correct data. In the 2-D case or in the scalar case only one polarization of the
E-filed is needed and while using a TM-wave. For the moment only Semenov et
al. have done some initial experimental studies of the fully vectorial case [68, 36,
37, 38]. The overall goal with their 3-D studies is a full-body imaging system to
detect myocardial ischemia and infarction in the human heart. In those studies
two different systems have been used. The first one, was developed in the late 90s
using an operating frequency of 2.36 GHz. The system is built upon a non-metallic
cylindrical chamber with a diameter of 60 cm and a height of 40 cm, depicted
in Figure 7. The configuration is 32 waveguide-antennas in a vertical array of
transmitters with a spacing of 1 cm and the same kind of waveguide-antenna as a
single receiver. The waveguide-antennas is filled with barium titanate with ε′ = 60
with the two-fold reason to minimize the antenna and matching the bolus medium
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Figure 7: The first 3-D vectorial experimental setup developed by Semenov et al.
[36], with a operating between 2.36 GHz.

to minimize the return-loss. The dimensions of the antenna is 1 x 0.5 cm with a
TE10 (H10) wave pattern which gives a polarized field, by rotating the antenna 90o

the antenna is able to receive the two component polarization. [36]. While the
antenna is shorter than a wavelength this waveguide-antenna may be modeled as
a dipole-antenna, where the E-field in the forward direction is vertically polarized,
with a reasonable accuracy in the imaging region. The scenario enable the use of a
TM-wave model for relatively small objects.

This system uses a mechanical positioning system to create a circular measure-
ment scenario by using one fixed transmitting antenna array and rotating the object
and scanning with the receiving antenna 180o along a circle opposite to the trans-
mitting array. It is also possible to change the vertical position of the receiver, in
between a band of 27 cm, to get multiple views along the z-axis. The positioning
system has one arm for the receiving antenna and one rotator for the object. The
rotator is centered in the circular chamber with the transmitting antenna array lo-
cated 17.3 cm from the center. The receiving antenna is moved along a cylindrical
surface with a variable radius. The E-field is then measured along a circular surface
behind the object.

To speed up the data acquisition they use a code-division technique, where
all transmitters may be operated simultaneously and the result is divided by the
decoding system of the system [36]. However, still the data acquisition process in
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this system is time consuming while the receiving antenna must measure all points
on the surface at each angular position of the object, one measurement with 32
directions of a 3-D object takes about 8 h to accomplish. Another problem with
the setup is that the reflection from the bottom of the chamber and the water
surface must be taken into account. This occurs while calculating the result from
the transmitters on the outer skirt of the antenna array, while the distance is only
4 cm between the array and the bottom and the water surface respectively.

The second generation 3-D microwave scanner developed by Semenov et al.,
was developed in the early 2000s. This system is built around a large metallic
chamber with the dimensions of 153 cm in height and 120 cm in diameter, de-
picted in Figure 8(a). Instead of constructing a complete transceiver the system
is constructed around a network analyzer, depicted in Figure 8(c). Then only two
waveguide-antennas are used together with a mechanical positioning system. the
waveguide-antennas are similar to the earlier used ones with the same TE10 mode,
but is designed for frequencies between 0.8 - 1.0 GHz loaded with a core with a
dielectric (ε′ = 90, tan δ = 10−5). A metallic plate is fixed on the edge of both the
transmitting and the receiving antenna, this to eliminate the boundary effects of
the waveguide-antenna. These two antennas are fixed onto two different arms of
the positioning system, depicted in Figure 8(b). During the data acquisition the
object is fixed in the middle of the chamber and the positioning system rotate the
antennas along a circle with the same radius for the transmitter and the receiver
i.e. 18.5 cm [37]. The position system is also able to accurately locate both the

Figure 8: The second generation 3-D vectorial experimental setup developed by
Semenov et al. [37], with a operating between 0.8 – 1.0 GHz.

transmitting and the receiving antenna in different vertical positions. By this it is
possible to both receive and measure along cylindrical surfaces around objects with
sizes up to 40 – 50 cm in diameter. Both antennas may automatically be rotated
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during the measurements to be able to measure the two-component E-field. The
system is able to measure attenuations as high as 120 dB with a signal-to-noise
ratio of 40 dB. The usage of a large metallic chamber with a lossy medium makes
it possible to ignore the boundary reflections and a free space boundary condition
may successfully be used in the calculations.

The data acquisition may be done in three different modes. First, the simplest
2-D slice where the transmitter is located at different locations along the circle and
the receiver is measuring a number of measuring points on the circle behind the
object, for each transmitter position. This is the same procedure as Jofre et al. and
Meaney et al. are using but in a mechanical way. Second, for each transmitting
position along the circle, the receiving antenna is located along a 3-D cylindrical
surface behind the object and measures the 3-D distribution of the field. In the
last mode, also the transmitting antenna is located along a 3-D cylindrical surface
around the object. At each transmitter location a 3-D surface measurement is done
with the receiver. This measurement technique is very time consuming, while the
second method with 32 transmitting positions and 18 measuring points along the
circle in 16 different vertical positions of the receiver takes about 4.5 h [37]. If
then also the transmitter would be located in different vertical position the number
of data and the acquisition time may be multiplied with the number of vertical
positions, Ntv. Using this setup this group was able to improve the image quality
of fully 3-D objects, such as a full size canine [37].

