
Component-Based and Service-Oriented Software Engineering: Key
Concepts and Principles

Hongyu Pei Breivold, Magnus Larsson

ABB AB, Corporate Research, 721 78 Västerås, Sweden
{hongyu.pei-breivold, magnus.larsson}@se.abb.com

Abstract

Component-based software engineering (CBSE)
and service-oriented software engineering (SOSE) are
two of the most dominant engineering paradigms in
current software community and industry. Although
they have continued their development tracks in
parallel and have different focus, both paradigms have
similarities in many senses, which also have resulted in
confusion in understanding and applying similar
concepts or the same concepts designated differently.
In this paper, we present a comparison analysis
framework of CBSE and SOSE and analyze them from
a variety of perspectives. We discuss as well the
possibility of combining the strengths of the two
paradigms to meet non-functional requirements.

The contribution of this paper is to clarify the
characteristics of CBSE and SOSE, shorten the gap
between them and bring the two worlds together so
that researchers and practitioners become aware of
essential issues of both paradigms, which may serve as
inputs for further utilizing them in a reasonable and
complementary way.

1. Introduction
Today, designing and implementing a large scale

and complex system has been a challenging task. Two
of the most well recognized software engineering
paradigms coping with this challenge are: component-
based software engineering and service-oriented
software engineering.

Component-based software engineering (CBSE)
provides support for building systems through the
composition and assembly of software components. It
is an established approach in many engineering
domains, such as distributed and web based systems,
desktop and graphical applications and recently in
embedded systems domains. CBSE technologies
facilitate effective management of complexity,
significantly increase reusability and shorten time to
market. On the other hand, the growing demands for
Internet computing and emerging network-based
business applications and systems are the driving forces

for the evolvement of service-oriented software
engineering (SOSE). Service-oriented design utilizes
services as fundamental elements for developing
applications and software solutions. Service-oriented
design technologies offer great feasibility of integrating
distributed systems that are built on various platforms
and technologies and further push focus on reusability
and software development efficiency.

SOSE has evolved from CBSE frameworks and
object oriented computing [16] to face the challenges
of open environments. Therefore, CBSE and SOSE are
similar to each other in many senses. Both use similar
approaches and technologies. Both have software
architecture as the common source and base.
Meanwhile, both paradigms have continued with their
development tracks in parallel and have different focus.
Consequently, the mixture of similarities and
specialized utilization of concepts in CBSE and SOSE
have also resulted in confusion in understanding and
applying concepts in a correct way. This may lead to
less efficient utilization and combination of these
paradigms. Furthermore, since both CBSE and SOSE
can co-exist in enterprise systems and complement
each other [17], any divided understanding and
different interpretation of the terminologies would lead
to less efficient combination and adaptation of these
paradigms in future software development. For these
reasons, it is important to clarify the concepts,
principles and characteristics of CBSE and SOSE,
shorten the gap between them and bring these worlds
together so that researchers and practitioners can
become aware of both sides. This clarification may
serve as inputs to the subsequent investigation in how
to take advantages of the strengths of these two
paradigms, how to adapt and integrate the component-
based and service-oriented technologies, concepts and
their strengths so that both component-base and
service-oriented software engineering can complement
each other to the ultimate extent.

The goal of this paper is to provide a clarification
framework of the component-based and service-
oriented software engineering to avoid any
misunderstandings and misuses. A brief discussion of

reasonable utilization, combination and adaptation of
the two paradigms is also outlined through looking into
a set of research studies in how they have been used.
These studies have exampled the benefits of improved
quality attributes of software solutions through
combining CBSE and SOSE. Since both paradigms are
evolving rapidly, there exists increasing research
interest in further exploration of their combination
potentials. We contend that a good understanding of
respective characteristics is a necessary step for this
exploration.

The remainder of the paper is structured as follows.
Section 2 presents overview of component-based and
service-oriented software engineering. Section 3 gives
a comparison analysis framework of the two paradigms
from different perspectives, including key concepts and
principles, process, technology and composition.
Section 4 discusses state of the art research in
combining the strengths of CBSE and SOSE. Section 5
concludes the paper.

