
Contract-Based Reusable Worst-Case Execution Time Estimate

Johan Fredriksson∗, Thomas Nolte, Mikael Nolin, Heinz Schmidt
Dept. of Computer Science and Electronics
Mälardalen University, Västerås, Sweden

Abstract

We present a contract-based technique to achieve reuse
of known worst-case execution times (WCET) in conjunc-
tion with reuse of software components. For resource
constrained systems, or systems where high degree of
predictability is needed, classical techniques for WCET-
estimation will result in unacceptable overestimation of the
execution-time of reusable software components with rich
behavior. Our technique allows different WCETs to be as-
sociated with subsets of the component behavior. The ap-
propriate WCET for any usage context of the component
is selected be means of component contracts over the in-
put domain. In a case-study we illustrate our technique
and demonstrate its potential in achieving tight WCET-
estimates for reusable components with rich behavior.

1 Introduction

Component-based software engineering (CBSE) is a
promising development method to reduce time-to-market,
reduce development cost, and increase software quality.
One main characteristic of CBSE that enable these bene-
fits is its facilitation of component reuse. However, for re-
source constrained systems, or systems where high degree
of predictability is needed, reusable components with rich
behavior increase resource consumption and decrease pre-
dictability.

Resource constraints and predictability requirements are
especially common in many embedded-systems sectors,
such as automotive, robotics and other types of computer
controlled equipment. Hence, to unleash the full potential
of CBSE in these domains we need techniques that allow
reuse of components with rich behavior (and its implied
high resource usage) in contexts where not all functionality
of the components is needed. For these contexts its impera-
tive to be able to analytically reduce the estimated resource
usage in order to achieve tight predictions of high quality.

∗contact author: johan.fredriksson@mdh.se

In this paper we reduce the pessimism in the estimate of
the WCET of a component. Execution time is one of the
most critical resources in many embedded systems, and it
is also one of the most difficult to obtain good estimates
for. We present a contract-based technique to achieve reuse
of known worst-case execution times (WCETs) in conjunc-
tion with reuse of software components. Our technique al-
lows different WCETs to be associated with subsets of the
component behavior. The appropriate WCET for any usage
context of the component is selected be means of predicates
and contracts over the input domain.

By using our proposed technique we show that it is possi-
ble to make tighter predictions for different usages on soft-
ware components without reanalyzing the component for
every new usage.

1.1 Outline

The remainder of this paper is organized as follows. In
Section 2 we discuss related work. In Section 3 we describe
the problem and introduce a general component model.
Section 4 describe transformation from components to tasks
and the relation between transformation and WCET. In Sec-
tion 5 we describe the WCET method. In Section 6 we
validate the work, and finally in Section 7 we conclude the
paper and discuss future work.

2 Related work

Timing is important for many systems, especially in the
embedded systems domain. Today static WCET analysis is
the predominant technology for acquiring worst-case execu-
tion times, but both dynamic and hybrid prediction methods
are gaining increasing interest. A well known problem is
that the WCET often only occur in a special mode or con-
text, if it ever occur.

Today, most companies do not use static WCET tools but
instead guess the WCET by performing a set of dynamic
WCET measurements and then multiplying the worst ob-
served execution time by some factor to get a safe overes-
timation. This method is often much more pessimistic than

1

using a static WCET tool [1].
There are several WCET tools that support assertions

and conditions to make the WCET tighter. Examples of
such tools are aiT [2], RapiTime [3], Bound-t [4] and
SWEET [5]. However, for component-based systems,
where reuse is in focus, it is desirable to not being forced
to reanalyze components for each usage, at least within the
same platform.

There are several case-studies which show that it is im-
portant to consider usage when analyzing real sized indus-
trial software systems [6, 7].

Static wcet analyses have the drawback of overestimat-
ing the wcet. In [8] dynamic wcet analysis is combined with
static to overcome some of the drawbacks. However, both
static and dynamic wcet analyses usually disregard usage.
In [9] a framework has been developed that considers the
usage of a system; however, neither software components
nor reuse is considered. In [10] each basic block execution
times and probability distributions are measured. The re-
sults are transformed into execution time profiles and the
resulting execution time profiles are then combined. They
are later combined with probabilistic methods. In [11] the
source code is divided in modes depending on input, and
only modes that are used a specific usage are analyzed; this
method also requires reanalysis for every new usage.

