
Experiments with Component Tests to Improve Software Quality

1,2Sigrid Eldh, 2Sasikumar Punnekkat, 2Hans Hansson
1Ericsson AB, 2Mälardalens University

Sigrid.Eldh@ericsson.com

Abstract

In commercial systems, time to market pressure often
result in shortcuts in the design phase where
component test is most vulnerable. It is hard to define
how much testing is cost effective by the individual
developers, and hard to judge when testing is enough.
Verification activities constitute a major part of the
product cost. Failures unearthed during later phases
of product development escalate the cost substantially.
To reduce cost in later stages of testing by reducing
failures is important not only for Ericsson, but for any
software producer. At Ericsson, we created a scheme,
Software Quality Rank (SQR) as a means to improve
quality of components. SQR consists of five steps,
where the first is where the actual “ranking” of
components takes place. Then a selection of
components is targeted for improvement in multiple
levels. Most components are targeted for rank 3, which
is the cost-efficient quality level. Rank 4 is intended for
code with optimizations whereas Rank 5 is the target
for safety-critical code. The goal of SQR was to
provide developers with a methodology that prioritizes
what to do before delivery to next system test phase.
SQR defines a stepwise plan, which describes how
much and what to test on component level for each
rank. It gives the process for how to prioritize
components; re-introduces reviews; requires usage of
static analysis tools and defines what coverage to be
achieved. The scheme has been used with great
success at different design organizations within and
outside Ericsson and we believe it supports industry in
defining what cost-efficient component test in a time-to
market situation.

1. Introduction

Telecommunication systems are large complex
systems. They combine proprietary hardware,
firmware and software, are often constructed with fault
tolerant and fail-safe features, on distributed, self-
organizing component based system often including
several gigabytes of interacting software using

multiple protocols. Testing these systems is a
challenge, due to the low observability of failures, but
also due to the sheer scale and complexity. The
reliability of these systems is a great concern, since the
customers demand high-quality systems. In our
industry, reliability means achieving telecom grade
quality, i.e. 99.999% uptime of the systems. Testing of
these systems has historically involved multi-layered
functional and non-functional testing, and we have felt
that the focus on automated testing, regression suites
and functional test approaches have in a pressured time
to market left the designers own testing somewhat
compromised. The time pressure in industry has
changed the developers processes from careful
implementation, desk-check, review and test in
isolation to a coarser process, not explicitly defining
what should be done other than “produce code”. There
are a lot of available approaches for component test
involving both dynamic and static testing. At Ericsson,
we defined a step-wise improvement model, that we
call Software Quality Rank (SQR), to guide our design
teams in component test improvements. We have
piloted this model during an 18 month project,
commencing 2003, where 9 design organizations with
a total of 23 design teams from around the world
participated. Now SQR is used both across Ericsson
and at other companies and contributes to better
quality. The experiences while applying these
experiments and the result of the experiments, have
given us insights in difficulties of deploying
improvements.

The outline of this paper is as follows: section 2
describes what SQR is, the intent and the different
steps in the SQR model. In section 3, we describe the
experiments in the different development
organizations. Subsequently, achievements and
validation aspects is described followed by related
work. We present our conclusions and directions for
further work in last. We have written this paper in a
fashion that will make it possible to use and utilize the
concepts at other industrial settings.

mailto:Sigrid.Eldh@ericsson.com

2. Software Quality Rank
What is Software Quality Rank? It is an

improvement program focused on the definition and
improvement of component test for software
developers. The basis of SQR is the idea that there
exists a way to select what parts of the software that
should be improved, and if a strategic choice of what
components to improve is made, it will impact the
overall system quality. SQR will take into account new
code, legacy code and modified code.

2.1. Motivation

This improvement program is based on the
assumption that some form of component testing is
already done, since design organizations have
delivered software that has been used commercially for
years. The problem we are aiming to address is that too
many failures are found too late in the different testing
phases before delivery, which makes development
costly. Testing quality into the system at the functional
or system test level is possible, but the result is long
delivery times since regression tests needs to be
performed in addition to a lot of failure administration
(e.g. analysis, debugging, correction, and fault
prioritization and handling). The idea is to move some
of the test effort from the test organization to the
development and design organization. The extra time
should then be spent on quality enhancement at
component test, before handing over to the next test
phases, such as functional and system test. We wanted
the quality to be more predictable at an earlier stage, so
that we could estimate better how much testing
remained before release. We analyzed our failures and
faults, and draw the conclusion that many of these
faults could have been prevented at much earlier
stages, when they could have been manifested. It
seems logical that the lack of test education in the
design organization has an impact on quality. Most
universities lack education in software testing, except
for brief introductions as part of software engineering
courses. This is not sufficient knowledge required to
perform solid testing. Many developers become
developers because they do not like to test, and assume
that that is what testers’ job is. The most common
cause to bad quality from developers is to our minds is
that there is not enough time in the development phase
set aside for quality improvements.