2.2 Microwave Tomography Systems Using a Time-Domain
Approach

A major part of the developed Microwave Tomography systems are designed to use
one or several fixed frequencies in frequency domain. Another approach is, how-
ever, to use a multi-frequency signal in time-domain. There is mainly two groups
contributing experimental results in this domain Miyakawa et al. and the Swedish
group Persson et al. There solutions are completely different while Miyakawa et al.
tries to linearize the problem to a straight line propagation problem using a chirp
pulse. Persson et al. using a non-linear algorithm working in the time-domain.

2.2.1 The Chirp Pulse Microwave Computed Tomography, CP-MCT

This modality was developed by Miyakawa et al. This group tries only to find
the straight-line projection of the traveling wave through the object, neglecting the
diffraction behavior of the field. The used algorithm using the amplitude response
behind the object similar to the already well-developed X-ray CT-algorithm. Filter
out different traveling pathes using a static solution from an applied sinusoidal wave
is impossible. Therefore, a chirp pulse with a specific sweep time is used, like a
chirp radar[40, 41]. The fastest way between the transmitter and the receiver is the
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straight line so the system is able to pick up the straight-line chirp pulse component
from the received signal, in a spectral analysis in an FFT-analyzer [42].

The first system using this technique was developed by Miyakawa et al. in
the early 90s. This system used two different antennas inside a saline bath and a
mechanical positioning system similar to the one used in the first CT-prototype.
The two antennas were moved through 128 equidistant points along two parallel
lines on opposite side of the object, to measure the parallel pathes through the
object. As in traditional CT this procedure was carried out at several projections
along a half-circle, 180o. In this system they used 50 projections with 3.6o intervals.
Using a chirp pulse with a frequency between 1 – 2 GHz and a sweep time of 200
ms, in each measuring point the total data acquisition takes about 100 minutes.
This is far too long for a clinical application, but in the initial experiment they
reported approximately spatial resolution was 1 cm with the possibility to measure
temperature changes as low as 0.7oC [40].

The data acquisition may be speed up by using simultaneous measurements with
modulation scattering [40], similar to the planar microwave camera of Bolomey et
al.. The receiver part where exchanged to one large horn-antenna with several
modulated PIN diode feed dipole-antennas with multiple modulation frequencies.
Using multiple modulation frequencies enables parallel measurements in several
dipole positions and the system is able to accomplish faster data acquisition, the
overall principle is depicted in Figure 9. However, the conclusion was that the
data acquisition still was too long for a clinical application of in-vivo temperature
measurements, while it needed 4.5 minutes to complete all projections.

Figure 9: The hardware principle using modulated scattering and a chirp pulse,
developed by Miyakawa et al. [40].

In the early 2000s Miyakawa et al. further developed their system with an
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antenna array where only the circular projection scanning needs a mechanical sys-
tem, depicted i Figure 10. This system consists of one transmitting dielectric loaded

Figure 10: The fan beam scanner with 39 receiving dipole-antennas, developed by
Miyakawa et al. [41].

waveguide-antenna with a receiving antenna array of 39 dipole antennas [41]. This
system is utilized inside a saline bath using a chirp pulse from 1 – 2 GHz. Using
this system a complete data acquisition of 72 projection is done in 100 seconds. If a
faster system is needed, several parallel RF-signal processing units are needed. The
spatial resolution of this system is between 10 – 12 mm while able to detect temper-
ature variations of 0.3 – 0.5oC. Note, this resolution is calculated from experimental
results on models and is not validated with real biological tissues.

This group has done several developments in the distinguish of the straight line
path response to improve the image quality [42, 43]. The major drawback with
this technique is the fact that it is really hard to distinguish the straight path only
response from the received signal. The examples shown in the experimental studies
are simpler structures with maximum two scatterers inside the object. Biological
tissues are more complex with inhomogeneous dielectric properties, multiple scat-
terers with large variations in dielectric properties, which will make the imaging
process even harder.

The last development progress of this technique was to adapt the system with
128 x 50 measuring points into a breast tumor detection application. In this case
the frequency band where changed to 2 – 3 GHz with a variable sweep time between
20 – 200 ms [44]. In this study the detection and the positioning of an early stage
breast tumor is investigated in simulations. The evaluated resolution was 6 – 7
mm, But it must be noted that it is really hard to localize the tumor from the
images, even in the two-dimensional case. Therefore, the authors are suggesting
that additional radar imaging is needed for the localization of the tumor, while
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the chirp pulse microwave imaging technique may just be useful as a detection
technique[44]. Perhaps the chirp technique is not suitable in situations where the
dielectric contrast is too large, which increases the diffraction behavior of the E-
field.

2.2.2 Time-Domain Microwave Tomography

This domain using a similar non-linear inverse scattering problem as in the single
frequency setups. The difference is the wide-band multi-frequency acquisition is
used to obtain time-domain data. Multi-frequency is one way to get more infor-
mation about the object in the reconstruction. However one problem is that the
material properties are frequency dependent, which is a challenging modeling is-
sue in the reconstruction [46]. Persson et. al. has developed a wide-band circular
system using monopole antennas in a frequency band between 2− 7 GHz [45, 46],
depicted in Figure 11. This system has been developed in different stages, ex-

Figure 11: The circular setup for time-domain reconstruction, developed by Persson
et al. [45].

plained in [46]. The system is built around a network analyzer and a 2:32 channel
switch multiplexer. The antenna setup is similar to Meaney et. al. using monopole
antennas. Also, a similar calibration technique is used[24, 46]. This system was
used to make multi-frequency data acquisition for the time-domain inverse scat-
tering problem. Note, FFT was used to transform the frequency domain data to
time-domain.
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2.3 Microwave Microwave Imaging Using a Radar Technique
Approach

An another microwave imaging modality is developed from the already high devel-
oped microwave radar techniques. Today, a radar system may not use a rotational
antenna. By using an planar array of antenna elements with variable phase-shifts
(time-shift) a electronically rotation of a beam is possible. Similar techniques may
be developed in the small-scale scenario of microwave imaging to detect inhomo-
geneities inside objects. In this area Hagness et al. has developed a technique to
detect early breast tumors using a a Space-Time Beamforming radar.