3 Problem description

To support reuse, components must be developed as gen-
eral enough in order to be reused in several different con-
texts and usage scenarios, i.e., components should be con-
text and usage independent. Reuse brings many benefits,
but it also brings increased efforts, e.g., more code, greater
variance in execution time and higher resource utilization.
In desktop systems where resources are abundant and pre-
dictability is of less concern, these efforts do not usually
imply problems. However, resource constrained embedded
real-time systems requires both efficient resource usage and
high analyzability and predictability. To utilize the bene-
fits of CBSE in the embedded real-time domain the issues
brought from the increasing effort need to be solved.

In many systems today each component is transformed
into a schedulable task each. This approach has the draw-
back of a very high number of tasks, leading to high
scheduling overhead, i.e., tasks switches. Efficient transfor-
mation from component models to task models depends on
efficiently mapping several components to one task while
guaranteeing that the mapping does not sacrifice any real-
time constraints. Components can be mapped to tasks in a
large number of ways. Even a small number of components
leads to an explosion of possible mappings; thus it is hard to
find a good or even feasible mapping; however, when sev-
eral components are allocated to one task the overestimation

brought from static usage independent analysis scales with
the number of components in the task, leading to a poten-
tially very high prediction error in the task. This has shown
to be a problem especially in real-time systems where jitter
is desired to be kept low [12].

3.1 System model / Context dependent
performance analysis

In CBSE applications are built from several software
components. In component technologies for desktop sys-
tems, e.g., COM, CORBA and .NET, components are usu-
ally heavy weight in terms of dynamic behavior. Compo-
nents for embedded systems are usually much lighter due
to the need for efficient analysis and predictability and of-
ten have execution semantics likeRun-To-Completion [13].
Typical examples of component technologies for embed-
ded real-time systems are Rubus CM [14], Autocomp [15],
SaveCCM [16] and PECOS[17].

The execution semantics is decided by the scheduling
policy and the operating system. To be able to schedule
the components they must be transformed into tasks con-
forming to the specified rules of the scheduler and proper-
ties must be set, e.g., period, priority, deadline etc.

3.1.1 Component characteristics

In this section we describe characteristics for a general com-
ponent model that is applicable to a large set of embedded
component models. The component interaction model used
throughout this paper is a pipe-and-filter model. The pipe-
and-filter interaction model is commonly used within the
embedded systems domain.

Component ci is described with a tuple
〈Pi,Ri, Qi, wcetabs

i , wcetuse
i , ki〉, where Pi is the

provided interface, which is a set of{p0

i , p
1

i , ..., p
n−1

i }
input variables andRi is the required interface,
i.e., a set{r0

i , r1

i , ..., r
n−1

i } of output variables.Qi

represents the period. The parameterwcetabs
i is the

estimated WCET for the component.wcetuse
i is the

usage dependent WCET for the component andki

is a contract as a function with respect to a usage
that returns the estimated WCET of the component
ki : f(U) → wcetabs

i .

3.1.2 Task characteristics

The task model specifies the organization of entities in the
component model into tasks. During the transformation
from component model to run-time model, properties like
schedulability and response-time constraints must be con-
sidered in order to ensure the correctness of the final system.
Components only interact through explicit interfaces; hence

2

tasks do not synchronize outside the component model. The
task model is for evaluating schedulability and other prop-
erties of a system, and is similar to standard task graphs as
used in scheduling theory.