We believe that by introducing this improvement
program we can support developers on what quality
work they should focus on, [5], [6]. What is more
important is that the selection of targeted components
is done in a way developers have themselves chosen.
This makes the developers committed, since have

chosen based on what they believe is reasonable to
perform within the time given. When developers have
an efficient test environment, good tools at hand and
the knowledge of how to produce quality software,
they are more likely to do so. They become more “fault
aware” and we can also see a trend that they mature
into writing and designing software that is more
testable. All of this results in better code and quality
software.

Software Quality Rank consists of five
improvement steps that we have attached with different
meanings.

2.2. First Rank – Quality Awareness

In this phase, you select the code to be targeted for
improvement. If you have legacy code, you must
select which of these components that could be
targeted for improvement. This means that you have to
be “quality aware”, or in other words, know what
quality your entire software has. This awareness will
make it possible to focus your efforts in a cost efficient
way. You select targets by a series of actions. We
suggest that you investigate what tools you have at
your use, or can get to work in your environment.
With these tools, you collect basic measurements on
your code. We suggest simple measurements such as
Lines of Source code (without comments), what your
current test suite yields in coverage, any complexity
measurements that could contribute to understanding
the software, for example, call-pair, nestled calls,
McCabe’s Cyclomatic Complexity, Halstead Volume
metric. All of these measurements are just contributing
factors to support the judgement of selecting
improvement targets, but should not be defining. The
most important measurement is to use known failure
statistics of the different components and try to
establish the number of faults for each component. All
the software that is in production, in customer use, and
performs well should be “removed” from the target
list. With performing well, we mean components that
have none or very few and seldom reported failures
(anomalies) that too of low severity. The target list
now only contains candidates for improvement, but
they should be prioritized, from the worst components
(many high severity failures) to bad (some failures) in
a strict ranking order. To this list you should now
apply business aspects, which imply that you remove
short-lived components, low-usage, low market value
etc. The reason is that it is not economical to invest in
these components. What remains now, is a list of the
possible targets among legacy components, where your
developers agree these are all the main targets of
improvement. You could also add subjective aspects of
selection, e.g. components with bad design,

component code difficult to maintain, written by many
different developers etc. The next part of creating the
targets is to prioritize all new code. The reason is that
they have not been tested and we can assume that they
are more fault-prone than legacy code. Depending on
the amount of new code, which is often substantial, our
observation is there will not be enough time to target
all new code created. We suggest you to prioritise also
the new code based on importance. Finally, the new
code is impacting the existing code – which we call
modification code, should be selected on a case by
case basis. Sometimes you change very little, but in an
intricate and sensitive part of the software. Even minor
faults in these parts could propagate to severe failures.
Sometimes the change is a minor change even if it
affects a lot of code, and then selecting this area as
target might not be the first choice (even if we suggest
testing should not be ignored). These three “lists” of
legacy, new and modified target components should
now become one list, with an emphasis on new code,
some really bad legacy code, and the most important
modifications. If any of the lists coincide, for example,
if the new code will impact the legacy in a bad place
and modifications are risky – this could be a target.
The resulting list should be what the developers
themselves believe are the most important areas to
spend additional time to improve the quality on, since
if they do not believe it – it will not be done at all. This
is the “baseline” of what we suggest should be targeted
in the next project for special quality improvement. In
a time to market software development, what should be
targeted for improvement, will probably take too long
for the projects time limits. Therefore, it is important to
do a selection from the top of this list, within time and
budget limitations and document that in the component
test plan for the project. We suggest that the selection
should also have in mind practical aspects, for example
that all developers have at least one selected
component each, so that the selection does not become
unevenly distributed, but a team improvement.

This component test plan is a key document for
SQR. It is important for the long and short term
(project) view that defines what should be targets for
quality improvements. It will work as a suggestion
from development to management of what should be
targeted, and if management does not agree with the
limitations of the list, more time should be added to
development, or fewer components could have that
extra quality attention. The plan will also serve as a
“contract” and will be commitment from the
developers, and a good aid for management to follow
up progress.

The final requirement in this quality awareness
phase is to investigate the possibility to perform the

next steps of improvements. This means that tools to
measure coverage must exist that can handle
automated test suites and a test environment that works
with these tools must be created. If no tools exist, they
must be procured, installed and sufficient training
should be provided as a part of the component test
plan.

Now the project only have one last part to define,
that is to make a checklist adapted to the own tools,
process and terminology. This checklist is a way to
check that the selected components have reached its
rank level. Each improvement requirement for each
rank can be transformed into a question that will be
checked before delivery. These checklists make it
possible to follow up and hand-over correct
information to stakeholders, such as project
management, test organisations and line management.