2. Overview of component-based and
service-oriented software engineering

Component-based software engineering (CBSE) is a
software engineering paradigm that aims to accelerate
software development and promote software reusability
and maintenance through assembling components to
software systems that meet certain business
requirements. The prerequisite requirements that enable
components to be integrated and work together are
component models and component framework [20].
Component models specify the standards and
conventions that components need to follow during
component composition and interaction. Component
framework provides design time and run time
infrastructure.

Numerous component models exist nowadays. Some
examples are COM/DCOM/COM+, .Net component
model, JavaBeans, Enterprise JavaBeans and CORBA
component model. Examples of component models that
have been developed specifically for applications to
embedded systems include Koala [11], Rubus [21],
PECOS [18].

Important areas of research within CBSE include,
but not limited to, determination and specification of
QoS (Quality of Service), predictability of non-
functional properties, component interference and
process related activities such as component
classification, identification and selection, component
adaptation, testing and deployment techniques.

Although CBSE has proved to be successful for
software reuse and maintainability, it does not address
all of the complexities software developers are facing

today, such as varying platforms, varying protocols,
various devices, the Internet, etc [7]. Service-oriented
software engineering paradigm has emerged to address
these issues.

Service-oriented software engineering (SOSE) is a
software engineering paradigm that aims to support the
development of rapid, low-cost and easy composition
of distributed applications even in heterogeneous
environments [13]. It utilizes services as fundamental
elements for developing applications and solutions.

Important areas of research within SOSE include
service foundations, service composition, service
management and monitoring and service-oriented
engineering [13]. Service foundations provide service-
oriented communication technologies to support run
time service-oriented infrastructure and connect
heterogeneous systems and applications. These
communication technologies provide the
communication mechanisms between service providers
and service requesters; they differ with respect to
service description techniques and messaging functions
[6]. Service composition encompasses necessary roles
and functionality to support service composition [13].
The dynamic composition feature in SOSE makes QoS
a major challenge. Different initiatives have emerged
such as orchestration and choreography. Service
management encompasses the control and monitoring
of SOA-based applications throughout life cycle.

A key element in SOSE is the service-oriented
interaction pattern, i.e. service-oriented architecture
(SOA), which enables a collection of services to
communicate with each other. SOA is a way of
designing a software system to provide services to
applications or other services through published and
discoverable interfaces. The basic elements of service-
oriented architecture are illustrated in Figure 1.

Figure 1 Service-oriented interaction pattern
As shown in Figure 1, SOA has three main actors: a

service provider, a service requester and a service
registry. The service provider defines service
descriptions of a collection of services, supplies
services with functionalities and publishes the
descriptions of the services so as to make the services
discoverable. The service registry contains service
descriptions and references to service providers and

provides mechanisms for service publishing and
discovery [14], e.g. Universal Description, Discovery
and Integration (UDDI). The service requester is a
client that calls a service provider. It can be an end-user
application or other services. A service requester
searches in the service registry for a specific service via
the service interface description. When the service
interfaces match with the criteria of the service
requester, the service requester will use the service
description and make a dynamic binding with the
service provider, invoke the service and interact
directly with the service.

3. Classification of component-based and
service-oriented software engineering

The main concepts and principles of CBSE and
SOSE may look similar at the first sight, but
differences exist in mechanisms, approaches and
implementations. Therefore, we group particular
characteristics that have similar concerns to describe
the same or related aspects of CBSE and SOSE. The
categories in the comparison framework that we are
going to address are: key concepts and principles,
process concerns, technology concerns, quality and
composition.

3.1. Key concepts
A summary of the key concepts in CBSE and SOSE

is listed in Table 1.

Table 1 Comparison of key concepts in CBSE and SOSE

Concepts CBSE SOSE
Module Component Service

Specification Component contract Service description
Interface Component interface Service interface

Assembly Component
composition

Service
composition

3.1.1. Module. In CBSE, components are the building
blocks that can be deployed independently and are
subject to composition by third party [4]. Based on the
formulation by Clemens Szyperski [15], a software
component is a unit of composition with contractually
specified interfaces and explicit context dependencies
only. It can be both fine-grained providing specific
functionality and coarse-grained encompassing
complicated logics.

