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Abstract. Reducing the inherent high dimensionality in time series
data is a desirable goal. Algorithms used for classification can easily be
misguided if presented with data of to high dimension. E.g. the k-nearest
neighbor algorithm which is often used for classification performs best
on smaller dimensions with less than 20 attributes. In this paper we ad-
dress the problem using a time series case base containing previously
classified time series measurements. Feature vectors for time series mea-
surements is selected with respect to their discriminating power using
an unsupervised feature discrimination approach incorporating statisti-
cal feature discrimination. For evaluation, previously classified current
measurements from an electrical motor driving a gearbox on an indus-
trial robot were used. The results were promising and we managed to
correctly classify measurements from healthy and unhealthy gearboxes.

1 Introduction

Selecting adequate features for classification of time series data can be a time-
consuming task that requires good domain knowledge and a tedious manual
inspection of the data. Even if adequate domain knowledge is present it may
not always be directly applicable due to a noisy sensor environment. Using the
original high dimensional and presumably noisy data for classification may cause
the ”curse of the high dimensionality problem” [1] and result in a misguided
matching process due to unwanted computation of similarities between irrelevant
features. Individual weighting of important features [2] may be a solution to this
problem but it often requires expert knowledge about the relevance of each
feature and its impact in the matching process. In this paper we present an
unsupervised feature selection algorithm which requires no expert knowledge
and no individual weighting of features. It uses a time series case base and a
feature discrimination approach incorporating an unsupervised function based on
statistical feature discrimination finding features with maximum discriminating
power. Feature vectors for time series data measurements is assembled from
these features. For evaluation, previously classified current measurements from
an electrical motor driving a gearbox on an industrial robot were used. The
results were promising and we managed to correctly classify measurements from
healthy and unhealthy gearboxes. The paper is organized as follows; section 2
gives some background and related work, section 3 and 4 presents our solution



to the problem, section 5 presents an evaluation on real world time series data
and section 6 concludes the paper with a discussion and a proposal for future
work.

2 Background and Related Work

2.1 Feature Discrimination

Feature discrimination relies on the fact that certain features in time series data
has a stronger discriminating power than others. By letting the features with
the strongest discriminating power represent the time series we have hopefully
achieved a great reduction in dimension and a more qualitative knowledge rep-
resentation of the data. The reduced representation will thereby stand a better
chance to perform well in applications for classification of time series data. E.g.
the k-nearest neighbor algorithm which is often used for case-based classification
[3] performs best on smaller dimensions with less than 20 attributes. Feature dis-
crimination usually relies on on a criterion function and a search strategy. The
search strategy is used to select features and the criterion function is used to
evaluate whether a selected feature is better than another. Bayesian probability
estimation has been successfully used for criterion [5] and key sequences in syn-
thesized data was found with great accuracy. In [11] several approaches of feature
discrimination is discussed. Also the use of a neural network for simultaneous
clustering and feature discrimination has been proven useful [12].

3 Computing Feature Vectors for Time-Series Data

We address the dimensionality problem using a time series case base CB contain-
ing cases with previously classified time series measurements. Each measurement
is first transformed into a time/frequency representation of the original time se-
ries data by computing a time FFT [9] transformation. A feature extraction
function FV = GetFeatures(CBk, δ) is then applied on each time/frequency
representation that for a given case CBk returns a subset of time/frequency el-
ements in feature vector FV representing CBk in a reduced dimension form. δ
is a threshold value defining the criterion for discriminating power of CBk. δ is
found by search and criterion function δ = GlobalMaximun(N(CBk)). Function
N(CBk) returns the number of fully discriminated cases by CBk with respect
to CB and function GlobalMaximun(N(CBk)) returns the value of δ where
N(CBk) has its global maximum thus representing a maximum of discriminat-
ing power of CBk with respect to CB.

3.1 Extracting Discriminating Features for Case Indexing

Definitions



Definition 1 We define a time series X of dimension n as a sequence of data
points x ordered in time as X = {x1, x2, ..., xi, ..., xn} where xi refers to a data
point at position i.

Definition 2 We define Transform to be a function f : < → <2 mapping time
series X to a time/frequency matrix A

A =




a11 a12 . . . a1j . . . a1n

a21 a22 . . . a2j . . . a2n

...
. . .

...
. . .

...
ai1 ai2 . . . aij . . . ain

...
. . .

...
. . .

...
am1 am2 . . . amj . . . amn




(1)

In A each element aij represents a discrete time/frequency element with time
j and frequency i.

Definition 3 A time series case base CB contains a number of cases where
each case is represented by a vector of triplets {X,A, C} where X is the original
time series measurement, A is the time/frequency representation of the original
time series data X and C represents its class. CBk represents a case k in CB
and CBkaij represents a time/frequency element in case k.

Definition 4 We let the function std(a, b) denote the standard deviation func-
tion returning the standard deviation of time/frequency elements a and b and we
define the function Threshold(a, b) to be:

Threshold(a, b) =
{

1 if std(a, b) < δ
0 otherwise (2)

Definition 5 We define case CBk to be fully discriminated by case CBl (and
the opposite) if there exists a δ > 0 such as




m∑

i=1

n∑

j=1

Threshold(CBkaij , CBlbij
)


 = 0, k 6= l (3)

Definition 6 We let the function Discriminate(CBk, CBl) to be defined as

Discriminate(CBk, CBl) =
{

1 if CBk is fully discriminated by CBl

0 otherwise (4)

Definition 7 We define a measurement of discriminating power of a case CBk

to be the sum of all the cases in the case base it fully discriminates

N(CBk) =
n∑

l=1

Discriminate(CBk, CBl), k 6= l (5)



where N(CBk) denotes the number of fully discriminated cases by CBk with
respect to CB.