2.3. Second Rank – Quality Improvement

In rank two, the actual improvement is performed
on the selected targets from rank 1, as defined in the
component test plan. Rank 2 will define requirements
for these improvements, where the most important task
is to perform then (learn how). Reviews are common
practice, since many decades, in Ericsson, and every
project defines which documents should be reviewed.
We believe that code reviews and quality improvement
reviews are often dismissed by development projects,
which usually spend their effort reviewing design
specifications and requirements to make sure they are
clear and understood. In rank two there is a
requirement that code should never be a one -person
responsibility. It is important that more than one
person have reviewed the code. We do not believe it is
cost efficient to review all code with the entire design
team, but it is important that selected parts of code
should be reviewed. In particular, we suggest that
header files should be reviewed, since they specify
interfaces, parameters of importance and other
valuable information. We have the requirement that
input value boundaries (maximal and minimal values)
should be explicitly mentioned in the header files, to
ease the creation of test cases. In addition to the above
focus, the review should also include if the code is
effective and if there are special dependencies to other
components that matters.

This is also the place to measure the percentage of
comments, where 0% is also acceptable. The number
of comments depends greatly on how they are written.
The quality of the comments are more important than
the number, which means that comments are reviewed
with the aspect of maintainability and usability for
another developer.

It is difficult to define the minimal documentation
for a component that would enhance understanding
and transferability. We suggest the best approach is to
try and capture what a developer would tell a fellow
developer, to add just the right information that
minimizes the time to read and understand the code.
We suggest that the easiest way is to use modern tools,
basically have the main designer explains the code, and
either make a video-clip of this information into the
software repository or take a photo of the sketch and
make that a part of the documentation. The least
efficient way is to spend hours drawing flow-charts or
creating full-fledged state-transition diagrams. What
surprises us is that most people draw a sphere-arrow
diagram when explaining code that could easily be
transformed into a state-chart diagram, where of course
some spheres are complex – and that one must either
accept abstraction or go directly to view the code.

Other targets for review are the automatic test
scripts, since we have noticed that this code is often at
a much lower quality, containing hard-coded values
instead of a maintainable test-script.

We suggest that simple measurements from the
reviews should be collected at this stage. Suitable
measurements could be, i.e. number of participants,
time of preparation and review, and the number and
severity of faults and improvements. These simple
review metrics will not require much extra effort, but
will give the group an indirect way to evaluate their
efforts in review, and stay focused.

Assuming that the code is prepared, we have a
requirement that static analysis tools should be used. In
the first version of SQR, the focus was to categorize
the different warnings from a Static Analysis tool (i.e.
Lint, Flexlint) in five different stages. The reason
being that there are a lot of warnings and it is not easy
to judge the importance of the warnings. We do not
want to over-exaggerate the contribution of such tools,
but they are definitely helpful. The aim is to make
developers see these tools as an extra pair of reviewing
eyes, and thus as an aid in their task to desk-check
their own code, instead of a burden of abundant set of
warnings. The aim is to execute the code with the tool,
analyze the result, and correct as much as possible. If
warnings remain in the code, any new warnings are
easy to miss. We think that the tool Coverity have
brought this to a new level, finding problems rather
efficiently. We are of course recognizing that there is a
lot of different static analysis tools with different
advantages and disadvantages, e.g. Parasoft, Lint and
similar [1].

In addition to reviews and static analysis tools, the
main task of this phase is to make a sincere test
improvement effort.

This means that we teach testing techniques [3],
such as equivalence partitioning (EP), boundary value
analysis (BVA), state-transition testing (ST) and the
different coverage measurements as structural
techniques. The requirement is that at least equivalence
testing is performed, with exercising both allowed and
disallowed parameters (the latter we call “negative
testing”). We have noticed that many developers in
large complex systems tend to execute their load
module in the existing context of the system, instead of
spending their time to stub every aspect. They are also
primarily using functional (traditional “black-box”)
test approach, where they are exercising the normal
case of the component through its interface. Here the
aim is to make developers aware of the limitations of
such testing, with the first goal to create many more
functional test cases that would be as complete as
possible from a functional point of view.

We measured the number of test cases that existed,
and how many new test cases have been produced, and
did not pay attention to how big a test case is. We have
the requirement that normal cases and the most
common fault cases should be executed. We encourage
an “automatic regression suite” of the component to be
created by programming test scripts. These test scripts
should be treated as normal code, have header
information etc. The test scripts do not need extra
written documentation other than a very high-level test
specification. The test script should clearly specify
what it tests. There is no need to say how much or
what should be automated. We assume that developers
like writing code, and this is a natural way to create
tests. What might be new is using a test harness tool,
or a test framework with templates available, which
will ease the maintainability of such test scripts.

This test suite are then measured with a coverage
tool, which should give the developer adequate
feedback on how well it is tested. We have used the
general assumption that 50-70% statement coverage
means the normal cases of the code have been covered.
To test fault cases, you have to add more test cases.
Using coverage to create test cases is a good help to
make sure the code is understood. A lot of faults is
hiding in those fault cases.