2.3.1 The Space-Time Beamforming Radar approach

This technique using the reflected response, compared to the other tomographic
techniques where the transmitted response are of interest. The idea is to isolate
the responses from different locations with different distances from the antenna by
using space-time beamforming. By computing the traveling time in time-domain
using the permittivity from fatty breast tissues a time window may be used to
isolate the response. Using responses from several different locations a 3-D map
of the reflections may be created [47, 48]. The large reflection from the object
boundary is suppressed by subtracting the average response from every location to
each individual response. All antenna locations have the same distance to the object
boundary, therefore this effect may be suppressed with good accuracy. However,
this method may have difficulties while the response from the inhomogeneity is
small compared to the reflection from the boundary of the object. This limits the
solution to situations where the the purpose is to locate high contrast scatterers
inside an almost homogenous object, which is the case in breast tumor detection.
This group have designed an ultrawide-band (UWB) horn-antenna for this purpose
[49]. The antenna has a frequency band of 1 – 11 GHz, with the aperture size of 25
x 20 mm, depicted in Figure 12. The antenna should be filled with some dielectric
medium similar to breast tissues to maintain the frequency band and improve the
matching against the human breast, soybean oil where suggested. This antenna
has been used in an experimental investigation of breast tumor detection using this
technique [50]. The breast is modeled by soybean, dielectric properties as (εr = 2.6
and σ = 0.05 S/m) inside a tank with the dimensions of 36 x 36 x 26 cm. The
skin layer is modeled by a 1.5 mm thick printed circuit board (PCB), while the
tumor is modeled by a water-diacetin mixture inside a 4 mm diameter cylindrical
plastic container with a height of 4 mm. The soybean filled horn-antenna is located
at 7 x 7 matrix on the PCB, depicted in Figure 13. The results from this study
indicate a great potential for this technique in detecting and positioning the breast
tumor. Note that this technique only gives qualitative results of the detection and
localization of a strong scatterer not the quantitative permittivity properties of the
tumor, which could be useful in characterizing a tumor.
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Figure 12: The 1 – 11 GHz UWB horn-antenna, developed by Hagness et al. [50].

Figure 13: A cross-section of the experimental setup used by Hagness et al., using
soybean oil as breast tissue and coupling medium and a PCB to model the skin
layer [50].
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3 The Tomographic Algorithm Development

In the very first experimental efforts of microwave imaging a method related to
X-ray formalization based on a linear path between the transmitting and receiving
antenna were used [53]. However, the physical properties of microwaves makes the
imaging process using microwaves more complicated compared to X-ray Computed
Tomography (CT). An X-ray travels through media with a ray pattern, while the
wavelength is small compared to the object size. A microwave have a wavelength
similar to the object size, which makes the ray description improper describing
the spread of a traveling microwave through a biomedical object. In this case the
traveling wave will be highly affected by diffraction. Therefore, the diffraction effect
must be involved in the imaging algorithm to obtain a quantitative result of the
object.

3.1 The Diffraction Tomography

In the early 80s the first microwave tomography algorithms where developed, is-
suing the diffraction phenomenon. This was in parallel during the development of
ultrasonic algorithms to obtain quantitative results of soft tissues. The main idea
was to make a linear approximation of the non-linear correlation between an inho-
mogeneity inside the object and the received field. One approximation is to assume
the electric field inside the object to be effected by the inhomogeneous object itself,
called the Born approximation. In this case the solution is quite simple and the
algorithms obtained with a quasi real-time performance. However, this approxi-
mation is shown valid only for smaller objects with small changes of the refractive
index, e.g. weakly scattering objects [52].

In Figure 14 (left) a two-dimensional case is depicted, where a vertically polar-
ized plane wave is illuminating a cylindrical object with an inhomogeneous cross
section S with the permittivity εS(x, y) and the conductivity σS(x, y). The formal-
ization of a scenario like this may be as follows, assuming the total field Etot to be
the sum of the incident field Einc and the scattered field Escatt according to

Etot(x, y) = Einc(x, y) + Escatt(x, y). (1)

One may also assume that the object is located in origo of the x-y plane with a
plane-wave incidence along the y-axis with a wavenumber (spatial frequency) of k0.
The field is measured along a line parallel with the x-axis located at y = l, in Figure
14. If the surrounding medium is homogeneous the scattered field is generated by
the equivalent currents inside the object caused by the variation of the dielectric
properties. This equivalent current may be defined as

JS(x, y) = (k2
S(x, y)− k2)Etot(x, y), (x, y) ∈ S. (2)

Here kS is the wavenumber inside the object and k is the wavenumber of the
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homogeneous surrounding medium. Note, that the wavenumbers contains the per-
mittivity and conductivity of the object and the surrounding medium [53].