In SOSE, services are the building blocks that can
be reused and offer particular functionalities. They are
generally implemented as coarse-grained discoverable
software entities [2], operating on larger data sets,
encapsulating business functionality and exposing the
functionality to any source that requests the

functionality through well-defined interfaces. Thus, the
services can be reused and accessed at various levels of
the enterprise application and even across enterprises
boundaries.
3.1.2. Specification. In CBSE, the component
specification provides for the clients the definition of
the component’s interface, i.e. the operations and
context dependencies. Furthermore, an abstract
definition of the component’s internal structure is
specified for the component providers [4].

In SOSE, the service description is a service
contract that advertises the following information: (i)
service capabilities - stating the conceptual purpose and
expected results of the service; (ii) interface -
describing the service signatures of a set of operations
that are available to the service requester for
invocation; (iii) behavior - describing the expected
behavior of a service during its execution; and (iv)
quality - describing important functional and non-
functional service quality attributes [12].
3.1.3. Interface. Although both CBSE and SOSE are
interface-based in the sense that interfaces are the
specifications of access points, the separation between
service descriptions and service implementation is
more explicit than the separation between component
specification and implementation.
3.1.4. Assembly. In CBSE, component composition is
the process of assembling components using
connectors or glue code to form an assembly, a larger
component or an application. The components are
assembled through the component interfaces and the
composition is made out of several component
instances that are connected and interact together.

In SOSE, the composite services are built by
composing service descriptions. The realization of the
service composition is during run time when the service
providers are discovered and bound.

3.2. Key principles
A summary of the key principles of implementation

in CBSE and SOSE is listed in Table2.

Table 2 Comparison of key principles of implementation
in CBSE and SOSE

PRINCIPLES CBSE SOSE
Coupling Loose and tight

coupling
Loose coupling

Self describing Component
specification

Service
descriptions

Self contained yes yes
State Stateless/stateful Stateless/stateful
Location
transparency

In some component
models e.g. DCOM

yes

3.2.1. Coupling. CBSE enables both loose coupling
and tight coupling. As a component is used within the
scope of a component model, it needs to conform to the
rules specified by the component model. A component
model often uses one particular interaction style, such
as broadcasting, asynchronous connection and
connection-oriented style. All these interaction styles
imply some kind of coupling between components,
such as referential coupling and temporal coupling.

In contrast to CBSE, SOSE enables only loose
coupling, with minimized dependencies between
service providers and service requesters. The service
providers need not to know anything about the service
requesters or any other services. They have great
flexibility in choosing their design and deployment
environment to offer their services. Likewise, the
service requesters or calling applications need not to
know anything about underlying logic of the service
implementation and service deployment except the
service descriptions. The service descriptions are the
only communication channel between service
requesters and service providers. Service loose
coupling is enabled through the use of service
descriptions that allow services to interact within
predefined parameters [5].
3.2.2. Self describing. Both CBSE and SOSE share the
same self describing characteristic with their own
specialization. In CBSE, the component specification is
the key to the component’s self describing
characteristic and specifies the rules that the
components must conform to.

In SOSE, the service description is the key to the
service’s self describing characteristic. The service
provides its clients with all the relevant information in
the service descriptions, which contain combinations of
syntactic, semantic and behavioral information.
3.2.3. Self contained. In CBSE, components can be
self contained. For example, for CCM, a component is
‘a self-contained unit of software code consisting of its
own data and logic, with well-defined connections or
interfaces exposed for communication. It is designed
for repeated use in developing applications; either with
or without customization’ [22].

In SOSE, services are self contained. The services
provide the same functionality regardless of the other
services, even if any other services may fail for some
reason.
3.2.4. Stateless. Both components and services can be
stateful or stateless. In SOSE, stateless services are
used to meet the performance requirements and in
some circumstances, the stateless property is optimal
for services’ reusability. As a result, the services should
minimize the amount of state information they manage

and the duration for holding the message information.
Otherwise, the services would not be able to timely
correspond to other service requesters. On the other
hand, there are circumstances when stateful services are
necessary so as to maintain states across several
method calls by the same service requester. The service
object creation policy determines whether a stateful
service can be returned.
3.2.5. Location transparency. In CBSE, some
component models can provide location transparency,
e.g. DCOM allows component-based applications to be
distributed across memory spaces or physical machines
using proxies and stubs.