We encourage 100% feasible statement coverage
[2], which gives room to decide what is feasible
(economical, cost-efficient, possible) to perform. A
component can sometimes consist of several hundreds
of files. A deliberate priority within the component
should be done on what files that should achieve 100%
statement coverage and which should not. The average
of the component could be as low as 85%, since good
code in our context is assumed to consist of many
security and safety entries that can never be reached.

Also we have noticed that software that handles
hardware might sometimes be harder to test in full (as
well as kernel code of operating systems). 100%
statement coverage means that it is not completely
tested. At the end, it is good testing we want, and not a
good measurement. Yet, the developers have to be able
in an assessment to justify their achieved coverage and
explain any low numbers. Priority within the
component is vital. We have seen the coverage to be a
very beneficial tool, if used with sense, and in the
order we have suggested.

Finally the rank 2 requires that memory checking is
performed using tools, such as Purify. We have also an
option that profiling can be used if it is applicable at
this low level. Having an efficiency check of the code
is useful, since many small components contribute to
the overall performance. It is a danger to make this
mandatory, since sub-optimizing might not be
efficient, but one example is that if it is possible to
measure e.g., send or receive something that might be
easily timed at this low level. It is a good stage to
capture performance problems. All these items are then
checked, and documented with appropriate logs and
references in the checklist that is delivered with the
code.

2.4. Third Rank – Transfer Quality

The third rank is aimed to be the goal for most
components (95%) in commercial software. This is the
most cost-efficient quality improvement, and spending
more time will find more faults, but requires more time
and resource investments that needs to be justified.
This rank level is based on what senior developers,
with good quality sense are doing to make sure that the
code and its documentation is sufficient, the code is
possible to transfer, and the code is maintainable
without extra investments. The idea is that the
improvement here becomes only some direct actual
doing, but more of a checking of the component to
make sure all documents (incl. test docs) are in place.
The reviews performed should be with the additional
focus that the documents are good enough to
“handover” to another party, and that review meeting
should be with stakeholder’s presence. Here, testers
can be invited to review test scripts and test
specifications, and a maintenance organization can
participate in both design and code review for selected
parts of the software. This could be planned from the
beginning of the project, and rank three should not be a
costly phase to achieve.

The focus is again to improve test by adding tests –
by exploring the input better, i.e. making a boundary
value testing (three values for each boundary). Also
loops, nestled calls, implicit else etc should be

explored. The aim is improve the testing with more
and better fault scenarios, and the goal is to reach 80%
feasible branch coverage, and explore basic conditions
if they are prioritized. Parts of the code could be target
for state transitions or state chart testing. Initially we
had several measurements (complexity) here, but this
has been dropped, since we feel they do not contribute
to quality improvements. The aim is to conclude that
the component has been tested, measured, reviewed
and have sufficient documentation to be transferable
with a small cost. In rank 2 we believe the component
is ok, where as in rank 3 we are confident will perform
ok. Yet it is important to point out that this is a cost
efficient judgment on the component, and we have
made an effort to find the “right” level.

2.5. Fourth Rank – Critical Code Quality

At rank 4, we change the concept from discussing
components to discussing code. In particular, we are
selecting critical or central parts of the code, within a
component that should be of rank 3. This could also be
code that should be optimized for performance,
memory utilization, size or similar constraint. Here we
claim that if that part of the code is so important, a
complete state transition diagram should be created on
that critical section of the code. This code (and its
dependencies) should be a subject to a more formal
inspection. In addition, better failure scenarios should
be discussed to try and create the code section as fault-
free as possible, and here 100% feasible branch
coverage is the goal, but we suggest to look at other
coverage measurements that are applicable (e.g. Linear
Code Sequence and jump, that is often called “loop
coverage”). We assume that by selecting a part of the
code for rank four means that the appropriate
additional improvement is conducted e.g. analyzing
messaging sequences. Optimized code is often more
difficult to maintain, which implies a better
documentation is needed.

2.6. Fifth Rank – Safety Critical Quality

We are aware that for safety critical code, a number
of standards exists that are mandatory and that
provides useful guidance for developers. We are just
making it clear that this is also the high-end of the
quality scale, and gives a perspective for quality. The
requirements are to perform formal inspections of all
code, perform a FMEA-analysis, but also to use at least
two different static analysis tools and two different
memory tools (since they find and enhance different
problems).

Profiling tools should be used if applicable, and
code should be used with all strict compiler flags set.

We have also noticed that executing the code by
different compilers can weed out some intricate
compiler faults. If the code is safety critical, the
documentation must be complete, and include training
material. The coverage requirements are at least 100%
state transition (n-2) coverage and 100% MCDC
coverage. In addition we suggest applying the domain
standards, e.g. DO-178B, FDA and IEC 61508.

Unfortunately, we have not had the opportunity to
explore the rank 5 improvement within Ericsson yet,
but some of our external users (medical and defense)
explained that the SQR scheme has been valuable for
the non-critical code, to make a more controlled
distinction of the quality levels of the code.

