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Abstract

Due to the high cost of modeling, model-based tech-
niques are yet to make their impact in the embedded systems
industry, which still persist on maintaining code-oriented
legacy systems. Re-engineering existing code-oriented sys-
tems to fit model-based development is a risky endeavor
due to the cost and efforts required to maintain correspon-
dence between the code and model. We aim to reduce
the cost of modeling and model maintenance by automat-
ing the process, thus facilitating model-based techniques.
We have previously proposed the use of automatic model
extraction from recordings of existing embedded real-time
systems. To estimate the quality of the extracted models of
timing behavior, we need a framework for objective evalua-
tion. In this paper, we present such a framework to empiri-
cally test and compare extracted models, and hence obtain
an implicit evaluation of methods for automatic model ex-
traction. We present a set of synthetic benchmarks to be
used as test cases for emulating timing behaviors of diverse
systems with varying architectural styles, and extract au-
tomatic models out of them. We discuss the difficulties in
comparing response time distributions, and present an intu-
itive and novel approach along with associated algorithms
for performing such a comparison. Using our empirical
framework, and the comparison algorithms, one could ob-
jectively determine the correspondence between the model
and the system being modeled.

1. Introduction

Model-based techniques such as implementation proto-
typing and prototype performance analysis [16] are still not
widely used by industrial system developers. According to
our industrial contacts, the reluctance against using model-
based techniques is largely due to the initial cost of model-
ing of a code-oriented legacy system where models are not
used today. Our research focus is on reducing this cost, thus
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making methods that use models more attractive in indus-
trial settings.

Our application domain is that of real-time systems,
i.e. those systems where temporal and functional correct-
ness are equally important. The most common type of re-
quirement for real-time systems is a bound on the response
time for given stimuli. In a complex multitasking system,
determining the bound and distribution of response times is
generally difficult in practice.

In the context of this paper, a typical legacy system has
all or some of the following properties: it consists of mil-
lions of lines of code, it is maintained by a large team of en-
gineers, it contains code that originated several years ago,
and it is expected to be further developed for many more
years to come. Real examples of these systems can easily
be found within many domains such as the automation, au-
tomotive, and telecom industries. In such systems, a large
effort must be spent on keeping complexity at acceptable
levels [11]. If the complexity is allowed to increase without
bound, the life expectancy of these systems will be dras-
tically reduced. Though model-based analysis can help in
limiting the complexity increase, there is a reluctance of the
industry to adopt these technologies. Hence, tools that ease
modeling and the maintenance of models are needed. We
have developed tools for model extraction in order to ease
both modeling and model maintenance [2, 6, 7]. The mod-
els that our methods extract reflects the general behavior of
the system rather than the worst-case, which is a more com-
mon focus in real-time systems research.

1.1. Contributions

In this paper, we present a framework for evaluating our
proposed tools with respect to real-time properties such as
the ability to accurately model response time distributions.
The proposed method can also be used to compare the effec-
tiveness of different methods of automatic model extraction
for the general system behavior proposed in the literature
(e.g. [8]). In addition to the framework, a intuitive and novel
method for comparing time distributions is introduced. We
supply the method as well as a set of algorithms to perform



the comparison. In the framework, the comparison method
plays a critical role as it provides a measurement that can be
used to evaluate the performance of a model with respect to
the system.

1.2. Organization

The remainder of this paper is organized as follows: Sec-
tion 2 provides background on previous work and our prob-
lem domain. Section 3 presents framework for empirical
testing and comparison of proposed methods for automatic
model extraction. Section 4 provides a definition of an ob-
jective measurement to compare distributions of response
times, and a set of algorithms to perform measurements.
Section 5 concludes the paper.