In SOSE, since services have their descriptions and
location information stored in the service registry
through e.g. UDDI, which is accessible to a variety of
service requesters, services can be invoked by service
requesters from different locations.

3.3. Development process concerns
 Three aspects related to development process are

identified for further comparison.
3.3.1. Building from pre-existing entities
(components or services). The main idea for CBSE is
to build systems from pre-existing components. This
feature applies in the same way for SOSE in the sense
that systems can be built from composing appropriate
pre-existing services to meet certain business
functionality.
3.3.2. Separation of development process of system
and entities (components or services). In CBSE, the
development process of component-based systems is
separated from the development process of
components. This feature applies in the same way for
SOSE in the sense that services can be developed by
various service providers across organizational
boundaries and the service requesters need only to
discover and invoke the services.
3.3.3. Development process. In CBSE, engineering a
component-based software system is a process of
finding components, evaluating and selecting proper
components, testing, adapting if necessary and
integrating the components into the software system,
e.g. in the COTS-based development process. In SOSE,
engineering a service-oriented computing system is a
process of discovering and composing the appropriate
services to satisfy a specification [8]. The process of
service discovering, matching, planning and composing
is essential. Service-oriented engineering process
focuses more on run-time activities, such as
dynamically adding, discovering and composing
services illustrated in Figure 2.

Figure 2 Comparison of typical activities during development process in CBSE and SOSE

3.4. Technology concerns
Three aspects are identified for further comparison:

technology neutrality, encapsulation and static or
dynamic behavior.
3.4.1. Technology neutrality. In CBSE, components
need to conform and follow the rules that are set up by
a specific component model. As a result, the feasibility
to compose components of different component models
is relatively limited. On the other hand, compliance to a
certain technology may also lead to advantages in the
sense that many solutions can be optimized since they
can be directly supported by the specific technology.

In contrast to CBSE, SOSE provides the feasibility
for services to be implemented in diverse technologies
and for multiple applications running on different
platforms to communicate with each other. This
feasibility is enabled through applying commonly
accepted message standards for interface descriptions
to the services. Hence, the enterprise applications or
solutions can cut across technology and platform
boundaries, performing business functionalities by
composing services from different sources of service
providers.
3.4.2. Encapsulation. Encapsulation means that the
business logic and implementation are shielded from
the outside world. CBSE supports a variety of
encapsulation types, ranging from white box exposing
all the implementation, or gray box exposing parts of
component implementation to black box. In the cases
of white box and gray box, the component clients have
the flexibility to make modifications to the component
in order to meet specific needs in their solutions.

In contrast to CBSE, SOSE supports only black box
encapsulation. The logical view of a service consists of
one or a set of service interfaces and service

implementation. A service can be regarded as a
business logic entity which can be accessed and
executed through the well-defined and formal
interfaces by any service requester that wants to use the
service. This is called the service interface level
abstraction [5], which enables the services to act as
black boxes, leading to the inflexibility of service
requesters to modify services.
3.4.3. Static vs. dynamic. Two aspects are concerned:

(1) Binding
There are two types of binding: early binding and

late binding. Early binding allows clients to obtain
compile-time type information from the component’s
type library. Late binding allows clients to bind to
components at run time and the compiler has no clue
during build time about the method calls that are to be
made at run time.

CBSE allows static early binding and supports
dynamic late binding in some component models. An
example is early and late binding to COM components.
In early binding, the components are instantiated as
needed and invocations of operations are based on the
interface definitions, statically checked and bound to
by the compiler. In late binding, components are bound
by invoking IDispatch methods in COM that redirects
dynamically to the sought interface. The choice of
static or dynamic binding has both pros and cons, and
consequently need to be taken into consideration
during design. Static binding between components may
lead to the disadvantage of less flexibility in facilitating
changes, but it allows for stronger type checking during
compile time and is much faster than the late binding
approach.

