
Contract-Based Reusable Analysis for Software Components with
Extra-Functional Properties

Johan Fredriksson∗, Thomas Nolte
Dept. of Computer Science and Electronics
Mälardalen University, Västerås, Sweden

Abstract

Component-based software engineering (CBSE) for em-
bedded systems is currently gaining ground because of
shortened time-to-market, reduced development costs and
increased software quality. One main characteristic of
CBSE that enable these benefits is its facilitation of com-
ponent reuse. However, existing tools and methods do not
consider reuse of extra-functional properties in these sys-
tems.

In this paper we extend our previous work on contract-
based reusable execution time predictions for software com-
ponents with additional extra-functional properties, such as
memory and energy consumption.

1 Introduction

In this paper we present extensions to our previously de-
veloped method that allows reuse of software component
WCET analysis [1, 2]. We extend the method with reusable
analysis for additional extra-functional properties and also
propose relationships between the properties.

In component-based software engineering (CBSE) reuse
is a central concept for facilitating benefits such as shorter
development times and higher software quality. There has
been much focus on reuse of functional artifacts such as
code, interfaces etc. For systems with requirements on pre-
dictability and resource efficiency extra-functional proper-
ties (EFPs) such as worst-case execution time and memory
consumption are equally important for predicting the sys-
tem behaviour. Still there has been little focus on reuse of
EFPs.

Resource constraints and predictability requirements are
especially common in many embedded-systems sectors,
such as automotive, robotics and other types of computer
controlled equipment. Because of the intrinsically non-
linear behavior of software, it is often hard to make accurate
predictions of extra functional properties (EFPs). The prob-
lem is worsened in component-based development where

∗contact author: johan.fredriksson@mdh.se

components are kept free of context to facilitate reuse. To
make analysis more accurate, and thereby systems more
predictable, it is desirable to have high accuracy of the pre-
dictions. This can be achieved by considering the context in
which the software is used.

The contribution if this paper is the discussion and pro-
posal of extensions to previously developed techniques for
reusable WCET analysis. We extend the reusable analysis
with additional extra-functional properties, such as memory
and energy consumption. We also discuss future work and
potential of the techniques.

2 Related work

Component contract with respect to extra-functional
properties and their composition has been proposed in, e.g.,
[3]. In [4] a usage-scenario parameterized component con-
tract is proposed with respect to reliability. Other ap-
proaches to contract-based preformance analysis are [5, 6,
7]; however, usage scenarios are not considered in these pa-
pers. In [8, 9, 10] parameterized WCET analysis has been
proposed; however, neither software components nor reuse
is considered.

3 Usage scenario

In the “real” physical world, distinct modes exist and
are often engineered into systems, for example, asmodes
of operation. We hypothesize that modes are significant
discriminators of WCET and can be utilized for more ac-
curate WCET modeling. Thus we define ausage scenario
asU = 〈X0, ..., Xn−1〉, where theXi(0 ≤ i < n) are
input variables, each with bounds on values, a given type,
and a probability distributionPi : Xi → [0, 1] for the oc-
currence of these values in the input. (See Figure 1 for an
illustration of these concepts). The input domainM is then
defined asM := X0 × · · · × Xn−1. The probability dis-
tributionsPi(0 ≤ i < n) extend uniquely to a probability
distributionP : M → [0, 1] on the input domain, defined
by P (x0, . . . , xn−1) = P0(x0) × · · · × Pn−1(xn−1).

1

 Probability

x0 x1 x2 x3 ... Input

Pi

Xi

Figure 1. Input variable I

Furthermore we assume that0 ≤ pt < 1 is a given prob-
ability threshold for ignoring low probability inputs (and
consequently later their times). See also Figure 2 for an
illustration of the concept.

Probability

Input

pt

Active input

P

 m0 m1 m2 mi M

Figure 2. Usage scenario

4 Component WCET analysis

Components are reused in different products and differ-
ent contexts. A different usage profile can substantially
change the behavior of a component. To predict the exe-
cution time of a complex component with high accuracy,
components must today be reanalyzed for every new usage
profile – a very costly activity. Our method overcomes the
problem by analyzing the execution times and their proba-
bility as a function of the input of the component.