2. Background

In our work, we are developing tools for automatic or
semi-automatic modeling of legacy real-time software. The
models are intended to be used in model-based implemen-
tation prototyping and prototype performance analysis. As
a part of this effort, we have developed a unified method
for dynamic model extraction [6, 7]. The basic idea is to
input execution recordings of the legacy system that is to be
modeled, covering context switches, inter-process commu-
nication (IPC), and updates of important variables. If the
recordings contain enough information, a tool implement-
ing the unified method automatically delivers a validated
model, otherwise the user is advised to alter monitoring or
extend recordings. The unified method consists of two sep-
arate methods; one for automatic model generation and one
for automatic model validation. Model extraction is per-
formed separately for each task, and a collection of models
for all tasks in the system can be merged and used to ana-
lyze the system by means of simulation. A set of models
produced by the method can be used to prototype future de-
sign options with respect to response time requirements and
functional behavior. A case study has been performed on
a state-of-practice industrial robot system to show the ap-
plicability of the method [7].

In a parallel effort, we are also developing tools for semi-
automatic static model extraction based on implementation
code and execution recordings [2]. One of our future aims
is to compare the performance of these two different strate-
gies.

2.1 Automatic model generation

Introduced in [6], our automatic model generation can,
based on a set of recordings of a running system, output
a model of the system. The recordings cover system level

events such as context switches and communication. Op-
tionally data state manipulation on task level is included,
allowing modeling of causal relations. Generation is per-
formed in three stages: First, an event sequence for each
task is extracted from each recording. Second, all event
sequences for each task are merged into a tree structure.
Third, each tree is translated into a model for the task.

To express abstraction from the implementation, the
models contain probabilistic elements: Selections can be
made based on probabilities (or on data state), and execu-
tion time requirements can be described as probability dis-
tributions. For the effective use of the modeling language,
there is a tool-suite for simulating and analyzing the perfor-
mance of models.

A limitation of this method is that it does not model loops
within tasks as in [3]. However, our assessment is that such
loops are often avoided in embedded real-time systems due
to predictability requirements. Also, this limitation does not
effect the contributions of the paper: the evaluation frame-
work and the comparison of sampled distributions.

2.2 Automatic model validation

We validate that the recordings used to generate the
model are sufficient to describe the system by answering
the question “Would the model be drastically better if the
length or number of recordings used during model genera-
tion were increased?”. Automatic model validation, intro-
duced in [7], uses a set of system execution recordings to
answer that question. The model and the recordings are
transformed into a set of communicating timed automata
with integer variables [1, 4]. While the model-automaton
is a graph structure which may contain more than one tran-
sition from each label, the recording-automata are all se-
quential with one or zero transitions from each label. The
validation is performed by reachability analysis of the final
state in each recording-automaton when co-simulated with
the model-automaton.

To allow the model to be an approximate abstraction of
the system, the recording-automata are constructed using
a leeway-parameter. The higher the leeway, the more for-
giving the recording-automaton will be. The maximum al-
lowed leeway can be supplied by the user as a parameter.

The stopping criteria of the validation is based on two
factors: The completeness measure, i.e. the probability that
the model can replicate any job that the system can ex-
hibit, and the accuracy measure, i.e. the relation between
the probability that the system exhibits a particular job and
the probability that the model exhibits an equivalent job.

Validation can provide the maximum required leeway,
the completeness measure, and the accuracy measure as
auxiliary output. The primary output is the binary answer
to the question posted at the top of this section.



Figure 1. A process-view of the framework for empirical evaluation.

Together, model generation and model validation forms
model extraction.

2.3 Response time

In real-time systems, the temporal and behavioral re-
quirements are equally important. We assume that the em-
bedded real-time systems we consider consist of a set of
tasks that can either be event or time triggered. As a task
is triggered, a job (a task invocation) is executed for some
period of time, after which the task will await until further
triggering. Two jobs of the same task cannot overlap. We
label the time measured from the point in time where the
job is triggered (the release time) until the end of a job the
response time of the job.

3. Framework for empirical evaluation

In this section, we introduce the framework for empir-
ical evaluation depicted in Figure 1. The purpose of the
framework is to evaluate the effectiveness and general ap-
plicability of dynamic model extraction. We use a notion of
archetypes to describe architecturally different system de-
signs. For example, a system consisting of a set of periodic
tasks without inter-process communication (IPC) is a dif-
ferent archetype than a system consisting of event triggered
tasks where the exchange of messages trigger execution.