SOSE allows only dynamic binding. The service
requesters make targeted named calls and search in the
service registry for a specific service. When the service

requesters find the services that match certain criteria,
the service requester will use the service description to
make a dynamic binding with the service provider.

(2) Dynamic discovery and availability
Discovery implies the ability that an entity

(component or service) is discovered for use.
Availability is the ability that an entity (component or
service) is operational or accessible when required for
use. In CBSE, dynamic discovery and dynamic
availability of components are not the major concerns
[3].

In SOSE, services exhibit the feature of dynamic
availability, since they can be added or removed from
the service registry at any time. Consequently, services
are readily available running entities and need to be
dynamically discovered and composed in run time.

3.5. Quality concerns
Quality attributes can be classified into life cycle

properties and run time properties. Hundreds of quality
properties exist and we can not analyze all of them.
Therefore, we choose only quality attributes that are of
common or related interest to CBSE and SOSE.
3.5.1. Reusability as life cycle property. CBSE
emerged to accelerate reusability of software.
However, there are some constraints in achieving
component reusability, such as component
specification should be explicit, no architectural
mismatches among composed components, etc.

Similar to CBSE, services can be reused to construct
applications. In SOSE, the concern in having similar
architecture needs not to be taken into consideration
because of the technology neutrality, platform
independence and interoperability characteristics of
SOSE. On the other hand, extra emphasis is put on
having explicit service descriptions.

There are several factors that contribute to the
reusability of components and services. Firstly, both
components and services are composable. This implies
that the level of granularity of components and services
need to be considered when taking reusability into
account. The design of operations should be in a
standardized manner and with appropriate level of
granularity [5] so that the components or services can
be reused and composed. Secondly, the separations
between component/service development and
applications also promote component and service
reusability.

Recently, researchers have been active in
investigating the possibilities of enhancing service
reusability with service-oriented architectures. One
study is presented by Zhu in [19], where he proposed
the idea that services are new types of components and

service-oriented architectures may provide more
chances for the development of reusable components.
3.5.2. Substitutability as life cycle property.
Substitutability means that alterative entity (component
or service) implementation may be used with the
constraints that the system can still meet the
requirements on functional level and non-functional
level. According to [15], white box and gray box reuse
very likely prevents the component substitutability. In
such cases, explicit conventions about the
implementation information and changes that are made
in components are required to achieve substitutability
[4].

In SOSE, since the service-oriented interaction
pattern enables the loose coupling characteristic
between a service requester and service providers,
services can be substituted with new services as long as
the service descriptions fulfill the criteria from service
requesters.
3.5.3. Interoperability as runtime property. The
main idea in CBSE is to assemble components together
to perform certain functionality. However, each
component conforms to a certain component model that
specifies different rules from another component
model. Therefore, interoperability between
heterogeneous components is still a challenging issue
in CBSE. Although in some circumstances,
interoperability can be achieved through implementing
wrapper class or proxies.

On the other hand, broad interoperability among
different vendors’ applications and solutions can be
achieved in SOSE through the use of well accepted
standards. For instance, WSDL, UDDI, SOAP, XML
[23]. These descriptions are independent of underlying
platform, programming languages and implementation
details and therefore promote interoperability.

3.6. Composition concerns
3.6.1. Heterogeneous vs. homogeneous composition.
In CBSE, components can only be assembled
according to the rules specified by a specific
component model; there is not much feasibility to
assemble components that conform to different
component models.

In SOSE, services which access and combine
information and functions from different sources of
service providers can be assembled into composite
services to perform particular tasks [12]. The service-
oriented software engineering principles, such as
services are platform independent and loosely coupled,
offer the feasibility that services from different sources
of service providers can be used in the same composite
service.