We define an input domainI for a set of input variables
{X0, X1, . . . , Xn−1} as I = X0 × X1 × · · · × Xn−1.
Each elementq in I is associated with an execution time
ET (q) ∈ W, where all execution times of the component
are represented in the setW. The longest execution time
max(W) = WCETabs is the absolute WCET. We want
to find the WCET for a specific usage. BecauseI often
is very large, we can not perform WCET analysis for ev-
ery element inI (every possible usage), instead we perform
static WCET analysis with annotations on the input parame-
ters, and perform a number of systematic runs with different
bounds on the input parameters. When WCET analysis is
performed with restrictions on the input parameters, notall
input elements are considered, but rather a set of clusters
{Dl|Dl ⊆ I}, such thatD0 ⊕ D1 ⊕ · · · ⊕ Dn−1 = I.
Thus, a cluster is a subset of all possible inputs, and a
WCET tool can produce a WCET considering only that sub-
set of inputs. Each clusterDl is analyzed and associated
with two execution timesetmax

l = max(ET (d))d∈Dl
and

etmin
l = min(ET (d))d∈Dl

. The timeetmax
l is the result of

running the WCET tool with the inputs represented inDl

with respect to WCET. The timeetmin
l is the result of run-

ning the WCET tool with the inputs represented inDl with
respect to best-case execution time (BCET).

4.1 Clustering WCETs

Theoretically, each single input combination has only
one fixed execution-time. The difference betweenetmax

l

andetmin
l of a clusterDl shows the greatest difference be-

tween two execution times within the cluster. This in turn
is an indicator of how similar the execution times are in the
cluster. The sum of the difference betweenetmax

l andetmin
l

should be minimized to get high accuracy. On one extreme,
to get as high accuracy as possible, each cluster contains
one element; however, a good solution is a trade-off be-
tween acceptable difference betweenetmax

l andetmin
l and

max number of clusters.
Finding accurate clusters is a blind search problem since

execution time data is built up during the search for clus-
ters. There are many different possible approaches to search
for clusters, rangin from random search to evolutionary al-
gorithms. In previous work we have shown how binary
search can be used effectively by recursively dividing the in-
put space into two clusters until required accuracy has been
achieved. Consider a simple with two input variablesx and
y, wherex can take the values[0..9] andy can take the val-
ues[0..4]. In this small example there are only 50 possible
input combinations, would be trivial to make an exhaustive
search to find all combinations that give the same execution
time. In a larger example, this is not possible. We have cho-
sen such a simple example to simplify the visualization of
the method. Consider an example where the usage scenario
definesx = {3..6} andy = {3..4}, the WCET will never
occur. For two inputs the input domain is 2-dimensional,
the WCET is visible in an execution time matrix as shown
in Figure 3.

4.2 Component contracts

Each cluster can be transformed into a predicate with re-
spect to the usage scenarioU. The predicate tests if the
inputsU of the usage scenario is “inside” the clusters, i.e.,
U ⊆ Dl. For all clustersW = ∀l{etl|(Dl ⊆ U)} that
have at least one element inU, the WCET for the compo-
nentci with the usage scenarioU is the longest execution
time associated with any cluster, i.e.,max(W). Thus the
component contract is a functionf(U) →WCET, where
f(U) : max(W). The probability distribution of the us-
age scenarioU is used for calculating the probability of the
occurrence of the inputs in a clusterDl, i.e., each cluster
is associated with a probability for the specific usage sce-
nario U. If the probability of a cluster is lower than the

2

 20 140 140 140 140

 140 60 140 140 140

 140 140 60 140 140

 130 170 170 1 1

 130 170 170 1 1

 130 130 130 1 1

 130 130 130 1 1

 130 130 130 1 1

 130 130 130 1 1

 130 130 130 1 1

 0 1 2 3 4
0
1
2
3
4
5
6
7
8
9

x
y

Figure 3. Matrix of the inputs {x,y} with corre-
sponding execution times with respect to the
example code shown in Figure ??. The dotted
line shows a cluster Dl : {x = [3..9]∧y = [3..4]}

probability thresholdpt the cluster can be ignored, and that
execution time is disregarded in the contract.