We have implemented an instance of the framework,
where the system platform is a multitasking, fixed priority
scheduled, instruction-set simulator that we have developed
specifically for this purpose. A system of tasks is defined by
a system definition file together with an assembler-file per
task. Each task is either defined as triggered periodically or
triggered as a result of input on an IPC-queue. The simula-
tor can handle 16 types of instructions, including absolute
and relative sleep, branching, IPC, explicit logging, regis-
ter manipulation and testing, and random number genera-
tion. Each instruction takes one clock cycle to complete. As
the system is executed, occurred task switches, performed
IPC, and executed explicit log instructions are automatically
recorded in a system specific log.

To each system definition, we can add an increasing por-
tion of Population, Imperfectness, or Complexity (PIC) for

each test performed on the system:

• Imperfectness regards the quality of the data-state
recording in the system. With low imperfection, all rel-
evant information is recorded. With high imperfection,
some data state information is omitted, which leads to
that the execution time distributions for a given data
state are non-trivial.

• Complexity regards the task complexity, e.g. the num-
ber of tasks in the system, the nature of environment
stimuli, and the number of data states.

• Finally, Population regards system wide issues such as
the number of tasks in the system as well as the record-
ing lengths and recording set sizes.

For each system definition and PIC combination, we per-
form two sets of simulations of the system: recordings from
the first set is used to generate the model and the second
set is used to validate the model (as described in Section 2).
The intention is that as PIC changes the system, the model
should follow and be affected correspondingly. Varying the
PIC will test the robustness of the model extraction with re-
spect to changes in the system – this form of robustness is
imperative for successful implementation prototyping [13].

In our implementation of the framework, we compare the
system and model by analyzing response time distributions
from both system and model. After model extraction, the
model is simulated and compared to new simulations from
the system. The collected set of comparisons is the out-
put of the framework implementation. These can then be
analyzed to verify that the method of model extraction per-
forms sufficiently well, or even to compare several methods
of model extraction. As the set of archetype-PIC combi-
nations is intended to be large, the comparison should be
automated. We present a novel automated measurement in
Section 4 that can be used in such a comparison.

3.1. Archetypes and PIC

The following are examples of archetypes that are used
in our study:

1. Client-server without reply. This archetype describes
a common design pattern in the industrial systems that



we have encountered. A client sends varying service
requests to a server that services the requests. Results
of the computations may effect the environment or suc-
cessive requests to a third or fourth task. PIC applied
are priority ordering, frequency increase, and execu-
tion time increase.

Specifically, this archetype is implemented with two
tasks T1 and T2. With a fixed periodicity, Task T1

sends a message to Task T2 that reacts on the contents
of the message. We distinguish between four different
contents, representing four different commands, plus
one default behavior in the case that the content in un-
recognized.

2. State machine. Here, a task acts as a state machine
which makes one transition per job. Transitions are
triggered by messages from the environment or from
another task. Task mode changes can be expressed
by this archetype. In contrast to the client-server
archetype, the same message can trigger different be-
havior at different points in time. PIC applied are re-
duced recording of variable assignments (simulating
poor probing), environment stimuli, complexity of the
state machine, priority ordering, frequency increase,
and execution time increase.

The archetype is implemented by two tasks T1 and T2.
With a fixed periodicity, Task T1 sends a message to
Task T2 with randomly selected contents 0 or 1. The
event triggered Task T2 consists of a finite state ma-
chine that can make one state transition per job. The
target state of each transition is depending on the con-
tents of the triggering message from T1. A variable is
maintained to keep track of the current state.

3. Purely periodic without communication. A task set
of periodic tasks where execution times for any given
task varies randomly between jobs within determined
intervals. In this case, the PIC consists of increase of
the task set size.

In our experiments, the implementation consists of at
most seven periodic tasks T1−7, that execute a bounded
random interval in each job. For each task, the worst
case execution time (WCET), the period (T), utiliza-
tion (U), and analytical worst case response time (R)
are described in Table 1.