Task τi is a tuple〈Zi, Ti, C
abs
i , Cuse

i 〉 whereZi is an or-
dered set of components. Components within the same
task are executed in sequence of the order ofZ and
with the same priority as the task.Ti is the period or
minimum inter arrival time of the task. The parame-
tersCabs

i andCuse
i are the estimated WCET and the

usage dependent WCET respectively. TheCabs
i , Cuse

i

and period (Ti) are deduced from the components in
Zi. TheCabs

i is the sum of all the estimated WCETs
for all components allocated to the task and theCuse

i

is the sum of all usage dependent WCETs for all com-
ponents allocated to the task. Hence, for a taskτi, the
parametersCabs

i andCuse
i are calculated with (1) and

(2).
C

abs

n =
∑

∀i(ci∈Zn)

(wcet
abs

i) (1)

C
use

n =
∑

∀i(ci∈Zn)

(wcet
use

i) (2)

The error between the estimated and the usage depen-
dent execution time is the sum of the difference be-
tween the estimated and usage dependent WCET of all
components allocated to the task, as given by (3).

C
error

n =
∑

∀i(ci∈Zn)

(wcet
abs

i − wcet
use

i) (3)

4 Mapping components to tasks

A problem in current component based embedded soft-
ware development practices is the mapping of component
services to run-time threads (tasks) [18]. Because of the
real-time requirements on most embedded systems, it is vi-
tal that the mapping considers temporal attributes, such as
worst case execution time (WCET), deadline (D) and period
time (T). In a system with many small component services,
the overhead due to context switches is quite high. Em-
bedded real-time systems consist of periodic and aperiodic
events, often with end-to-end timing requirements. Peri-
odic events can often be coordinated and executed by the
same task, while preserving temporal constraints. Hence, it
is easy to understand that there can be profits from grouping
several component services into one task.

Many component-based systems today use one-to-one
allocations between design-time components and real-time
tasks. Finding allocations that co-allocate several compo-
nents to one real-time task leads to better memory and CPU

usage. However, the one-to-one allocations have the bene-
fit of being highly analyzable, which is often a strong re-
quirement in embedded systems, especially in embedded
real-time systems that handle time-critical functions such as
engine control and breaking systems. Hence, components
need to be allocated to tasks in such a way that temporal
requirements are met, and resource usage is minimized.

In [19] we have shown that transformations from com-
ponents to tasks potentially give high benefits in terms of
increased resource efficiency. We have also shown that a
tighter WCET estimations (more laxity of the timing con-
straints) produces a higher number of feasible mappings,
and hence a greater chance to find a better mapping com-
pared to one-to-one mappings.

An allocation from components to a task must be eval-
uated considering schedulability. Both component to task
allocation and scheduling are complex problems and differ-
ent approaches are used. Simulated annealing and genetic
algorithms are examples of algorithms frequently used for
optimization problems. In [19] we present and evaluate a
framework that utilizes genetic algorithms for solving com-
ponent to task mappings.

A common obstacle to combine predictability with cor-
rectly dimensioned resources is the inaccuracy of the sys-
tem analysis. Real-time analysis is based on worst-case
assumptions, and the composition of worst-cases make the
system impractically oversized and under utilized[20].

Even though WCET estimations become more accurate
and hybrid prediction [21] helps making WCET calcula-
tions more precise, there is still no good way to accurately
predict the WCET for a reusable component. There is an er-
ror Cerror

i corresponding to the difference of the predicted
behavior compared to the real behavior. As WCET pre-
dictions need to consider the worst possible execution time
for all possible behaviors they are inherently inaccurate for
reusable components with varying usage and rich behavior.

When each component is mapped to a single task the er-
ror of each task is the same as the error of the component.
When several components are mapped to one task, the error
scales with the number of components, and the error can be-
come quite large. The total system error stays the same but
greater errors of individual tasks have a greater impact on
properties like input jitter and output jitter, just to mention
a few.