The scattered field occurred by the induced currents may be defined using the
integral equation (3) or (4). By computing the convolution in this equation the
forward problem solving the scattered field from the induced currents of the object
is easily determined.

Escatt(x, y) =
∫ ∫

S

JS(x′, y′)G(x, y, x′, y′)dx′dy′, (3)

or
Escatt(~r) =

∫ ∫
S

(k2
S(~r′)− k2)Etot(~r′)G(~r, ~r′)dr′, (4)

where ~r is a general way to define the coordinates. The term G(~r, ~r′) is the two-
dimensional Green’s function containing the solution of the scattering problem de-
fined by the inhomogeneous Helmholtz’s equation (5).

(∇2 + k0)G(~r, ~r′) = −δ(~r − ~r′), [52]. (5)

The delta function in the right-hand side of (5) describes a point inhomogeneity,
therefore, the Green’s function may be regarded to represent the effect on the field
resulting from a point source. By performing the convolution, in the integral, of
the Green’s function over the whole region S as in equation (4) the scattered field
from the whole object is included. Equation (4) containing the total field inside
the object, which have an unknown object interaction, which is impossible to solve
without iterative methods or using some kind of approximations. This may be
done using the first-order Born approximation, or the Rytov approximation not
discussed in this report [52]. Consider the scattered field as a function of the total
field according to equation (4) and (1), if one assumes the object as a week scatterer
the incident field inside the object will be much larger than the scattered field. In
that case the equivalent current inside the object may be defined as equation (6)
with a constant electric field inside the object.

JS(~r) = (k2
S(~r)− k2)Einc(~r) (6)

This results to a scattered field dependent only of the incident field, the integral
formulation is then (7).

Escatt(~r) =
∫ ∫

S

O(~r′)Einc(~r′)G(~r, ~r′)dr′, (7)

where O(~r) = k2
S(~r) − k2. A common and computation effective way to com-

pute Equation (7) is to use the Fourier diffraction theorem [14, 52, 53]. The
Fourier Diffraction Theorem relates the Fourier transform of the scattered field,
the diffracted projection, to the Fourier transform of the object along a circular
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arc. This is simply done by a Fourier transform of equation (7) into the spatial
frequency domain according to equation (8).

Ẽscatt(~Λ) = G̃(~Λ){Õ(~Λ) ∗ Ẽinc(~Λ)}, (8)

where ~Λ = (α, β) and (α, β) are the spatial frequencies along the x- and y-axis
respectively. Note, that ’∗’ represent a convolution. The Fourier transform for the
planar-incident wave is given by equation (9).

Ẽinc(~Λ) = 2πδ(~Λ− ~k0), (9)

where k0 is the spatial frequency of the plane-wave. As well known this delta
function causes a simple frequency shift in the frequency domain given by

Õ(~Λ) ∗ Ẽinc(~Λ) = 2πÕ(~Λ− ~k0). (10)

The Fourier transform of the Green’s function is then defined as

G̃(~Λ, ~r′) =
e−j~Λ·~r′

~Λ2 − ~k2
0

, [52]. (11)

Then the general Fourier transform for the scattered field may be defined as

Ẽscatt(~Λ) = 2π
Õ(~Λ− ~k0)
~Λ2 − ~k2

0

, (12)

where ~r′ = 0 in the Green’s function. In this case it is interesting to find the
scattered field along the receiver line (x, y = l). As an illustration this may be cal-
culated using the inverse Fourier transform of equation (12) according to equation
(13).

Ẽscatt(x, y = l) =
1
2π

∫ ∫
Õ(α, β − k0)
α2 + β2 − k2

0

ej(αx+βl)dαdβ, (13)

where y is replaced with l, which is the position of the measuring line on the y-
axis. The integration is done along the line defined by equation (14), depicted in
Figure 14. Since this is a forward scattering problem the negative part of β is
ignored [52]. This because the negative circular arc is related to the reflected field.
Using the Fourier diffraction theorem the scattered field at the measured line in the
forward scattering problem is transposed on a half circle, with positive β values, in
frequency domain with the center point at k0, depicted in Figure 14.

β1,2 = ±
√

k2
0 − α2 (14)

In [52] it is described how the double integral of equation (13) may be replaced by
a contour integral as equation (15) using the β properties of (14).

Ẽscatt(x, y = l) =
∫

Γ1(α, l)ejαxdα, (15)
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where l must be larger than the object size and Γ1(α; l) is defined as

Γ1(α; l) =
Õ(α,

√
k2
0 − α2 − k0)

j2
√

k2
0 − α2

ej
√

k2
0−α2l. (16)

By taking the Fourier transform of both sides of equation (15) it results in equation
(17). ∫

Ẽscatt(x, y = l)ejαxdx = Γ̃1(α, l), (17)

where the Γ̃1(α, l) may be seen as a phase-shifted version of the object function Õ.
Therefore, the Fourier transform of the scattered field along the measuring line at
y = l is related to the Fourier transform of the object function along a circular arc.
This technique is called Fourier Diffraction Projection Theorem [54]. For simplicity

Figure 14: The Fourier diffraction theorem, [52].

only one incidence angle is issued in this document, but for further information
about multiple incidence see [53]. This theorem proves the validity of the relation
between weakly scattering objects and the field measured at a line. Furthermore, In
[54] two different types of algorithms are presented to solve the inverse problem to
estimate the object, the filtered-backpropagation algorithm and using interpolation
in both frequency and spatial domain. To the author’s knowledge the filtered-
backproagation technique is the most commonly used, e.g. the planar microwave
camera by Bolomey et al. [16]. This algorithm is not given in detail here but the
overall principle with the filtered-backpropagation is described shortly. The filtered-
backpropagation algorithm is very similar to the backpropagation algorithm for X-
rays with the difference of an extra depth dependent filtering function. This filtering
function is a transfer function corresponding to the depth depending attenuation
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of the microwave. By using proper filter coefficients the received field may be
backpropagated to illustrate the object in slices parallel to the measuring line [54].