We now want to extract the time/frequency elements from CBk that repre-
sents the strongest discriminating power with respect to CB. The first step is
to find δ where N(CBk) has its global maximum. By definition, a global maxi-
mum must be either a local maximum in the interior of the domain of N(CBk)
or it must lie on the boundary of its domain [10]. The domain of N(CBk) is
all positive real values δ > 0 but we can limit the domain to δ = (c, d) where
c = 0, d ≥ c, δ = d → N(CBk) = 0. We solve this with the search and criterion
function δ = GlobalMaximun(N(CBk)).

SET max=0
SET ret=0
FOR δ = c TO d

IF N(CBk) > max
SET max = N(CBk)
SET ret = δ

END
END
RETURN ret

Fig. 1. Code for finding the global maximum of N(CBk)

Definition 8 If we let the function GetFeatures(CBk, δ) be the function re-
turning a set of time/frequency elements from case CBk that for each case in
CB satisfies (6).

GetFeatures(CBk, δ) =
{

CBkaij
if std(CBkaij

, CBlbij
) > δ, k 6= l

0 otherwise
(6)

then

FV = GetFeatures(CBk, GlobalMaximun(N(CBk))) (7)

will produce a feature vector FV = {F1, F2, ..., Fi, ..., Fm} representing all
time/frequency elements with the discriminating power δ.

4 Case Indexing

In order to use FV for case indexing we want an appropriate representation of
the features. We use a naive binary structure [5] in combination with sequence



appearance numbers. In this case we reduce the time dimension and save only
frequency information in our vector. We recalculate FV given in (7) and repre-
sents it as in (8)

FV = {b1 ∗ f1, b2 ∗ f2, ..., bi ∗ fi, ..., bm ∗ fm} (8)

where bi denotes the number of occurrences of similar frequency elements
and fi denotes the frequency.

For similarity measure between two time series we use the Euclidian distance
function defined as

sim(FV1, FV2) =

√√√√
m∑

i=1

(FV1i − FV2i)2 (9)

5 Example Implementation and Evaluation

In order to evaluate our framework we tested it on pre-classified current time
series data from an electrical motor driving the gearbox of axis 4 on an industrial
robot. A total of 40 classified measurements where used in the evaluation. Our
goal was to compute feature vectors that were able to discern a healthy gearbox
from an unhealthy gearbox.

5.1 Measuring Current Time-Series

The robot control cabinet can log current signals from the electrical motors
driving the gearboxes on the robot. We programmed the cabinet to log current
signals from the electrical motor driving the gearbox of axis 4. The signal is pass-
ing through the robot control system and is an indirect measurement of current
[4] derived from the motor torque. Because of its indirect nature, basic theory
of feature selection usually applied to current measurements is difficult to apply
here. We thereby find this time-series data especially suitable for evaluation of
our framework.

Each time-series measurement is approximately 3.8 seconds long and involves
a full rotation of the robot arm. The sampling rate is 2 kHz which result in a
time-series measurement containing approximately 7600 samples (see Fig. 2).

5.2 Classification of Time-Series

During the end test of the industrial robots we logged current signals from 34
normal gearboxes and 6 noisy gearboxes. All robots where classified by experts.
Table 1 presents the experts classifications.

Based on the information in table 1 we classified our measurements in five
classes; CNormal, CRepeatedKnocks, CKnock, CBurr and CNoise as for normal,
repeated knocks, a single knock, burr and noise respectively. Classified cases
where created for all measurements and inserted into the case library.
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Fig. 2. An example of a time series of indirect measurements of motor current.

Table 1. Robots classified by human expert.

Class Number of robots

No symptom (normal) 34
Repeated Knocks 3
Knock 1
Burr 1
Noise 1

5.3 Computing Feature Vectors

Before computing feature vectors for the classified cases we pre-processed the
data in each case computing a time FFT [9] matrix A (see Defn. 2) on each time
series current measurement X (see Defn. 1). The time FFT was computed with
a precision of 46 time-segments and 169 frequency steps for each measurement
resulting in an approximate time/frequency resolution of 83 ms/segment and 7
Hz/step.

After computing feature vectors for all cases as explained in section 3 and
performing a leave-one-out k-nearest neighbor evaluation [8] with k = 3 on all
cases as explained in section 4 (see Fig. 3). The result is presented in table 2.

We managed, with 100 percent accuracy, to correctly classify all cases with
class CNormal and CRepeatedKnocks. We failed to classify CKnock, CBurr and
CNoise. A reason for that is given in the next chapter.



Fig. 3. System for k-nearest neighbor evaluation

Table 2. Robots classified by system.

Class Percentage of correct hits

No symptom (normal) 100
Repeated Knocks 100
Knock 0
Burr 0
Noise 0

6 Conclusions and Future Work

Our approach of feature selection by feature discrimination proves to be useful for
machine sensor time series. It shows that the method can be valuable on already
classified time series which lacks of other useful domain knowledge or where
domain knowledge is hard to apply. We managed to compute discriminating
feature vectors and correctly classify the two dominating classes CNormal and
CRepeatedKnocks. We failed to classify CKnock, CBurr and CNoise because we had
no similar cases in the case base. The leave-one-out k-nearest neighbor evaluation
approach demands several cases of similar class in order to successfully classify
all cases. A larger case base with more cases of class CKnock, CBurr and CNoise

would probably perform better in classification. Some suggestions for future work
is stated below.

1. Expand the case base with more classified cases.
2. Evaluate the performance of the algorithm on other kinds of time series data.
3. Test other classification algorithms such as Self Organizing Maps (SOM) [6],

the cosine matching function [7] etc.
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