3.6.2. Design time/run time composition and
composition mechanisms. In CBSE, components can
be composed at design time and run time. Design time
composition allows for optimization [4]. A component
detaches its interface from its implementation, and
conceals its implementation details, hence permitting
composition without need to know the component
implementation details [1]. The mechanisms for
component composition vary from method calls, to
pipes and filters or event mechanism [4]. Furthermore,
component models provide also general architecture
and mechanism for component composition. For
example, component models require components to
support introspective operations to enable component
composition at assembly time or run time [17], e.g. the
functionality and properties of the components can be
discovered and utilized automatically at assembly time
or run time.

In SOSE, services are composed at run time.
Several mechanisms exist to compose services, such as
pipe and filter which can direct the output of one
service into the input of another service, orchestration
and choreography. Orchestration utilizes a high-level
scripting language to control the sequence and flow of
service execution. It describes the behavior and
interactions of a specific service provider with other
involved services. BPEL4WS (Business Process
Execution Language for Web Services) and WSCI
(Web Service Conversation Interface) are examples of
web service orchestration languages. Choreography
describes the interactions between service providers
that are collaborated for achieving business
functionality. WS-CDL (Web Service Choreography
Description Language) [24] is one example of
choreography languages.
3.6.3. Predictability. In CBSE, the predictability of
non-functional properties of the composition
components from the properties of components remains
to be a challenging issue. However, compared with
SOSE, the use of static binding in CBSE may provide
to a certain extent better predictability because of the
clarification of interface-based design during assembly
time.

To some extent, SOSE faces even more challenges
in predictability because of its dynamic discovery and
dynamic availability behaviors. Some of the examples
of the challenges include how to predict the quality of
service when services are discovered and invoked
dynamically during run time, how to predict the quality
properties when services are composed at run time?
These are still interesting open research issues.

Based on the above comparison analysis, the main
similarities and differences between CBSE and SOSE
are summarized in Table 3.

Table 3 Summary of similarities and differences of CBSE
and SOSE

 CBSE SOSE

Pr
oc

es
s

Building system from pre-
existing components.
Separate development process
of components and system.
More activities involved in
design time

Building systems from
pre-existing services.
Separate development
process of services and
system. More activities
involved in run time

T
ec

hn
ol

og
y

Constrained by component
models. Ranging from white
box, gray box to black box.
Static and dynamic binding
between components.
Dynamic discoverability is
not a major concern

Platform independency.
Black box. Only dynamic
binding between services.
Dynamic discoverability

Q
ua

lit
y

Interoperability concern
between heterogeneous
components. Achieve
component substitutability
through explicit
specifications. Better
predictability

Interoperability through
universally accepted
standards. Achieve
service substitutability
through service
descriptions.
Predictability issue

C
om

po
si

tio
n

Homogenous composition.
Design time and run time
composition and design time
composition allows for
optimization. Pipe and filter;
event mechanism etc.
Composition is made out of
several component instances

Heterogeneous
composition. Services are
composed at run time.
Pipe and filter;
orchestration etc.
Composite services are
built by composing
service descriptions

4. Discussions
Because of the diverse nature of software systems, it

is unlikely that systems will be developed using a
purely service or component-based approach [10].
Therefore, the ability to combine the strength of CBSE
and SOSE and use them in a complementary manner
becomes essential. So far, a lot of research has been
done in combining the strength of CBSE and SOSE for
improved quality attributes of software solutions. Jiang
and Willey proposed a multi-tiered architecture [9] that
offers flexible and scalable solutions to the design and
integration of large and distributed systems, where the
architecture makes use of both services and
components as architectural elements, offering
flexibility and scalability in large distributed systems

and meanwhile remaining the system performance.
Wang and Fung [17] proposed an idea of organizing
enterprise functions as services and implementing them
as component-based systems in order to offer flexible,
extensible and value-added services. Cervantes and
Hall [3] addressed introducing service-oriented
concepts into component model to provide support for
late binding and dynamic component availability in
component models. Since CBSE and SOSE keep on
developing rapidly, exploring their combination
potentials is still one interesting research topic.

5. Summary
In this paper, we have presented a comparison

framework for component-based and service-oriented
software engineering and discussed briefly the research
efforts that have been done in combining the strengths
of CBSE and SOSE for improved quality attributes.