4. Feedback loop. Here, tasks exchange messages in a
loop. Examples include client-server with reply, or a
feedback control system. The PIC consists of prior-
ity ordering, message complexity, message reply fre-
quency, and environment stimuli.

The implementation consists of five tasks, two of
which (T1 and T2) are implementing the feedback

WCET T R U
T1 10 80 10 12.5%
T2 30 120 40 25.0%
T3 20 160 60 12.5%
T4 15 180 75 8.3%
T5 30 200 115 15.0%
T6 40 300 300 13.3%
T7 80 1000 960 8.0%
Σ 94.6%

Table 1. Maximum utilization for Archetype 3.

loop, and the three remaining are concurrently execut-
ing a client-server without reply and a simple periodic
task.

5. State machine feedback loop This archetype is a
combination of archetypes 2 and 4, as is the PIC.

The implementation consists of two tasks T1, and T2.
Both tasks are state machines, Task T1 generates in-
put to trigger Task T2, Task T2 generates input that, if
available, will affect the execution of Task T1.

4. Comparison of sampled time distributions

The framework proposed above assumes that it is pos-
sible to objectively compare a system with a model of that
system. We have chosen to implement this by comparing
distributions of e.g. response times from the system and
the model. However, methods known to us from literature
prove unintuitive in this setting:

The Euclidean distance metric and the χ2 test of inde-
pendence [5] are both categorical in the temporal dimen-
sion, which results in that they are not sensible to the differ-
ence that two samples have almost the same response time
if they are in different categories. They are only sensible in
the sample dimension, which means that they can acknowl-
edge that almost the same number of samples in both dis-
tributions have response times in the same category. This
leads to unintuitive results due to false negatives.

The Kolmogorov-Smirnov test [12] assumes that one of
the distributions in a comparison is mathematically mod-
eled [10, 14]. However, the execution time distribution of a
program is often very complex. On the source code level in
a system implementation, selections where one path has a
significantly longer execution time than the other are com-
mon. Execution time distributions that cover both legs of
such selections does not follow a simple pattern. Therefore,
it cannot be assumed that a response time can be classi-
fied to a known distribution (e.g. a normal distribution). We
know of no universal method of determining or estimating
similarity between unclassified finite discrete distributions.



To amend this lack of a suitable method of comparison,
we introduce a novel objective measurement for sampled
distributions based on the two notions of divergence (see
Definition 1) and difference (see Definition 2).

Definition 1 (divergence). Let U be the set of samples.
There is a function time : U → Z∗. For a given sample
u ∈ U , we use time(u) to denote the value of that sample.

Let A,B ∈ 2U be two sets of samples from two sources
(e.g. a model and a system) with equal cardinality. We de-
fine a match between these two as a bijective mapping be-
tween A and B, δAB : A → B. Let CAB be the full set of
matches (i.e. the full set of bijective mappings) between A
and B.

We are now able to define a measurement of a match
δAB ∈ CAB by the function [ ] : CAB → Z∗ as:

[δAB ] = max
a∈A

|time(δAB(a))− time(a)|

Then, the divergence between two sets of samples is the
measurement of the most favorable match in the sense that
the measurement is minimized:

divergence(A,B) = min
δAB∈CAB

{[δAB ]}

Intuitively, for two equally sized sampled distributions A
and B, δAB describes a mapping from each sample in A to
a unique sample in B (the uniqueness follows from that the
mapping is bijective). Divergence is then considering the
best possible mapping in the sense that the largest difference
of response times that the matched samples represent should
be as small as possible. In the following sections, we will
present algorithms for measuring the divergence between
two distributions.

Definition 2 (difference). Given Definition 1, the difference
between two sets of samples with equal cardinality is de-
fined by:

difference(A,B) = |{a ∈ A | time(δAB(a)) 6= time(a)}|

Intuitively, for a mapping of samples, difference counts
the number of mapped samples whose response times are
not equal.