5 WCET analysis for reuse

For components that are reused in different systems it is
today often not very meaningful to perform WCET analysis.
This is because traditional WCET analysis considers only
one specific usage of a system, and the usage can vary a
lot between different configurations. To support reuse of
WCET predictions we need support for WCET analysis of

3

different usage.
A component that is designed for reuse has to be gen-

eral and free from context dependencies. By designing the
component specifically for one particular context or usage
it can be analyzed and predicted with high accuracy, but not
always reused. In order for general reusable components
to be predicted with higher accuracy we need new methods
and frameworks. When the usage is not known at design
time of a component, it is necessary to augment the com-
ponent with information that can be used to accurately pre-
dict the worst-case execution time for a specific usage. The
WCET can differ a lot between different uses of the same
component. We want to define a contract as a function of an
input-scenario to determine the WCET for that specific us-
age scenario. The Reusable WCET analysis can be divided
in three steps, namely:

Component WCET analysis Analyzing the WCET of the
component considering many different general usage
scenarios (inputs).

Clustering WCETs Clustering inputs that lead to similar
execution times.

Component contracts Creating a contract that define the
clustered inputs.

5.1 Component WCET analysis

The input domain Ii for the input variables
{p0

i , p
1

i , ..., p
n−1

i } ∈ Pi in the provided inter-
face Pi of component ci is defined as Ii =
dom(p0

i)× dom(p1

i)× ...× dom(pn−1

i) wheredom(pj
i) is

the value domain of thejth input variable in the provided
interface of theith component. Each elementq in Ii is
associated with an execution timeET (q) ∈ Wi, where
ET (q) is the execution time associated with inputq and all
execution times are represented in the setWi. The longest
execution timemax(Wi) = WCETabs is the absolute
WCET. A traditional static WCET tool will only findthe
one element that is associated with the highest execution
time, i.e., WCETabs; however, we want to find the WCET
for a specific usage. BecauseIi is often very large, we can
not perform WCET analysis for every element inIi (every
possible usage), instead we perform static WCET analysis
with annotations on the input parameters, and performs
a high number of runs with different bounds on all input
parameters. When WCET analysis is performed with
restrictions on the input parameters, notall input elements
are analyzed, but rather a set of clusters{Dl

i|D
l
i ⊆ Ii},

such thatD0

i ⊕ D1

i ⊕ ... ⊕ Dn−1

i = Ii. Thus, a cluster is a
subset of all possible inputs, and a WCET tool can produce
a WCET considering only that subset of inputs. Each
clusterDl

i is analyzed and associated with an execution

time etli = max(ET (d))d∈Dl

i

. The timeetli is the result of

running the WCET tool with the inputs represented inDl
i.

Consider a simple example (Figure 1) with a function
foo with two input variablesx andy, wheredom(x) =
{0..5} and dom(y) = {0..100}. One set of values pro-
duce the WCETabs, e.g., whenx = 5 andy = 100. All
other input combinations leads to lower execution times.
Consider an example where the usage scenario defines that
x = {0..2} andy = {10..20}, then WCETabs will never
occur. We only want to consider execution times for the spe-
cific usage scenario, without reanalyzing the component. If
the combination{x, y} = {5, 100} is defined as a cluster,
this cluster will not be affected by the usage, and that cluster
and its associated execution time can be ignored, effectively
making the analysis tighter.

Figure 1. Example code

In this paper we do not consider hardware effects from,
e.g., loading a component at different positions in the mem-
ory, this is outside the scope of this paper.

5.2 Clustering WCETs

To handle the size of the domainIi clusters need to be ex-
pressed with bounds or other operators, where each bound
is associated with a WCET. It is often unfeasible to make
an unordered list of all inputs that are associated with one
cluster; furthermore, WCET-tools often use bounds to re-
strict the inputs. With the mathematical operators{≤, >}
ranges of inputs can be expressed. To use these opera-
tors each inputpj

i need a (natural) ordering. Consider Fig-
ure 2 where only one inputp0

i is depicted with an ordering
0 ≤ p0

i < 100; execution times (et) that are neighboring are
clustered. Ifn inputs are used the input domain becomes
n-dimensional.

The clustersDl
i should be chosen in such a way that

“peaks” and “valleys” in the WCET topology are captured
as depicted in Figure 3 (Figure 3 only depicts one input vari-
able). A challenge is to find the right clustersDl

i such that
accuracy of execution times is maintained.