Further, it has been shown that the limit for the validity of the Born approxi-
mation follows equation (18) [52].

nδa <
λ

4
, (18)

where nδ is the difference in refractive index between the object and the homogenous
immersing medium and a is the radius of the object. The wavelength λ is the
wavelength of the planar wave in the homogenous immersing medium. However, the
dielectric contrast of different human tissues are large and the objects are usually
quite large. Therefore, the Born approximation is not sufficient for quantitative
results, more advanced non-linear iterative algorithms are needed in this case.

3.2 Non-Linear Iterative Algorithms

As well known the Diffraction theorem only gives qualitative results of biological
tissues, while the Born approximation fails in the most scenarios including biologi-
cal in-vivo tissues. This because the multiple scattering inside the object is ignored,
while the field inside the object is assumed to be homogenous and approximated
to the incident field in equation (7). The difference between qualitative and quan-
titative results is that a qualitative result may find a difference in the dielectric
properties and some position information while the quantitative result gives a more
exact complex permittivity distribution of the object.

To obtain quantitative images of more complicated structures, the non-linear
relation between measured scattered field and the object’s dielectric properties must
be taken into account. This could be done by estimating the object properties from
equation (4). Note, the non-linearity arises while the effect of the scattered field is
the sum of the responses from the internal object. This makes both the field inside
the object and the properties of the object unknown in equation (4). This needs
an iterative process to solve, which hereafter is called non-linear inverse scattering.
The non-linear inverse scattering problem may be described as an optimization
process where the difference between the measured field and the calculated field
is minimized. When the error is sufficient small the dielectric properties in the
calculations distinguish the reconstructed image of the object, depicted in Figure
15. Inverse scattering consists of three major parts. First, an appropriate physical
model of the scenario. Several simplifications have been used in the developed
systems, which may introduce artefact in the final result [29]. Therefore the physical
modeling is a major issue during the hardware development. Second, the physical
model must be implemented using a numerical method to calculate the scattered
field from the known incidence field due to the assumed dielectric property of the
object. This numerical process is called the forward problem, or direct problem,
where the scattered field is calculated, from a known incident field, using a discrete
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version of the physical model, depicted in Figure 15. Naturally this discretization
may introduce some errors in the result if not a prorate decision is taken [55]. The
third part is the non-linear optimization process, where iteratively the error between
the measurements and the simulated fields is minimized with the goal to find the
global minimum. This process is ill-conditioned and may end up in faulty local
minimum if not an appropriate regularization is used [6]. All tougher those parts
are working as described in Figure 15, where a known incidence field is applied to
the measurements and into the forward solver. The field is measured at different
points outside the object. A comparison between the calculated and measured field
is then done. If the difference is larger than a specified level the inverse operation
will update the permittivity distribution of the object, which then is used in the
forward problem, in the next iterative step of the inverse solver. This is carried out
until the error is sufficiently small and the process hopefully have found the global
minimum of the non-linear problem. Note, that the initial guess D0 may be used
during the first iteration of the inverse process. In this chapter the three different
parts will be described shortly before the overall research results and status in the
area is presented.

Figure 15: The concept of Microwave Imaging using inverse scattering, where the
T boxes are transformations from the signal properties as amplitude and phase into
the applied and received complex E-field.

3.2.1 The Physical Description

Using the four Maxwell equations, Equation (19)-(22) together with the three
constitutive relations Equation (23)-(25) all situations concerning electro-magnetic
(EM) wave propagation may be described. However, those equations are dependent
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of both the E- and H- field. By taking the curl of both sides of Equation (19) or
(20) and the using suitable constitutive relations it is possible to calculate the wave
equation dependent on only one field component, the E- or H-field [56, 57].

∇×H = J +
∂D

∂t
(19)

∇× E = −∂B

∂t
(20)

∇ ·D = ρ (21)
∇ ·B = 0 (22)

J = σE (23)
D = εE (24)
B = µH (25)

The Maxwell’s equations describe the field properties in all three dimensions, which
results in a calculation heavy vectorial problem in 3-D. By knowing the scenario
many simplification may be done to the final wave equation, e.g. if the incidence
field is vertically polarized and the object is homogenous along the z-axis. In this
case the Maxwell’s equations may be simplified to the scalar Helmholtz equation
(26), which is used in most of the developed systems [4, 5, 6, 15, 20, 23, 58].

(∇2 − k2(r))E(r) = 0, (26)

where k is called the wave number containing the material properties of the medium
the EM-wave is propagating trough. E(x, y) is the total electric field. Other sim-
plifications may be done by concerning the scenario as an infinite container with a
homogenous immersing medium. In this case the infinite boundary conditions of
the Maxwell’s equation dramatically simplifies the solution of the wave equation
[33].