Then, with divergence Cmin and difference D, the com-
parison between distributions A and B is defined by the tu-
ple cmp(A,B) = 〈 Cmin

Cmax
, D

lcm(|A|,|B|) 〉, where Cmax is the dif-
ference between the smallest and the largest samples from
both distributions.

The relation between divergence and difference is used
to quantify the correspondence between two sampled distri-
butions as described in Figure 2. If the relations between
divergence and difference is in an area with same shade
of gray, two distributions are considered similar. The two
are more similar the darker the shade is. As explained by
the figure, if both divergence and difference are small, the
distributions are very similar, if the divergence is small but
the difference is large, the distributions are similar, etc. In
the figure, we have exemplified four comparisons between
imagined distributions. Distribution A is compared to dis-
tributions B1, B2, B3, and B4 respectively. The relation
between comparisons cmp(A,B1) and cmp(A,B4) tells us
that B1 is more similar to A than B4 is, since the former
lies in a darker area than the latter. Analogous, cmp(A,B2)
and cmp(A,B3) tells us that B2 and B3 are equally similar
to distribution A, since they lie in an area with same shade.

The plot of Figure 2 is conceptual, the relations be-
tween divergence and difference must be defined for a given
use of the comparison. If two methods of model extrac-
tion are compared in the framework above, the divergence-
difference relation is defined once and used throughout the
comparison. The intention is that the divergence-difference
relation should reflect the quality that is required of the
models. This is defined by the intended use of the models
and the application domain of the system.

In the case of performing this measurement on response
times, the observability problem [15] must be respected:
Take the example of a system with a set of strictly periodic
tasks. Here, especially if the system load is high, it is likely
that jobs of tasks are ready to execute long before they re-
ceive their first quanta of processing time. According to our
definition of response time (see Section 2.3), the time of the

Figure 2. Conceptual divergence and differ-
ence plot.



triggering of the task must be known. Thus, probes that can
access the ready queue of the operating system must be used
to obtain a truthful measure of the response time.

4.1. Divergence and difference algorithms

We have implemented algorithms for calculating the di-
vergence and difference as defined above. The following
terminology will be used:

A distribution, or series of measured response times, d
is represented as a binary tree where each node has the at-
tributes value and count. The values of the attributes of node
n of d are referred to with a doted notation (e.g. n.value). So
are the siblings of n (e.g. n.left). The distribution has two
operations add and remove, these are called using a similar
doted notation (e.g. d.add(e), where e is a response time).
An element is a response time measurement represented in
a series of response times.

A stack s has operations push, pop, top and the attribute
size, which are called with a doted notation (e.g. s.pop()).
The attribute is transparently manipulated by the opera-
tions push and pop to reflect the number of elements on
the stack. The function top is used to investigate the top-
most element on the stack without removing the element.
The stack will be used to store elements on the form 〈e1 ∈
Z∗, e2 ∈ Z∗, alternative ∈ {true, false}〉, where the first
element e1 of the tuple is a response time from the first dis-
tribution, the second element e2 is a response time from the
second distribution, and the third element alternative de-
notes whether there are other feasible matches for the pair
formed by the first two elements. To refer to the elements
in the topmost entry of the stack, we use a doted notation
(e.g. s.top().alternative).

To perform the comparison, the sizes of the two series of
response times are first normalized by linearly adjusting the
count of value’s such that the total sum of count’s in each of
the two trees is equal to the Least Common Multiple (LCM)
of the original total sum of count’s of both trees.

Then, the divergence Cmin and the difference D for the
comparison cmp(d1, d2) are defined as follows: Cmin is the
smallest C such that IsDivergence(d1, d2, C), as defined in
Algorithm 1, evaluates to true. D is the size of the difference
between the two distributions as defined by Algorithm 4.

4.2. Algorithms for measuring the diver-
gence of two distributions

Algorithm 1 matches elements in two distributions so
that the values of each match are less than or equal to a
specified relative divergence. If all elements in the two dis-
tributions are successfully matched, the divergence between
the two distributions is less than or equal to the specified

relative divergence. In this process, Algorithm 1 uses Al-
gorithm 2 to find the lowest value with a count larger than
zero in a specified distribution. In turn, Algorithm 2 uses
Algorithm 3 to decide which of two values is the smallest
value in a given distribution.