4

 0 25 50 75 99

 et 7 7 7 8 8 8 8 95 96 7 6 7

 0 50 75 99

 et 8 96 7

Ii

210
iii DDD

0
ip

0
ip

Figure 2. Clustering with {≤, >} operators

Input

Execution
time

.....43210
iiiii iiiii

Figure 3. Execution time over inputs with
clusters

The execution times of every input is initially unknown
(Figure 4). It is often infeasible to analyze all possible in-
put combinations, therefore clusters of inputs must be used.
However, without knowing the execution times prior to cre-
ating clusters, some heuristics is required to findbest clus-
ters. One approach is to divide the input domain into two
segments[0..49], [50..99], and further divide both segment
into two new segments and so on, to make a binary search
for similar WCETs. However, there are several strategies
from linear division (divide the input domain into a set of
equally large clusters) to evolutionary testing. If the input
space is divided into too few clusters accuracy will be lost;
consider the extreme case of only using one cluster (all in-
puts), then the accuracy will be the same as standard WCET
analysis. Even if the input domain is divided into a rela-
tively large number of input spaces it is still important how
these are chosen to maximize accuracy.

Since the analysis is supposed to be reused, the effort
of the analysis itself is of less concern; however, the effort
to use the reusable analysis (the analysis results) should be
easy and straight forward.

5.3 Usage scenarios

The reusable execution-time analysis is parameterized
with a usage scenario for the system. Usage scenarios can

 0 25 50 75 99

 et ? ? ? ? ? ? ? ? ? ? ? ? ?

 0 ? ? ? 99

 et

Ii

210
iii DDD

0
ip

0
ip

Figure 4. Unknown clusters

be produced in several ways, e.g., markov models [22] or
operational profiles [23], usually with the help of a domain
expert. Independent of method, the usage scenario is impor-
tant for accurate predictions; the more accurately the usage
scenario can be assessed, the better results can be produced
by the reusable analysis.

U is a usage scenario consisting of a set of in-
put boundsB : [a, b) on an input variablepj

i such
that a ≤ p

j
i < b. Several bounds may target the

same input variable. The usage scenarioU consists of
bounds on a set of input variablesp0

i , ..., p
n−1

i . For us-
age scenarioU = {[a0, b0), [a1, b1), ..., [an−1, bn−1)} =
{B0,B1, ...,Bn−1} such that{a0 ≤ p

j
i < b0, a1 ≤ pl

i <

b1, ..., an−1 ≤ pm
i < bn−1}. The usage scenario is also as-

sociated with a probability distributionP : U → [0, 1] for
the occurrence of the values in{B0 × B1 × ... × Bn−1}.

Furthermore we assume0 ≤ pt < 1 is a given proba-
bility threshold to ignore low probability inputs (and con-
sequently later their times). This will permit predictionsof
the form “with 0.99 probability WCET< 500ms.” Inputs
over the threshold are calledactive and the ratio ofactive
inputs overall inputs is called theusage utilization.

A is the set ofactive input combinations that have a
probability{a ∈ {B0 × B1 × ... × Bn−1} ∧ Pr(a) > pt}
that is greater than the probability thresholdpt.

5.4 Component contracts

Each cluster can be transformed into a predicate with re-
spect to the usage scenarioU. The predicate tests if theac-
tive inputs A of the usage scenario is “inside” the clusters,
i.e.,A ⊆ Dl

i. For all clustersW = ∀l{etli|(D
l
i ⊆ A)} that

have at least one element inA, the WCET for the compo-
nentci with the usage scenarioU is the longest execution
time associated with any cluster, i.e.,max(W). Thus the
component contract is a functionf(U) →WCETuse

i , where
f(U) : max(W).

The probability distribution of the usage scenarioU is
used for calculating the probability of the occurrence of the
inputs in a clusterDl

i, i.e., each cluster is associated with a
probability for the specific usage scenarioU. If the proba-

5

bility of a cluster is lower than the probability thresholdpt

the cluster can be ignored, and that execution time is disre-
garded in the contract.