An explicit clarification of the concepts, principles
and characteristics of CBSE and SOSE is the first
necessary step before further exploration in efficient
utilization and reasonable combination of them in
future applications. Discussions on state of the art
research with respect to how to combine the two
technologies in a complementary way can be helpful
for further investigation of the long term advantages in
introducing service-oriented architecture into
component-based development, and integrating
component-based and service-oriented architecture to
offer added value in system development.

6. References
[1] M. Aoyama, “New Age of Software Development: How
Component-Based Software Engineering Changes the Way
of Software Development”, Proceedings of 1st workshop on
Component Based Software Engineering, 1998.
[2] A. Brown, S. Johnston, and K. Kelly, “Using Service-
Oriented Architecture and Component-Based Development
to Build Web Service Applications”, A Rational Software
White Paper, 2002.
[3] H. Cervantes, and R. S. Hall, “Autonomous Adaptation to
Dynamic Availability Using a Service-Oriented Component
Model”, 2004.
[4] I. Crnkovic, and M. Larsson, Building Reliable
Component-Based Software Systems, Artech House
Publishers, 2002.
[5] I. Crnkovic, S. Larsson, and M. Chaudron, “Component-
Based Development Process and Component Lifecycle”,
Information Technology Interface, 2005.
[6] R. M. Dijkman et al, “The State of the Art in Service-
Oriented Computing and Design”, 2003.

[7] S. Hashimi, “Service-Oriented Architecture
Explained”, http://www.ondotnet.com/, 2003.�
[8] M. N. Huhns, and M. P. Singh, “Service-Oriented
Computing: Key Concepts and Principles”, IEEE Internet
Computing, Service-Oriented Computing Track, 2005.
[9] M. Jiang, and A. Willy, “Architecting Systems with
Components and Services”, Information Reuse and
Intergration, 2005.
[10] G. Kotonya, J. Hutchinson, and B. Bloin, “A Method
for Formulating and Architecting Component and Service-
Oriented Systems”,
http://scse.comp.lancs.ac.uk/pubs/KotonyaHutchinsonBloin_
SOSEBook.pdf, visited 2007.
[11] R. van Ommering, F. van der Linden, and J. Kramer.
“The koala component model for consumer electronics
software”, In IEEE Computer, pages 78–85. IEEE, March
2000
[12] M. P. Papazoglou, “Service-Oriented Computing:
Concepts, Characteristics and Directions”, Proceedings of the
Fourth International Conference on Web Information
Systems Engineering (WISE), 2003.
[13] M. P. Papazoglou, P. Traverso, S. Dustdar, and F.
Leymann, “Service-Oriented Computing Research
Roadmap”, 2006.
[14] Z. Stojanovic, and A. Dahanayake, Service-Oriented
Software System Engineering: Challenges and Practices, Idea
Group, U.S, 2004.
[15] C. Szyperski. Component Software – Beyond Object-
Oriented Programming, Addison-Wesley, 2002.
[16] W. T. Tsai. “Service-Oriented System Engineering: A
New Paradigm”, Proceedings of the 2005 IEEE International
Workshop on Service-Oriented System Engineering (SOSE),
2005.
[17] G. Wang, and C. K. Fung, “Architecture Paradigms and
Their Influences and Impacts on Component-Based Software
Systems”, Proceedings of the 37th Hawaii International
Conference on Systems Sciences, 2004.
[18] M. Winter, C. Zeidler, C. Stich, “The PECOS Software
Process”, Workshop on Components-based Software
Development Processes, ICSR 7 2002
[19] H. Zhu, “Building Reusable Components with Service-
Oriented Architectures”, Information Reuse and Integration,
2005.
[20] Component-Based Design and Integration Platforms,
http://www.artist-embedded.org/, 2002.
[21] Arcticus Systems, Rubus component model,
http://www.arcticus-systems.com
[22] OMG. CORBA Components. Report ORBOS/99-02-01.
[23] W3C. World-Wide-Web Consortium: XML, SOAP,
WSDL, http://www.w3c.org/
[24] W3C World Wide Web Consortium, Web Services
Choreography Working Group, http://www.w3.org