Intuitively, if both values are in the specified distribu-
tion, Algorithm 3 returns the smallest of these. Otherwise,
if only one value is in the specified distribution, that value
is returned and the return value is deemed valid. If none of
the values are in the distribution, invalid is returned.

Algorithm 2 compares the value of the current node, if
the count of that value is larger than zero, to the valid results
of recursive calls for the left and the right siblings of the bi-
nary tree. If the count of the value is less than or equal to
zero, only the valid results of the recursive calls are consid-
ered. Out of all valid values, Algorithm 3 is used to find the
smallest value within the specified distribution. This small-
est value is returned and the return value is deemed valid.

Algorithm 1 IsDivergence(d1, d2, C) compares two re-
sponse time distributions d1 and d2 represented as binary
trees with respect to divergency C ∈ (0, Cmax).
Require: srb.size = 0 ∧ d1.size = d2.size

1: cMin := C
2: repeat
3: e1 := FindLow(d1, 0,∞, 0)
4: e2 := FindLow(d2, e1, C, cMin)
5: if e2 is valid then
6: d1.remove(e1)
7: d2.remove(e2)
8: ealt

2 := FindLow(d2, e2 + 1, C + (e1 − e2), 0)
9: if ealt

2 is valid ∧ (e1 6= srb.top().e1 ∨ e2 6=
srb.top().e2) then

10: srb.push(〈e1, e2, true〉)
11: else
12: srb.push(〈e1, e2, false〉)
13: end if
14: cMin := C
15: else if (srb.size > 0) then
16: repeat
17: d1.add(srb.top.e1)
18: d2.add(srb.top.e2)
19: popped := srb.pop()
20: until (srb.size≤0 ∨popped.alternative = true)
21: if popped.alternative = true then
22: cMin := popped.e1 − popped.e2 − 1
23: end if
24: else
25: return false
26: end if
27: until d1.size ≤ 0
28: return true



Algorithm 2 FindLow(d, value, cMax, cMin) finds the
lowest value in the binary tree d, with attributes value
and count, such that d.value is in the interval (value −
cMin, value + cMax) and d.count is larger than zero.
Require: cMax ≥ cMin

1: min := invalid
2: if d is valid then
3: if d.count > 0 then
4: min :=
5: MinInInt(d.value,min, value, cMax, cMin)
6: end if
7: a := FindLow(d.right, value, cMax, cMin)
8: if a is valid then
9: min := MinInInt(a,min, value, cMax, cMin)

10: end if
11: b := FindLow(d.left, value, cMax, cMin)
12: if b is valid then
13: min := MinInInt(b,min, value, cMax, cMin)
14: end if
15: end if
16: return min

If the algorithm is unable to find a value in the distribution,
invalid is returned.

For a given divergence, for each count of each value in
the first distribution, Algorithm 1 attempts to find a match
in the second distribution. A match results in that the count
of the matched value in both distributions is decreased, and
the match is pushed on a stack together with information
(alternative) of whether if there are other potential candi-
dates for the particular match. If the search for a match
fails, the stack is popped and the distributions are conse-
quently repopulated until an old match with potential for
another match is popped. Then the process is resumed. If,
during that rollback process, the stack becomes empty, the
match is said to have failed.

Pushed on the stack are a tuple, where one element
(alternative) describes if the popping of the element on the
stack will lead to that new untried combinations of matches
can be performed. The value of alternative is decided by
two criteria tested on Line 9 of Algorithm 1: First, the re-
sult of the call to Algorithm 2 on Line 8 of Algorithm 1,
where the second of the two distributions are searched to
determine if other combinations exists for the chosen ele-
ment of the first distribution. Then, by checking the top of
the stack to determine if a similar match as the one about to
be made has been made just recently. The second criteria is
important in terms of computational complexity; with that
criteria, many unnecessary tests are avoided, but it is strictly
speaking not important for the operation of the algorithm.