5.5 Composable WCETs

Each cluster is associated with a set of possible outputs.
Abstract interpretation can be used to make a safe over ap-
proximation of limitations on outputs given limitations on
inputs by analyzing possible values of the output variables.
Each component produces output given the input such that
the required interfaceRi of componentci is a function of
the inputf(Pi) → Ri. By adding this information to the
predicates the approach is composable since one component
will automatically give a component usage scenario to the
next connected component. SWEET [5] is one tool that can
produce restrictions on the output given restrictions of the
input.

6 Evaluation

We performed an evaluation according to the proposed
WCET techniques. We are using an academic system for
evaluating the approach. The system is a simple adap-
tive cruise control developed with the SaveCCM component
model as depicted in Figure 5. The cruise control is built
from four components, one switch and one assembly. For
a detailed description of SaveCCM and the adaptive cruise
controller we refer to [16]. The ACC is seen as a ready to
use application that can be used in different products.

The WCET acquired by traditional static WCET analysis
is compared to the WCET obtained by the usage contract-
based reusable estimate. The tool used for both the usage
independent and the usage dependent analysis is SWEET
[5] which is developed at Mälardalen University.

As an example we assume that a car company uses the
ACC in two different car models, one high end car and one
low end car. In the high end car all features are enabled and
the inputCurrent Speed has a greater range compared to
that of the low end car. Moreover, in the low-end car some
features are disabled.

Consider the ACC example (Figure 5) which is built
from four components one switch and one assembly. Each
component is analyzed with a static WCET tool without
considering any usage (usage independent). Each com-
ponent is also analyzed with the method described in this
paper (usage dependent). The usage dependent WCET is
given as a range of values, indicating the shortest and the
longest execution time.

Note that the componentsCalc Speed, Calc Dist, Upd.
Speed andUpd. Dist. are all part of the ACC Controller
assembly, and not directly visible in Figure 5.

Road Signs Enabled

Current Speed

Road Sign Speed
ACC Max Speed

Distance

ACC Enabled

BrakePedal Used

<<Assembly>>
50 Hz

10 Hz

BrakeSignal

Throttle

Brake
Assist

<< SaveComp >>

Logger
HMI Outputs

<< SaveComp >>

Object
Recognition

<< SaveComp >>

Mode Switch

<< Switch >>

ACC
Controller

<< Assembly >>

BrakeAssist

ACC

Max Speed

ACC ApplicationSpeed Limit

<< SaveComp >>

Figure 5. Adaptive Cruise Control

6.1 Example usage scenarios

In Tables 1 and 2 we define the usage scenariosU1

andU2 by specifying possible values for the different in-
puts. The inputs areRoad Signs Enabled (RSE),ACC Max
speed (AMS), Road Sign Speed (RSS),Distance (D), Cur-
rent Speed (CS),ACC Enabled (AE) andBrakePedal Used
(BPU), as depicted in Figure 5.

The high-end car has all features enabled and have a
greater range onACC Max Speed (AMS).

The low end car have several features disabled. The
Road Signs Enabled is disabled, and consequently theRoad
Signs Speed is also disabled. Furthermore, the distance con-
trol is disabled and theDistance is always set to 0.

Both usage scenarios are assuming a uniformly dis-
tributed probability distribution over all inputs. The proba-
bility thresholdpt is set to 0, meaning that no input combi-
nations are culled.

RSE AMS RSS D CS AE BPU
0,1 250 0..130 0..2k 0..250 0,1 0,1

Table 1. High-end car usage scenario U1

RSE AMS RSS D CS AE BPU
0 130 0 0 0 0,1 0,1

Table 2. Low-end car usage scenario U2

6.2 Evaluation results

The results of the analysis with the different usage sce-
narios applied are presented in Table 3, where ud(U1) rep-
resents the usage dependent analysis withusage scenario 1,

6

i.e., the high-end car and ud(U1) represents the usage de-
pendent analysis withusage scenario 2, i.e., the low-end
car.

The evaluation, from which all presented measurements
are collected, is performed using the SWEET WCET tool
suite [5] for the ARM9 machine model and with the options
infeasible paths, excluding pairs andmin-max node count
turned on.