3.2.2 The Forward Solution

The usual methods for the forward solver is the integral equation using Method
of Moments (MoM) [4, 5, 6, 15, 58], Finite Element Method (FEM) [22, 23, 25]or
in some cases Finite Difference Method (FDM) [35, 59, 45]. This document will
focus on the may be most commonly used method in the literature, the integral
formalization using MoM. This method were successfully used by several groups in
parallel [4, 6, 58]. Those solutions are similar where the scenario where considered
to accomplish the scalar Helmholtz equation (26). The solution may be expressed
by the integral equation (4). The discretization of the integral equation (4) is done
using MoM [56, 6, 5], which results in equation (27), defining the relation between
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the total field in the object and the measured scattered field.

Ev
scatt(rm) =

N∑
j=1

(k2
S(rj)− k2)Ev

tot(rj)G(rm, rj), m = 1, 2, · · ·,M, (27)

where M is the number of measurement points around the object and N is the
number of discrete cells in the solution. The term v indicates the projection of the
transmitting antenna [6]. The total electric field inside the object ,from the N cells,
is the solution of the linear system in

Ev
inc(rn) =

N∑
j=1

[δnj − (k2
S(rj)− k2)G(rm, rj)]Ev

tot(rj). n = 1, 2, · · ·, N, (28)

These two equations may be written in matrix form as equation (29) and (30).

[Ev
scatt] = [K][D][Ev

tot], (29)

[Ev
inc] = [I −GD][Ev

tot], (30)

where [Ev
scatt] is a vector with length M while [Ev

tot] and [Ev
inc] are vectors with

length N . The [D] matrix is an N x N diagonal matrix containing the permittiv-
ity contrast of the N cells. The [K] and [G] matrix contains the Green’s operator
and have the sizes of M x N and N x N respectively. This technique works with
the discrete version of the exact integral equation, which is normally is a accurate
method if the boundary conditions are selected properly. The FEM and FDM so-
lutions are sometimes called differential methods, which builds on approximations
with local support while the integral formalization have global support [56]. The
problem with integral formulations may be to define exact boundary conditions in
some conditions, but in the case of microwave imaging often a infinity approxima-
tion is used in the Green function. In this case the MoM solution is simple and have
the big advantage that only the object region has to be discretizised. However, the
difference between the methods will not be issued in detail in this document, the
interested reader may found it in literature such as [56].

3.2.3 The Inverse Optimization Process

The optimization process of the non-linear inverse scattering problem is a ill-posed
problem without only one simple solution. The key point is to minimize the error
between the measured and calculated field at the receiving antennas using a non-
linear least square method, depicted in Figure 15. One may specify an object
function F as equation (31), which is the square norm of the difference between the
measured and calculated field shown in Figure 15.

F (D) =
||Escatt(D)− Emeas||2

2
= min, (31)
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where the residual Escatt(D) − Emeas may be defined as ∆Escatt(D). The term
D is the permittivity distribution matrix used in the forward solver as depicted
in Figure 15. The goal is then to find the global minimum of this object function
using the non-linear least-mean-square method. In the a general non-linear least-
mean-square method,the Newton method, where both the gradient and the Hessian
matrix of the object function needs to be defined [60].The gradient of the object
function may be calculated as Equation (32) and the Hessian matrix as Equation
(33).

∇DF (D) = JT
F (D)∆Escatt(D) (32)

HF (D) = JT
F (D)JF (D) +

M∑
i=0

∆Ei
scatt(D)H∆Ei

scatt
(D), (33)

where M is the number of observation points. The optimization is located at the
minimum point when the statement in Equation (34) is approved [60].

HF (D)∆s = −∇DF (D), (34)

where ∆s is the optimization step of the material property matrix D. The Hessian
matrix defined in Equation (33) is computation heavy and it is not efficient to cal-
culate M H∆Ei

scatt
(D) hessian matrixes in practical problems. Therefore equation

(34) is often simplified by using a Gauss-Newton method as

JT
F (D)JF (D)∆s = −JT

F (D)∆Escatt(D). (35)

This solution is very limited while the implementation does not support regulariza-
tion to avoid local minima of the object function. While this non-linear problem is
ill-posed the optimization needs to be controlled by regularization to suppress un-
wanted results in local minima with non-realistic permittivity distribution. There-
fore the Levenberg-Marquardt method [1, 5, 6], (this technique is also named the
Newton-Kantorovich method [5, 7]), is often used in the literature . In these tech-
niques the Hessian approximation is extended from the Gauss-Newton , defined as
Equation (36). (

JT
F (D)JF (D) + µI

)
∆s = −JT

F (D)∆Escatt(D), (36)

where µ is often called the regularization-term used to improve the convergence of
the ill-possed problem. This term is selected to improve the condition number of the
Jacobian matrix JT J , which stabilizes the convergence of the minimization of the
object function. Large regularization-term will filter out and suppress solutions with
too rapid spatial variations in the material properties. Too large regularization-term
will of course limit the resolution around a high permittivity gradient inside the
object. Therefore, the regularization of the optimization is a major issue during
the non-linear inverse scattering in microwave imaging.
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3.2.4 The Development of the Non-Linear Inverse Scattering in Mi-
crowave Imaging