In the test, if the divergence C is large enough, all el-
ements in the first distribution can be matched with any

Algorithm 3 MinInInt(a, b, value, cMax, cMin) returns
the lowest of a and b which is in the interval (value −
cMin, value + cMax), if any. Otherwise, the return value
is invalid.

1: if a ∈ (value− cMin, value + cMax) then
2: if b ∈ (value− cMin, value + cMax) then
3: if a < b then
4: return a
5: else
6: return b
7: end if
8: else
9: return a

10: end if
11: else
12: if b ∈ (value− cMin, value + cMax) then
13: return b
14: else
15: return invalid
16: end if
17: end if

element in the second distribution. From understanding
Algorithm 1, we see that such a situation must lead to
that IsDivergence returns true. The smallest value of this
largest C, denoted Cmax, when IsDivergence must return
true is equal to the difference between the largest observed
response time and the smallest observed response time.

Plotting the result of IsDivergence with two given dis-
tributions as a function of C, we get a monotonous func-
tion which starts at false and subsequently, at some value
of C, turns true. As the function is monotonous for two
given distributions we can use binary search [9] in the inter-
val C ∈ (0, Cmax) to find the smallest divergence Cmin that
satisfies Algorithm 1. Seen in relation to the size of the in-
terval (0, Cmax), Cmin provides an objective measure on the
likeness of the two distributions.

The use of a stack in the realization of this algorithm is
essential to the implementation due to the potentially large
memory requirements. As the distributions in the measure-
ment are normalized by size, the total sum of the counts of
values is potentially large, which will inflict on the num-
ber of matches that need to be identified. Storing this large
number of matches will require large amounts of memory,
but the use of a stack provides us with the opportunity to
reduce the amount of physical memory used without large
penalty to the execution time: One of the properties of a
stack is that, at any given time, only the topmost element is
needed. Thus, as the order of element usage is, if not de-
termined, then at least restricted, a large part of the stack
can be written to secondary storage (i.e. to file). We have
implemented this by defining a threshold for the maximum



number of elements that are allowed in primary memory,
when this number is reached, the stack is flushed to file.

The theoretical worst case complexity of the
IsDivergence algorithm is O(N !), where N is the
size of the distribution sizes when normalized by size.
As N is likely to be large, the worst-case complexity
is very high. However, due to the alternative field in
elements on the stack, it is unlikely that the worst-case ever
occurs. Typically, with N of approximately 1, 000, 000, the
algorithm takes in the order of minutes to execute.

4.3. Algorithms for measuring the differ-
ence of two distributions

The difference of two series of response times is com-
puted as follows: Algorithm 5 finds, if any, the node in the
binary tree representation of a distribution that has a given
value. Algorithm 4 use Algorithm 5 to calculate the size of
the difference between two distributions, which are normal-

Algorithm 4 Difference(d1, d2) calculates the difference
between the distributions d1 and d2.

1: s := 0
2: if d1 is valid then
3: s := Difference(d1.right, d2)
4: s := s + Difference(d1.left, d2)
5: d := Find(d2, d1.value)
6: if d is valid then
7: if d1.count− d.count > 0 then
8: s := s + d1.count− d.count
9: end if

10: else
11: s := d1.count
12: end if
13: end if
14: return s

Algorithm 5 Find(d, value) implements binary search [9]
to find the node in the distribution d that matches the value
value.

1: if d is valid then
2: if d.value = value then
3: return d
4: else
5: if d.value > value then
6: return Find(d.left, value)
7: else
8: return Find(d.right, value)
9: end if

10: end if
11: end if
12: return invalid

ized by size. Intuitively, the algorithm counts all elements
of the first distribution that have no corresponding element
in the second distribution.

The theoretical complexity of this algorithm is O(PQ),
where P is the number of unique sample values in the first
distribution, and Q is the number of unique sample values
in the second distribution.