To create the clusters we are using a guided linear di-
vision of the input space as we possess the knowledge of
the source code and the fact that the components are small.
The resulting number of clusters for each component is
presented in Table 4. Due to space limitations we do not
present the bounds of each input variable of each cluster.

Comp. ui ud ud(U1) ud(U2)
SpeedLimit 384 384-105 384 105
ObjectRecog. 301 301-220 301 220
BrakeAssist 274 274-88 191 88
Logger. 627 627-239 433 433
Calc Speed. 369 369-283 369 291
Calc Dist. 706 706-188 706 435
Upd. Speed. 85 85 85 85
Upd. Dist. 181 181-85 181 85

Table 3. WCETs according to the methods us-
age independent (ui) and usage dependent
(ud) and usage dependent with usage pro-
files ud(U1) and ud(U2)

We see that the two usage scenarios produce different
WCETs byactivating different clusters. In the first case of
usage scenarioU1 most features are used and the ud(U1)
WCET is close to the ui WCET. In the second case ud(U2)
several features are disabled, and consequently fewer clus-
ters areactivated and the WCET is lower.

Comp. # clusters
SpeedLimit 3
ObjectRecog. 3
BrakeAssist 3
Logger. 3
Calc Speed. 4
Calc Dist. 5
Upd. Speed. 1
Upd. Dist. 2

Table 4. Number of clusters per component

The WCET presented in Table 5 is a composed WCET of
all components in the ACC controller. In this specific exam-

Method WCET Improvement (%)
ui 2927 n/a
ud(U1) 2650 9
ud(U2) 1742 40

Table 5. Results of the different methods

ple the WCET is reduced by a factor of 40%. It is difficult
to say anything about the general improvement of the pro-
posed technique. However, we believe that we have shown
its potential. It is also worth mentioning that the WCET
produced by our proposed technique is still a safe overes-
timation. Hence, contract-based usage dependent WCET
analysis should be of great interest in many resource con-
strained industrial applications.

7 Conclusions and future work

Componentization has been successful in facilitating
structured design processes with predictable properties in
many engineering domains. The embedded software sys-
tems industry is competing with decreasing time to mar-
ket and product differentiation, both leading to an increas-
ing dependence on software required to be flexible enough
for rapid reuse, extension and adaptation of system func-
tions. As a result embedded systems become increasingly
software-intensive and individual software components in-
tegrate an increasing amount of functionality over different
projects and reuse cycles.

Integrating more functions into a single component give
rise to increasingly varying behavior. Properties of the com-
ponent such as time and reliability are variable and usage-
dependent, and the variance may be large. For software, in
particular, a usage independent characterization of compo-
nent properties is inadequate for accurately predicting the
properties of the composite system constructed using these
components.

In this paper we propose an effective reusable contract-
based WCET estimation technique that provides tighter
WCET estimates by clustering input combinations that pro-
duce similar WCETs. We have shown the effectiveness of
the proposed method in an evaluation of an academic adap-
tive cruise controller example.

As future work we plan to investigate further constraints
on input data and the impact of the proposed method in an
industrial case-study.

References

[1] Lindgren, M., Hansson, H., Thane, H.: Using mea-
surements to derive the worst-case execution time. In:

7

Proceedings of RTCSA 2000, Cheju Island, South Ko-
rea, IEEE Computer Society (2000)

[2] aiT: (ait execution time analyzer) Absint:
http://www.absint.com/ait/ (Last Accessed: 2007-03-
13).

[3] RapiTime: (Rapitime execution time analyzer) Rapita
Systems: http://www.rapitasystems.com/ (Last Ac-
cessed: 2007-03-13).

[4] Bound-t: (Bound-t execution time analyzer) Tidorum
Ltd: http://www.tidorum.fi/bound-t/ (Last Accessed:
2007-03-13).