5 Work in progress

We extend the contracts with the properties memory and
energy consumption. Several properties implies interesting
design trade-offs. Adding contracts with respect to both
WCET, energy and memory consumption give the system
designer possibility to decide if a component fulfils all re-
quirements and what trade-offs are necessary at an early de-
sign phase. Similarly the designer may be able to restrict the
usage scenario in such a way that the component will ful-
fill its given requirements. This gives new possibilities for
reusable analysis and to consider extra-functional properties
(EFPs) at an early design phase.

Memory can be statically analyzed in the same way as
WCET; however there are currently no tools for static anal-
ysis of energy consumption. Hence, dynamic analysis is
required to be used; therefore the confidence of an energy
property is lower. The energy property is interesting be-
cause there is often a relation between WCET and energy.

Hence, we add a relation between the properties WCET
and energy; simplified we state that there is a linear relation-
ship between WCET and power consumption. By lowering
the frequency of the processor the power consumption is
decreased, but the WCET is increased. Thus, if a certain
usage scenario fulfills the WCET but does not fulfill the re-
quired energy consumption it may be possible to lower the
cpu-frequency such that both requirements are fulfilled. We
do not consider memory consumption related to WCET or
energy at this point.

Both properties memory and energy consumption are di-
vided into clusters, similar to the WCET cluster as shown
in Figure 3. We do not attempt to find joint clusters be-
tween the properties. Consider a usageU1 and three con-
tractsfWCET , fEnergy and fMemory; and a relationship
RWCET

Energy for a specific processor.

fWCET (U1) → WCET

fEnergy(U1) → Energy

fMemory(U1) → Memory

We extend the contractsfWCET and fEnergy with
cpu frequency(frq). We definefrq0 which is the cpu-
frequency used in the reusable analysis andfrqc which is
the context frequency. Thusfrq is the ratiofrqc

frq0 . WCET
and Energy are dependent on usage only, and the effect of
the frequency is determined by the relationRfrq. Thus we
define the contracts and the relationship as:

fWCET (U1, frq) → WCET

fEnergy(U1, frq) → Energy

Rfrq : Energy ∝ WCET−1

where the relationRfrq : WCET ∝ Energy−1 is
an inverse linear relationship between WCET and Energy
with respect to frequency frq. Thus, considering the usage-
parameterized WCET and Energy, if the frequency is in-
creased, the Energy is increased and the WCET is de-
creased.

Lets assume two requirementsWCET ≤ 200 and
Energy ≤ 200.

fWCET (U1, 1.0) → 130

fEnergy(U1, 1.0) → 250

Rfrq : 130 ∝ 250−1

WCET= 130 and Energy= 250 does not fulfill the re-
quirements. Lets assumefrq0 = 500. We lower the fre-
quencyfrqc = 400, thusfrq = 400

500
= 0.8.

fWCET (U1, 0.8) → 162.5

fEnergy(U1, 0.8) → 200

Rfrq : 163 ∝ 200−1

fulfills the stipulated requirements,162.5 ≤ 200 and
200 ≤ 200. The relationfrq should be constant for the
same usage. Thus130 ∝ 250−1 = 163 ∝ 200−1

Additional hardware parameters can be added for better
predicting the actual properties.

3

6 Future Work

Additional interesting properties that can be related to
input are, e.g.,best case execution timeand required re-
sources. To put several properties in a joint framework they
require tool based property analysis with respect to usage.
Today, there exist several WCET tools that support WCET
analysis with respect to usage. Examples of such tools are
aiT [11], RapiTime [12], Bound-t [13] and SWEET [14].