The first non-linear inverse scattering solution where developed by different groups
in parallel in the beginning of the 90s. [4, 6, 58]. All these solutions use similar
integral formalization to express the scattered field in a infinite chamber. MoM
is used in all cases to discretizise the investigation area of the forward problem.
One slight difference between the solutions is that Chew et al. and Carosi et al.
used the equivalent current formalization inside the object in the integral equa-
tion of the scattered field similar to equation (3), while Joachimowicz et al. and
Franchois et al. separated the E-field and the permittivity distribution to highlight
the permittivity distribution according to equation (4) and (27). All these solutions
used a Levenberg-Marquardt formulation of the inverse optimization problem, while
Chew et al. and Carosi et al. call the solution Distorted Born and Nadine et al. call
their solution for Newton-Kantorovich. In [5] it is shown that both Distorted Born
and Newton-Kantorovich is similar to the Levenberg-Marquardt solution. Different
kinds of regularization have been proposed but it is shown that the empirically
Tikkonov regularization offers the best results during high contrast objects where
the initial guess differs a lot from the final unknown distribution. Further, these
solutions are working with the scattered field, according to equation (37).

Escatt = Etot − Einc (37)

In practical measurements this means that first the field without the object is
measured before the object is introduced int the scenario. Then the total field is
measured including the object. Using equation (37) the measured scattered field
from the object is calculated. Note, this is a differential measurement, which has
the advantages to suppress offsets in the system and high-levels of incident field at
antenna locations where the incidence field is much larger then the scattered field.
Both those advantages will increase the sensitivity of the system.

In the middle of the 90s Meaney et al. proposed a Newton-type algorithm
quite different to the earlier contributions. They were using the same Levenberg-
Marquardt type of optimization with a Tikkonov regularization, but using a hybrid
element forward solver instead of the earlier MoM contributions. The hybrid ele-
ment (HE) solution contains of an FE mesh of the investigation area and a boundary
element solution of the homogenous region outside the object. The FE method is
known to be an efficient way to model inhomogeneous dielectric objects with high
spatial resolution, while sparse matrixes are used in the calculations. The processor
load and memory usage are reduced compared to the integral formalization with
MoM in many cases. The drawback is then that the whole scenario has to be dis-
cretetisized compared to MoM where only the object region may be included. One
effective way to solve this is to use the Hybrid Element (HE) method, depicted in
Figure 16. The idea is to use the FE method inside the object region and use a
BE integral solution of the surrounding external medium [22][23]. However, in this
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method the calculations is done with the total field, which have some drawbacks
in the sensitivity of object inhomogeneities at antenna positions highly influenced
by the incidence field and also in suppression of offsets in the system [61]. This

Figure 16: The conceptional illustration of hybrid element method used by Meaney
et al. [61].

HE method has been used for breast tumor detection by microwave imaging, where
the goal is to create quantitative images of the permittivity distribution inside the
breast. The human breast is quite complicated to reproduce. Since, the contrast
is high, between 1:2 and 1:5, between the fatty breast tissues and the object size
is quite large object compared to the earlier contributions in the area. Both the
size and the high contrast makes the convergence of the optimization harder while
the phase will be wrapped around the unit circle. With this phenomenon the tra-
ditional algorithm losing some of the real phase information which must be solved
with a priori information. To stabilize the convergence Meaney et al. developed
an inverse solver which is working with the measured phase and logarithmic ampli-
tude directly [28]. A key point in this solution is to use multiple frequencies during
the measurements, starting from 300 MHz up to 1000 MHz. In a low frequency
situation a wrap-around is avoided while the wavelength is in size of the complete
system. By comparing the data of higher frequencies with the lower frequency data
a wrap-around is detected. Another key point in this solution is to put the wrap-
around into account during the calculations. Therefore, Meaney et al. developed
a Maxwell’s equations formalization where the phase is described in multiple com-
plex Rieman sheets[28]. Interestingly, it was shown that this indeed improved the
results imaging high scattering objects like breast tumors. Another improvement
has been done for the breast tumor detection by finding the true boundary of the
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breast before setting the hybrid element solution of the scenario. This is done by
conformal microwave imaging [2]. The boundary between the FE method and the
Boundary Element region is located to the boundary of the breast. In this move
it is possible to set a step function at the boundary with the permittivity of the
surrounding water. When the permittivity of the background medium is known
the inverse problem includes only to find the permittivity of the object itself. This
improved the quantitative result a lot, especially when the tumor was located near
the boundary of the breast [2]. The first HE algorithm did not integrate the in-
teraction of the antennas and the surrounding system, as the first MoM solutions
but some effort has been done to take the nonactive antennas into account [62, 63].
The resulting model of the nonactive antenna is a microwave-sinc, which suppresses
the wave without any reflections. Also, the MoM solvers like Newton-Kantorovitch
have been improved with the interaction of the antenna coupling [64]. With this
solution it is possible to use a non lossy medium and create images without the
infinite approximation of the scenario.