3. Experiment

Our experiment was within one world wide project
on a product with distributed design teams consisting
of 8 sites/organization and 22 design teams. These
design teams were more or less in parallel, and all
organizations had different history, motivation and
attitude to this quality improvement. We are trying to
describe these teams in a fashion that could be useful
for others with the aim to deploy SQR. We realize that
also culture has a large role, where e.g. Swedish
developers need to be convinced on a more personal
level than more eastern cultures. We have though
concluded that developers favor the scheme when they
understand the time-negotiating principle of quality,
and that the aim is really to make the work developers
spend on quality enhancement more explicit for
management.

There is a strong tendency that the word of mouth –
success of others, is the best motivator. We initially
spent more time with people who were willing to use
the scheme – and were more quality aware from the
start, which made it easier to sell the concept to others
if they had success and approved it. Therefore, our
target persons were the senior developers in the teams,
that would probably do most of the suggested work
any how, and the effort would not seem so
insurmountable. The senior designers are informal
leaders, and they took the initiative to put tools and
environment in place for the rest of the team.

3.1. Organization A

This organization did only perform SQR, and kept
the process as is (see the discussion in Validation
section). Therefore, this organization is the one of the
few that had a quality improvement based only on
SQR. This organization had two design teams. The
first was known to have better quality from the start
than anyone else, and could be viewed as quality

aware. They particularly appreciated to move from
only functional testing approach to a more structural
approach, and were welcoming tools, guidance of what
input to select, test techniques, and how to best utilize
code coverage. This team quickly selected one person
to do the main coverage improvement, but many of
designers improved their code according to the concept
anyhow. Rank 1 was not performed, so scope was the
entire software. This resulted in a doubling of
resources, where almost all parts targeted reached rank
3. Here reviews were already a part of the work and
test automation mandatory. The long term result
resulted in a flawless code, and very few faults were
found during the next two test phases.

The second design team had responsibility for new
hardware, and most of the personnel were new to
design this type of code. Also, some of the code was
outsourced, which added more risk. This team was
humble enough to ask for a lot of help during the
process, which we believe is one of the contributing
factors. They were also open for external assessments,
which had a positive effect on quality – If you know
someone is going to review your results, you put more
effort in. At the end, they had trouble achieving the
coverage measurements, mostly because of tools
problems, and the lack of suitability to do coverage on
kernel registers with available tools, but a targeted
quality effort brought the measurements up to
sufficient levels before release (which was postponed).
In particular, we assessed that the conscious review
and test targeting were the most beneficial parts of this
team's success, since we believe review helped the new
team to understand the context of the product. The
conclusion was that they reached rank 2 for 60% of
target and 10 % rank 3. The rest not fulfilled rank 2 in
especially for the coverage part, but in most other
aspects. This team when delivered to the next phase,
functional test, saved five weeks out of the normal six
that was the previous average for this hardware test,
which made the testers to be moved to other teams,
since quality criteria was already fulfilled. The
remaining work was with the outsourced part that had
not fulfilled the quality requirement and had
difficulties in testing their own software in their
environment.

The initial cost was expensive in this team (more
than double the cost in time of design, but the savings
of these two teams were so obvious, in all later phases,
that this impacted the entire project.

3.2. Organization B

This organization was early adopters of both the
new process and the SQR concept and consisting of 4
design teams. They were early selecting strong

champions to create an adopted checklist, that later
became standard within the entire project, and
introduced tools with tool champions, such as Test
Real-time (from IBM/Rational). Much of the test
scripts were already written in an internal tool based
on tcl, and these scripts were possible to measure using
the Test Real-time tools. These teams did an initial
assessment to understand their current status and
attitude and SQR started a strong internal debate on
quality. They took on a too big scope, mandating all
new and changed code should reach rank 2, which was
followed more or less enthusiastically. This made the
internal assessments and follow-up a bit too loose, and
the request to provide logs on actual coverage came at
a late stage. Three of the four teams focused on
increasing the number of tests. Static analysis was for
one of these teams considered a good contributing
factor spotting 18 real faults in the first run. Reviews
were made by all the teams, but again coverage was
late to be used as a tool and the test somewhat different
for all but one team. This was the team that had the test
tool champion, that delivered full automation and good
coverage, with many new tests added, but a long time
was spent on discussion on how coverage was actually
measured. Teams with strong champions had better
results. The team with the poorest initial result was the
team that delivered code generated from RoseRT. It
was a problem how coverage should be judged, since a
lot of generated code is unreachable. This team did
then really make an effort, and improved there results
substantially. Within this organization there were only
one team that had a low and a high demand for quality,
and these were late adopters within the team. Here a
result was also that this team transferred its code to
another organization.