We plan on investigating and comparing different search
algorithms for creating clusters and contracts. Previously
we have used genetic algorithms in a simulation and a bi-
nary search method for a small case study. Further stud-
ies of both larger components and other search methods are
planned.

Interesting future includes adding hardware context in-
formation to the contracts. To get a more accurate reusable
prediction on WCET information such as compile and
linker configurations as well as hardware properties need
to be considered. However, the problem size grows expo-
nentially with the number of parameters.

Other interesting work is combining the reusable anal-
ysis method with our previously developed component to
task allocation algorithm [15]. Combining these two meth-
ods give possibilities for usage dependent real-time schedu-
lability analysis. Other interesting future work includes
evolutionary property prediction as discussed in [16].

References

[1] Fredriksson, J., Nolte, T., Nolin, M., Schmidt, H.:
Contract-based reusable worst-case execution time es-
timate. Technical report, Mälardalen Real-Time Cen-
tre (2007) (submitted to RTCSA’07).

[2] Fredriksson, J., Nolte, T., Ermedahl, A., Nolin, M.:
Clustering worst-case execution times for software
components. Technical report, Department of Com-
puter Science and Electronics, Mälardalen University
(2007) submitted to WCET’07.

[3] Beugnard, A., Jézéquel, J.M., Plouzeau,
N., Watkins, D.: Making components contract aware.
Computer32 (1999) 38–45

[4] Reussner, R., Schmidt, H., Poernomo, I.: Reliabil-
ity prediction for component-based software architec-
tures. Journal of Systems and Software66 (2003)
241–252

[5] Firus, V., Becker, S., Happe, J.: Parametric perfor-
mance contracts for qml-specified software compo-
nents. In: Formal Foundations of Embedded Soft-
ware and Component-based Software Architectures

(FESCA). Electronic Notes in Theoretical Computer
Science, ETAPS 2005 (2005)

[6] Reussner, R.H., Firus, V., Becker, S.: Parametric per-
formance contracts for software components and their
compositionality. In Weck, W., Bosch, J., Szyperski,
C., eds.: Proceedings of the 9. International Work-
shop on Component-Oriented Programming (WCOP
04). (2004)

[7] Happe, Jens; Koziolek, H.R.R.: Parametric perfor-
mance contracts for software components with con-
current behaviour. In: 3rd Workshop on Formal As-
pects of Component Software (FACS). Volume 167.,
Elsevier (2006) 15

[8] Lee, J.I., Park, S.H., Bang, H.J., Kim, T.H., Cha,
S.D.: A hybrid framework of worst-case execution
time analysis for real-time embedded system software.
In: Aerospace, 2005 IEEE Conference, ieee (2005) 1–
10

[9] Ji, M.L., Wang, J., Li, S., Qi, Z.C.: Automated
wcet analysis based on program modes. In: AST’06,
Shanghai, China, ACM (2006)

[10] David, L., Puaut, I.: Static determination of proba-
bilistic execution times. In: ECRTS ’04: Proceed-
ings of the 16th Euromicro Conference on Real-Time
Systems (ECRTS’04), Washington, DC, USA, IEEE
Computer Society (2004) 223–230

[11] aiT: (ait execution time analyzer) Absint:
http://www.absint.com/ait/.

[12] RapiTime: (Rapitime execution time analyzer) Rapita
Systems: http://www.rapitasystems.com/.

[13] Bound-t: (Bound-t execution time analyzer) Tidorum
Ltd: http://www.tidorum.fi/bound-t/.

[14] SWEET: (Swedish execution time tool) SWEET:
http://www.mrtc.mdh.se/projects/wcet/.

[15] Fredriksson, J., Sandström, K., kerholm, M.A.: Op-
timizing Resource Usage in Component-Based Real-
Time Systems. In: Proceedings of th 8th International
Symposium on Component-Based Software Engineer-
ing (CBSE8). (2005)

[16] Fredriksson, J., Land, R.: Evolutionary context aware
development of components for embedded real-time
systems. In: To appear in Proceedings of the Inter-
nation Conference Information Technology Interfaces
ITI’07. (2007)

4