Alternative optimizing schemes have also been investigated, the Multiplicative
Regularization Contrast Source inversion by Abubakar et. al.[67, 69, 71], global op-
timization methods using neural networks, genetic algorithms and nondestructive
evaluation by Caorsi et. al. [72, 73, 74, 75]. Those methods will not be issued in
this report, but in shortly those methods avoiding local minima though the global
optimization with the cost of a slower convergence and higher computation load.
Until now single frequency solutions is most widely used, but different groups work-
ing on multi-frequency solutions [45, 46, 76]. It is known that the low frequencies
lower the affect of non-linearities and stabilizes the algorithm, while the higher fre-
quencies increasing the resolution, the idea is that a combination will improve the
reconstruction. However, there is a frequency dependence of biological tissues and
many future research efforts could focus in this area.
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4 The Phantom Model Development

One important issue of microwave imaging of biological tissues is the phantom
models. It is important to use a phantom which is able to indicate the ability
to reconstruct the dielectric properties of the human tissues. This document will
concentrate on the breast tumor detection application. While it is mainly the Meany
et al. and the Hagness et al. who contributes this area the presented models here
is contributions from their research. Table 1 shows recommended properties by the
literature used by Hagness et al.. This numbers indicate a ration of 5:1 between the
tumor and the surrounding breast tissues. However Meaney et al. propose in [25]
that this number may be as low as 2:1 in real in vivo measurements while the water
content is much higher in the breast tissues in this case. This propose is grounded
by the mean permittivity values reconstructed from measurements on real patients.
In Figure 17 a model used by Hagness et al. is depicted, using ex-vivo material

Tissue εr σ Frequency
Skin 36 4 @ 2.5 GHz

Breast Tissue 9 0.4 @ 2.5 GHz
Tumor 50.0 4 @ 2.5 GHz

Table 1: Dielectric properties of human tissues [65].

properties refereed in the literature. This model was used in FDTD simulations to

Figure 17: A 2D model used by Hagness et al. [65]. The breast model diameter is
68 mm wich a skin layer of 2 mm and a tumor diameter of 6 mm. The material
properties used is presented in Table 1. The background medium is selected to
εr = 9 and σ = 0.

verify the Space-Time Beamforming radar algorithm. Meaney et al. has used a 2D
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model for both simulations and real experiments. Figure 18 depicts a simple 2D
model used by Meaney et al.. In this model the skin layer is ignored and the ration
between the breast tissues and the tumor is only 2:1. The material properties used
is εr = 77 and σ = 1.6 @ 900 Mhz for the background medium and tumor inclusion.
The Breast tissues is modeled by a water (21%), corn syrup (78%) and agar (1%)
mixture εr = 35 and σ = 0.7. The size of the model is 82 mm in diameter with a
19 mm diameter tumor located 23 mm off-center in the phantom However, Meaney

Figure 18: A simple 2D model used by Meaney et al. [2].

et al. has also created a more advanced 3D model used in simulations, depicted in
Figure 19. This model containing the inhomogeneities of fiber granules inside the
breast with a 6 mm diameter spherical tumor inside.

Figure 19: The 3D model with fiber granules with a diameter of 140 mm and a 6
mm diameter spherical tumor, used by Meaney et al. [65].
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Those examples are the mainly contributions in the phantom area of breast
tumor detection. The exact in-vivo complex permittivity seems to be not settled
yet while the properties variate between different patients with different blood flow,
different age and rate of fatty tissue inside the breast. However a expected contrast
between 1.5-5:1 seems to be settled [50].

5 Discussion and Future Work

Imaging of biological tissues is one of the most challenging application area of
microwave imaging. This is mostly because of the high permittivity contrast of
biological tissues and the complex geometrical structure. In many industrial appli-
cation the diffraction tomography using the Born approximation is well suited with
its computational effectiveness. However, in the most cases of biological imaging
the non-linear multiple scattering inside the object must be taken into account.
Because, the size and contrast are to big to appropriately use the Born approx-
imation. Several groups have put a lot of effort to solve the ill-posed non-linear
inverse problem. The other approach, using radar techniques the detection and
localization of strong scatters are possible. However, while the author believe that
the quantitative complex permittivity reconstruction may be useful in the decision
e.g. if the tumor is malign, the iterative non-linear inverse scattering solution is
preferred.

At the moment mostly 2D slices in the TM-case have been investigated. Some
approaches have been done to use a scalar 3D algorithm in a TM-wave system,
by Meaney et al. Also Semenov et al. have tried to produce 3D solutions using a
vectorial 3D algorithm with promising results. In the authors opinion, it could be
interesting to use the Newton-Kantorovich based on MoM in the breast tumor case,
to se the usability of these algorithms in this area. By transform the algorithm to
the 2.45 GHz planar microwave camera located at Supélec as Ann Franchois, further
quantitative investigations may be done of inhomogeneous objects. While the retina
of the planar camera measures the vertical electric field, it may be useful in the
3D case by rotating the retina 90 degrees measuring both vertical and horizontal
polarized E-field. The earlier 2D system developed by Meaney textitet al. suffers
from several 3D/2D artifacts. By using the planar camera in 3D configuration
further 3D investigation may be done.

6 Conclusions

In this document the historical development of the biomedical imaging using mi-
crowaves is issued. Several hardware systems have been developed with different
aims some more successful than others. However, the main issue of this document
is the application of breast tumor detection using microwave imaging. In this area
it is mainly two groups with active research, Meaney et al. and Hagness et al..
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They have complectly different approach around the problem where Meaney et al.
using nonlinear microwave tomography to create quantitative permittivity images,
while Hagness et al. tries to find the tumor using radar techniques. The radar
approach may be useful while it may be easier to realize as a clinical system for
detection and positioning of the tumor more easily, but it may not be able to create
permittivity information about the scatterer it self, i.e. if the tumor is malign or
not. Therefore, the author indicates the interest to further develop the microwave
tomography for this purpose. The system today uses 2-D models for the imaging
purpose. The more calculation loaded 3-D case is therefore of interest. By applying
the non-linear inverse scattering to a modified planar microwave camera, located
at Supélec, fully 3-D investigation may be performed.
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