The conclusive results for these teams were that
about 50% reached 90% of the rank 2 requirements
and 40 % reach approximate 70% of Rank 2
requirements. Only 10% of the ranking achieved rank
2. We believe reason was the wide scope was taken,
and rank 1 selection was not targeted enough.
Nevertheless, this was considered a substantial
improvement, with many strong champions still
working within the teams. The main problem we
observed was that during the next project the quality
approach was lost. We believe that the management
did the wrong judgment that “now when the code has
reached its quality - we can cut for development
again.” This was a mistake, that even if all touched
code was a target for quality improvement, it was not
completely fulfilled, and never reached rank 3, and
also a new project will target completely different parts
of the code, that modifications and the added new code
will still need its targeted effort. We also discourage

the fact that all new code must have Rank 2 which we
believe is an impossible task with the time given and
will work as a discouraging factor that makes the
checklist fill in an additional administrative effort
instead of a targeted improvement.

3.3. Organization C

This organization consists of 10 different design
teams, whereof 8 of 10 did attempt SQR and two teams
“cheated” by filling in fictive values. This became
revealed when we reviewed failure reports, where all
teams have improved substantially except these two.
We guess that no one would believe that someone
seriously would cheat, and rather bought the talk of
“these components being so special”. This
organization had weak initial interest, and made a very
minimalist checklist, which was later abandoned for
organization B’s checklist. The first two teams got no
extra time, and not until organization A and B had
started to show good results, this organization took a
serious look. In addition, the initial champion had
moved away to a new role, and the managers were
supposed to drive the improvement, something that
failed in all aspects. The top project management had
to assure that time was really given to achieve the
requirements of SQR 2, and the contract principle of
the component test plan won developers. Then the
team started to catch on, by creating test environments,
using test tools, and targeting the right components.
Here the “second best” persons were getting real
results and could actually see how they were saving
time for themselves, which finally convinced many
people to change. This team did also have a lot of rank
4 components, but the lack of sufficient tools,
substantial stubbing, etc impacted many teams to get
the real success. It is still hard to judge the result in
factual numbers on coverage in these teams, since they
were sensitive to outside assessment, but the test
maturity has improved tremendously for this
organization – which is the most important result. Not
only did the quality for 8 of 10 teams get lowered to
10% of their earlier average, but they also introduced
several steps of testing within the development phase.
So even if the new process is used, they moved during
this project from one test level to wanting four internal
test phases before release outside their organization.
The four levels are designer (stubbed), component,
multi-component and functional test. The conclusion is
impressive, and the remaining faults are often so
intricate that they are hard to trace and debug.

3.4. Organization D
These were the earliest adopters of the concept,

being suppliers in an external organization they saw
this as a requirement, and were the first to do the
checklist. In one sense, these teams were the most
experimental to the concept. In practice, we assessed
that they did well in all aspects of SQR that they
personally believed. They never understood
contracting principle internally in the component test
plan, but we believe they targeted software, even if
only a limited extra time was added. The main reason
is that the benefit of improved quality would result in
less work for the design team, since the savings would
be at test levels at later stages and outside the
development organization. At this time, that was not a
positive factor, yet we could see a will to make this
happen. The review concept, as a quality contribution,
was never taken seriously, and treated as a hand over
between two developers signing off the code. In all
other aspects, we believe the SQR was followed. What
was impressive in this team was the management
engagement, and that aim to perform well, where some
energy was set on test. They claimed themselves
having great success with the scheme, but it has been
hard to review from the outside. The result of this code
was in large parts outsourced further, due to economic
pressures. The most interesting result in addition to the
quality improvement (where all selected targets did
reach rank 2 according to them), is that the remaining
75% of the faults were related to memory problems for
this area, and that memory tools were used at the
lowest level, indicating that memory problems can
remain in later stages of testing.

3.5. Organization E

This team was a very tight team with partly
“unreasonable” quality demands (all or nothing)
approach to their software. They adopted the new
process and SQR at the same time, and what was
particularly interesting is their approach to static
analysis that found many faults. An intense use of the
tool, with dedicated two days with the entire team and
one champion that had learned and been champion of
the tool. Coverage figures were debated, but again
understanding the selection was not targeted enough,
and became more on the individual designers time and
interested for its component. In many aspects, they did
not fulfill rank 2 at all. In later analysis it became clear
that their budget was structured on maintenance, and a
too good quality would have lowered their budget (and
giving them less work), which is not a real internal
incentive of becoming too good for the organization.

3.6. Organization F
Organization F was consisting of two teams. This

organization could easily recruit people, and many
designers and testers were relatively new working in
Ericsson. Good management and early teaching on
testing made this team very interested in this quality
improvement, and they were very happy that there was
an increasing quality demand on the product, as they
saw as an opportunity for them. These teams embraced
the concept of SQR and were listening carefully to any
testing advice. The most problematic issues were the
component test plan and the contracting principle,
which they felt new in their role and it was difficult to
make a case with their management. Yet their focus
and interest motivated them to have good test behavior
early, and extra persons were added to the team instead
of giving them more time. Automating test was a
conscious decision of the entire team, which also
proved valuable. The result showed that rank 2 was
achieved in most cases, and the quality was
substantially improved. No later follow-up has to be
conduced, but we know for a fact this spread further
within their organization.