[5] Gustafsson, J., Ermedahl, A., Sandberg, C., Lisper,
B.: Automatic derivation of loop bounds and infea-
sible paths for wcet analysis using abstract execution.
In: The 27th IEEE Real-Time Systems Symposium
(RTSS 2006), Rio de Janeiro, Brazil (2006)

[6] Sehlberg, D., Ermedahl, A., Gustafsson, J., Lisper, B.,
Wiegratz, S.: Static wcet analysis of real-time task-
oriented code in vehicle control systems. In: 2nd In-
ternational Symposium on Leveraging Applications of
Formal Methods (ISOLA’06), Paphos, Cyprus (2006)

[7] Byhlin, S., Ermedahl, A., Gustafsson, J., Lisper, B.:
Applying static wcet analysis to automotive commu-
nication software. In: 17th Euromicro Conference
of Real-Time Systems, (ECRTS05), Mallorca, Spain
(2005)

[8] Wenzel, I., Kirner, R., Rieder, B., Puschner, P.:
Measurement-based worst-case execution time analy-
sis. In: Proc. 3rd IEEE Workshop on Future Embed-
ded and Ubiquitious Systems. (2005) 7–10

[9] Lee, J.I., Park, S.H., Bang, H.J., Kim, T.H., Cha,
S.D.: A hybrid framework of worst-case execution
time analysis for real-time embedded system software.
In: Aerospace, 2005 IEEE Conference, ieee (2005) 1–
10

[10] Bernat, G., Colin, A., Petters, S.: pWCET, a Tool for
Probabilistic WCET Analysis of Real-Time Systems.
In: WCET. (2003) 21–38

[11] Ji, M.L., Wang, J., Li, S., Qi, Z.C.: Automated
wcet analysis based on program modes. In: AST’06,
Shanghai, China, ACM (2006)

[12] Lluesma, M., Cervin, A., Balbastre, P., Ripoll, I., Cre-
spo, A.: Jitter evaluation of real-time control systems.
rtcsa0 (2006) 257–260

[13] Quantum-Leaps: (Quantum
leaps glossary) http://www.quantum-
leaps.com/resources/glossary.htm (Last Accessed
2007-04-04).

[14] Lundbäck, K.L., Lundbäck, J., Lindberg, M.:
Component-based development of dependable real-
time applications (2003)

[15] Sandström, K., Fredriksson, J.,Åkerholm, M.: Intro-
ducing a component technology for safety critical em-
bedded real-time systems. In: Proceeding of CBSE7
International Symposium on Component-based Soft-
ware Engi-neering, IEEE (2004)

[16] Åkerholm, M., Carlson, J., Fredriksson, J., Hansson,
H., Håkansson, J., Möller, A., Pettersson, P., Tivoli,
M.: The save approach to component-based develop-
ment of vehicular systems. The Journal of Systems
and Software (2006)

[17] Winter, M., Genssler, T., et al.: Components for Em-
bedded Software – The PECOS Apporach. In: The
Second International Workshop on Composition Lan-
guages, in conjunction with the 16th ECOOP. (2002)

[18] Kodase, S., Wang, S., Shin, K.G.: Transforming struc-
tural model to runtime model of embedded software
with real-time constraints. In: In proceeding of De-
sign, Automation and Test in Europe Conference and
Exhibition, IEEE (1995) 170–175

[19] Fredriksson, J., Sandström, K., kerholm, M.A.: Op-
timizing Resource Usage in Component-Based Real-
Time Systems. In: Proceedings of th 8th International
Symposium on Component-Based Software Engineer-
ing (CBSE8). (2005)

[20] Duranton, M.: The challenges for high performance
embedded systems. In: 9th Euromicro Conference on
Digital Systems Design, DSD, ieee (2006) 3–7

[21] Kirner, R., Puschner, P.: Classification of WCET
analysis techniques. In: Proc. 8th IEEE International
Symposium on Object-oriented Real-time distributed
Computing. (2005) 190–199

[22] Whittaker, J.A., Poore, J.H.: Markov analysis of
software specifications. ACM Trans. Softw. Eng.
Methodol.2 (1993) 93–106

[23] Musa, J.D.: Operational profiles in software-
reliability engineering. IEEE Software10 (1993) 14–
32

8