4.4. Example

To exemplify, for a given task, assume that a series
〈1, 1, 1, 1, 1, 2, 5, 6〉 of response times has been observed in
the system, and that the series 〈1, 2, 3, 5〉 has been observed
in the model. The LCM of the number of elements in the
series (8 and 4) is 8. Thus, normalization of the size of the
series gives that the series observed at the system remain
unchanged, and the series of response times observed at the
model are 〈1, 1, 2, 2, 3, 3, 5, 5〉. In this example, we will not
use binary search, but to illustrate the algorithm pick values
of divergence that gives interesting executions of the algo-
rithm.

After normalization, the series of system response times
〈1, 1, 1, 1, 1, 2, 5, 6〉 are represented as the binary tree d1,
and the series of model response times 〈1, 1, 2, 2, 3, 3, 5, 5〉
are represented as the binary tree d2.

In our search for the measure of divergence, performed
in the interval (0, 5), we start with divergence value C = 0.
In Algorithm 1, Line 3 will set e1 = 1. At Line 4, e1 is
assigned 1. At Line 9, the first criteria is evaluated to false
because there is no other match when the divergence is zero.
The second criteria will also evaluate to false because the
stack is empty. Thus, the tuple 〈1, 1, false〉 is pushed on
the stack.

When the match progressed such that two matches have
been found, distribution d1 has two occurrences of the value
1 remaining, while distribution d2 has none, the search will
rollback to find a new path. However, none of the matches
found has had any alternative matches, hence the test with
divergence C = 1 will fail.

If C = 1, the first two matches will match value 1 from
d1 with 1 from d2. Then, a third and fourth match will find
value 1 from d1 and 2 from d2, leaving the distributions as
follows: d1 ≡ 〈1, 2, 5, 6〉 and d1 ≡ 〈3, 3, 5, 5〉. The next
search for a match to e1 = 1 will fail, and a rollback will
commence.

It is then discovered that the third match, performed be-
tween 1 and 1, could also have been performed between 1
from d1 and 2 from d2. This satisfies the first criteria of
Line 9. The second criteria is also satisfied as the previous
match performed was between 1 and 1. Thus, the rollback
stops, and the next found match is the aforementioned alter-
native match between values 1 from d1 and 2 from d2.

Subsequently however, also this divergence will prove to



conclude a failure. It is not until the divergence is higher
than or equal to three (Cmin = 3) that the algorithm finds
matches for all samples in the distribution. In relation to the
span of the values in the distributions, which is 5, this is a
relatively large divergence.

The difference of the two distributions is computed using
Algorithm 4 in the form Difference(d1, d2). The algorithm
concludes that the difference is four (D = 4). In relation to
the size of the distributions when normalized by size, which
is 8, this is a relatively large difference.

The result of the comparison cmp(d1, d2) is 〈 3
5 , 4

8 〉. In-
terpreting these measurements in the light of Figure 2, we
conclude that the distance between the distributions is not
negligible. For example, if the second series of observa-
tions would have been 〈1, 1, 2, 5〉, the conclusion would
have been different.

5. Conclusion

We have presented a framework for evaluating the fea-
sibility of using the automatic model extraction approach
to obtain models of real-time software. We have presented
examples of generic and commonly used archetypes and de-
scribed their role in the framework with respect to PIC. The
method has the same scalability issues as has any other ap-
plication of testing: it may take time to construct and im-
plement archetypes and PIC as well as to perform an eval-
uation. However, archetypes and PIC are generic and can
be reused by other evaluations, and a method needs only
to be evaluated once (evaluations of different methods can
then be inter-related). Once a library of archetypes and PIC
has been constructed, evaluation is essentially an automated
task. Also, as the evaluation needs only to be performed
once per method, our opinion is that the complexity of per-
forming the evaluation is acceptable.

Further, we also discuss the fundamental issues of how to
compare models against systems and we provide an objec-
tive measurement that solves this problem within the con-
text of comparing response times of models and systems.

In our future work, we plan to explore and identify more
relevant archetypes as well as perform evaluation of our
method for dynamic model extraction. We are also develop-
ing more efficient algorithms for measuring the divergence,
and are investigating other potential comparison methods.
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