3.7. Organization G

Organization G was a mid-size team and has no
introduction or training in SQR ideas, except what was
written. They did instead make their own
“unauthorized” checklist that was a simplification. In
later review of the checklist, we found many principles
that were interpreted in a questionable matter. This
team had not understood the word “feasible” coverage,
and delivered 100% statement coverage of all their
components. Yet, no other functional testing was
made, which resulted in fault-prone software that had
many integration problems. The remedy was sending
several seniors on place to try and educate the team.
There were no particular SQR assessment or follow-up
in this team, but we mention it to point as an example
of how easy it is to misunderstand and misuse a good
concept, achieving “on the paper” some metrics, and
yet failing the quality.

3.8. Organization H

This final small team of 6 persons and one tester,
but medium size software, was an enigma. In the initial
teaching of SQR, we believed they had not grasped it,
but on follow-up, they exceeded all our expectations.
In later reflection this should have been judged as
winners, since they at their first meeting could present
factual information on their actual quality, which is a
good indication of control.

They grasped the internal (somewhat secret)
ambition of the entire SQR project that at least half of
the number of current faults should disappear after this
improvement. The thinking was if all individual
designers improved, the overall sum of faults would be
substantially less. This team had only 56 failures on
their software (and only acknowledged 26 of them as
true software faults). The goal was set at 13. There is
not much to say except that they followed SQR with
their own checklist in all aspects, and the final result
was only 6 faults were found in later stages, but also
this team managed a much earlier delivery and the
code was considered as a high quality code. The team
was definitely a very quality aware team, where all
components selected reached rank 3, and 2 according
to plan and it was hard to find anything that could have
been done better given the limited time and resource.

4. Achievements

In conclusion the failures in system test dropped to
10% of the earlier versions, and the conclusion is that
the SQR concept saved 67% technical hours,
diminishing the time for maintenance substantially. We
could see a reduced failure administration from
hundreds of problems a week to 2-3 failures every
second week.

The savings came in all later phases of the project,
which are different levels of testing. The assumption is
if the quality is good (great) from design, all sub-
sequential test levels, including corrections of code,
administration of failures etc will save a lot of time.
The reason is that a quality product will be faster and
easier to install, test suites will execute faster and less
regressions and re-deliveries have to be made, all
factors that save time. The quality improvement during
this 18 months project actually challenged the system
testers to re-design their test cases, and left room to
handle a lot of change requests, get control of back-
logs and basically return to a more reasonable working
situation. It is no secret this product was pushed a bit
too hard in the time to market race for release, and a bit
too many quality problems were a result of cutting too
many corners in earlier releases. Now this product is
viewed as the best in class, when it comes to quality
compared to its competitors. We definitely think that
the new process and SQR together have
unquestionably moved fault finding to the earlier
phases in development life-cycle. It is easy to view the
result, where we could see that now the organisation
(A-H) finds their own failures to 85% and the next
(internal) customer and external customer only finds
15% of the failures. The figures before this
improvements were vice versa.

5. Validation

The most problematic validation of the SQR
improvement is that a major process change was
introduced at the same time in this project. This moved
the process to a more integration centric development,
where developers and testers worked together in teams.
The process improvement was appreciated, and solved
some of the difficulties with large complex software,
such as the problems of incompatible interfaces and
instead focuses on frequent builds and constant
integration. Unfortunately, this makes it also difficult
to give all credit to the SQR scheme. Therefore two
additional investigations were conducted, one
conducted as a master thesis [4], which reviewed the
scheme and interviewed 30 participants. The
conclusion was that all but one person agreed that SQR
was strongly contributing to the quality achieved rather
than the process. All agreed that SQR put the focus on
having sufficient test tools and importance of good test
environment. The interviewed persons also had to
select the most contributing part of SQR, where
coverage measurement was most popular, followed by
the static analysis and code review. The part of the
contribution was getting direct and fast feedback on
how good the test suite was.

In addition to this, a second independent
investigation was done where all managers voted (A-
H) in this 1200 person large organisation on what had
been most contributing quality improvement. First
place took the new process improvement, but software
quality rank took second place, and “improved
component test” took third place. We are of course
puzzled in that distinction made, but nevertheless the
contributing factor was an awareness that is
undisputable in money saved, time saved and quality
achieved. It is no surprise the SQR is deployed in
many different ways across Ericsson.

The validity of these results can be debated. We
believe such a substantial improvement can not be
achieved by mere focus on quality or “Hawthorne
effect”, so these practices suggested must have quality
implications. We feel the statistics collected have so
many flaws in the way it was collected and reported
not to mention the discovery of teams misusing the
reporting, that we are very hesitant to make statistical
treatment of the data. We prefer to handle data as
trends in the context we have described. At the end of
the day more controlled experiments should be done,
and it is only the scale of this that gives an indication
that the results have some substance to it. We
encourage others to collect better measurements for
scientific and research conclusions.

6. Discussion and Insights

The most common question we got during the
introduction of this improvement is: What is a
component? Our explanations have changed, where we
have ranged from: managed item in the Configuration
Management tool, a conceptual item, the smallest
executable (identifiable) piece of code, to a more
general item with a clear interface that could be
executed in isolation. We view the debate as a decoy,
and this will be settled when starting to work with the
tools. If the component is set on a too high level, the
coverage result is too difficult to achieve.

The second most common question is what
coverage is enough. Again, all code is not equal, which
is an important factor. Also, it is the designer’s
confidence and aim that is important. 100% feasible
coverage (assumed statement) does not mean tested.
This is clearly shown when discussing conditions,
loops, and input, and developers becomes aware of this
fact. Therefore, we allow differences of coverage
within the component. The follow up question is what
coverage should be demanded? We believe our
approach to feasible testing has a strong case, but think
that the question reveals the wrong attitude. It should
instead be: How do you know if you tested enough?

We also believe that there exists no real answer on
how effective reviews are. It is difficult in practice and
depends on how you perform the reviews.

Static Analysis tools can be debated [1], but we
review the use of this is more common with quality
producing developers.

Our final question we would like to answer is, why
all do no have same success in quality when adopting
SQR? We assume activities were not preceded by an
assessment that showed component test as the main
problem. Secondly, we believe that often the initial
Rank 1, making a targeted selection was ignored, and a
too wide scope was selected. Scope, ignoring the
contracting principle, and a lack of motivation, seems
to be the main reasons to fail with the SQR scheme.

7. Related work

Many solid research papers have been written in
this area, encompassing review, static analysis and
coverage. Unit, component or module testing is not
new either. There is no secret that we are inspired by
Software Engineering Institute’s Capability Maturity
Model (CMM) [7] in the way to stage this as 5 levels.
The main difference is that CMM addressed the whole
process whereas our focus is on component testing
alone. The Swedish school-system have had a 5 level
grading, where 3 means “pass”, which made us – in

contrast to CMM, not thinking the ultimate goal is that
all code achieve level 5, but that the majority of the
code should instead should achieve “pass”.

8. Conclusions & Future Work

Ericsson did not only cut delivery time to less than
half, but the quality improvement was substantial. We
believe strongly that stepwise improvement is the best
approach, but there should not be too many steps to
achieve, as this adds complexity. We also conclude
that component test is probably a focus for many
organisations with time to market software, in addition
to system testing. We believe the focus is the
developers that at least within Ericsson have a major
quality impact. Therefore it is crucial to provide
developers with better tools and test environment. Our
future work will be to assess how this method changes
and is applied when the originators are not at hand –
and to continually assess the results of these changes.
We have understood the difficulty of proving these
experiences in a purely scientific setting.

9. Acknowledgements

Acknowledgement goes to the developers that have
made the improvement, and the Ericsson Management
supporting this work. This paper was funded by the
Swedish Knowledge Foundation SAVE-IT program,
through Department of Computer Science and
Electronics at the Mälardalen University in
cooperation with Ericsson.

10. References
[1]Emanuelsson, P., Nilsson, U.: A Comparative Study of
Industrial Static Analysis Tools, Linköping 2007, to appear.
[2] Zhu, H., Hall, P. A., and May, J. H.: Software unit test
coverage and adequacy. ACM Comput. Surv. 29, 4 (Dec.
1997)
[3] Reid, S.,: An Empirical Analysis of Equivalence
Partitioning, Boundary Value Analysis and Random Testing,
metrics, Fourth Int. Software Metrics Symposium
(METRICS'97), (1997)
[4] Stenmark, J., Boqvist, H.: Analysis and evaluation of
Software Quality Rank performed on Component Test,
Master Thesis, MDH 2004
[5] Eldh, S.: Software Quality Rank – An Improvement in
Component Test, Proceedings of the International
Conference ICSTest, Dusseldorf, Germany, April 2004
[6] Eldh, S.: Software Quality Rank- Improving Designers
Test, Tutorial of the 11th Int. Conference EuroStar, Köln,
Germany, November 2004
[7] Humphrey, W., Managing the Software Process, Addison
Wesley Professional, MA 1989

	1. Introduction
	2. Software Quality Rank
	2.1. Motivation
	2.2. First Rank – Quality Awareness
	2.3. Second Rank – Quality Improvement
	2.4. Third Rank – Transfer Quality
	2.5. Fourth Rank – Critical Code Quality
	2.6. Fifth Rank – Safety Critical Quality

	3. Experiment
	3.1. Organization A
	3.2. Organization B
	3.3. Organization C
	3.4. Organization D
	3.5. Organization E
	3.6. Organization F
	3.7. Organization G
	3.8. Organization H

	4. Achievements
	5. Validation
	6. Discussion and Insights
	7. Related work
	8. Conclusions & Future Work
	9. Acknowledgements
	References

