
Reusable Component Analysis for Component-Based Embedded
Real-Time Systems

Johan Fredriksson†� Rikard Land†

†The PROGRESS Centre for Predictable Embedded Software Systems,
Mälardalen Real-Time research Centre, Västerås, Sweden

�CC Systems, Västerås, Sweden

Abstract Component-Based Software Engineering
(CBSE) promises an improved ability to reuse soft-
ware which would potentially decrease the develop-
ment time while also improving the quality of the
system, since the components are (re-)used by many.
However, CBSE has not been as successful in the em-
bedded systems domain as in the desktop domain,
partly because requirements on embedded systems
are stricter (e.g. requirements on safety, real-time and
minimizing hardware resources). Moreover these re-
quirements differ between industrial domains. Para-
doxically, components should be context-unaware to
be reusable at the same time as they should be con-
text sensitive in order to be predictable and resource
efficient. This seems to be a fundamental problem
to overcome before the CBSE paradigm will be suc-
cessful also in the embedded systems domain. An-
other problem is that some of the stricter require-
ments for embedded systems require certain analyses
to be made, which may be very complicated and time-
consuming for the system developer.

This paper describes how one particular kind of
analysis, of worst-case execution time, would fit into
the CBSE development processes so that the compo-
nent developer performs some analyses and presents
the results in a form that is easily used for component
and system verification during system development.
This process model is not restricted to worst-case ex-
ecution time analysis, but we believe other types of
analyses could be performed in a similar way.

1 Introduction

Embedded and real-time systems have require-
ments not found in desktop systems such as real-time
requirements and resource efficiency. This is one rea-
son to why embedded and real-time systems have
more difficulties adapting to component-based soft-
ware engineering (CBSE) than, e.g., desktop systems.

Expected benefits from using CBSE include more
effective management of complexity, shorter time-

to-market, improved quality and higher maintainabil-
ity. Reuse is the main characteristics for component-
based development that would bring these benefits.
We believe that CBSE is easier applied in embed-
ded and real-time systems if context dependencies can
be relaxed or parameterized without sacrificing pre-
dictability and analyzability. Thus, the aim of this
work is to simplify reuse by relaxing context depen-
dencies through dividing analysis into one reusable
part and one specific part.

Our research goal is to support real-time for gen-
eral component-models, this paper presents one step
further towards that goal. We specifically focus on
supporting worst-case execution time (wcet) analy-
sis. We present a development framework that de-
creases the gap between embedded real-time system
and component-based development paradigms.

In previous work [12, 13, 14] we have devel-
oped methods for increasing analysis accuracy and re-
source efficiency of embedded real-time systems. In
this paper we put these methods in a larger scope, de-
scribing how the different actors, component devel-
oper and system developer, may use these methods to
enable higher potential for component reuse by per-
forming the analysis in such a way that analysis is
reused. The contribution of this paper is to utilize our
previously proposed methods for aggregation of anal-
ysis results to create a system development process.
By introducing a reusable component analysis model
where part of the analysis is performed by the com-
ponent developer the overall development process be-
comes arguably more efficient than with traditional
analysis, which implies that the complete analysis is
required to be performed by the system developer.

The rest of the paper is outlined as follows; in sec-
tion 2 we describe background and related work. Sec-
tion 3 introduces the context sensitive analysis and
our proposed development method. In section 4 we
discusses how our methods fit in development process
for component-based development. Finally, section 5
concludes the paper and discusses future research.



2 Background and Related Work

The embedded systems industry is under competi-
tive pressure to continually shorten its time-to-market,
increase product differentiation and at the same time
offer more customer value. As a result (i) embed-
ded systems become increasingly software intensive
and (ii) individual components integrate increasing
functionality over different projects and reuse cycles.
Integrating more functions into a single component
gives rise to increasingly varying behavior, some vari-
ants only invoked in a particular deployment context,
some only as part of adaptive behavior triggered by
context-sensitiveness or deployment-specific configu-
ration parameters. Extra-functional properties (EFPs)
of the component such as time and reliability are
variable and context-sensitive and the variance may
be large. For these reasons software components in
embedded systems make it difficult to predict EFPs
and hence guarantee quality of the components and
the services they provide through analyses [7]. At
the same time, componentization has been the key to
structured design processes with predictable proper-
ties in many other engineering domains. For soft-
ware, in particular, a context-unaware characteriza-
tion of component properties is inadequate for accu-
rate predictions. A common obstacle to combine pre-
dictability with correctly dimensioned hardware is the
inaccuracy of the system analysis. Real-time analysis
is based on worst-case assumptions, and the compo-
sition of worst-cases make the system impractically
oversized and under utilized [10].

In [15] a framework has been developed that con-
siders the usage of a system; however, neither soft-
ware components nor reuse is considered. In [9] a
framework for probabilistic wcet with static analy-
sis is presented. Recent case-studies show that it is
important to consider mode- and context-dependent
wcet estimates when analyzing real sized industrial
software systems [19]. There are suggested mod-
els of the overall component-based life cycle pro-
cesses [2, 8] as well as more concrete methods for e.g.
component assessment [4, 18]; our work illustrates
how the division into context-unaware and context-
sensitive analyses would be integrated into these mod-
els.

2.1 Real-Time for Component-based
systems

During the last decade advances have been made
in component-based development for desktop and in-
ternet applications. A few de-facto standards have
completely transformed the way such software is de-
veloped. These standards are mainly Microsoft’s
.NET, SUN’s Enterprise Java Beans and OMG’s
Corba Component Model (CCM). Component mod-

els for embedded systems are usually designed with
very domain specific requirements in mind [17]. For
instance the well known component model by Philips,
Koala [20], considers low resource usage, but does not
consider, e.g., real-time properties that are important
in many other embedded domains. There is a large
set of different component technologies that approach
different problems in different ways such as ABB’s
PECOS [21], Rubus [16], SaveComp [1] and many
more. None of these however have yet been success-
ful outside of their intended domain. Thus, for em-
bedded systems it seems difficult to define de-facto
standards due to highly diverging requirements on dif-
ferent industrial segments [7].

One of the more important component properties
is unquestionable reuse. It is commonly accepted
that reuse, if used properly, increases productivity
and lowers development costs. However, support for
reuse requires generality of components which often
leads to low accuracy of component properties which
is enough for desktop systems. But for embedded
real-time systems low accuracy of component prop-
erties leads to low resource efficiency, and low re-
source efficiency leads to higher manufacturing costs
in terms of hardware resources. On the other hand,
lack of support for reuse increase development costs
and increases time-to-market.

Reusable components should, by definition, be
used in different applications [6], i.e., they should be
context unaware. All possible deployments are not
known and the extra-functional behavior of compo-
nents in a new deployment is often very hard to pre-
dict. This is not a problem for desktop applications
where resources are abundant and the requirements
on, e.g., timing and safety are relatively low. There
are very few component models that support general
component properties at the same time as they are
highly resource and run-time aware, and vice versa.
Component models that are specifically designed for
a particular group of systems are often not adaptable
and general enough to be used in other systems or
other domains. In order to achieve reuse, most com-
ponent technologies of today intentionally do not con-
sider the system context, e.g., inputs, hardware and
run-time system. As a result performance prediction
is often inaccurate.

3 Introducing the Reusable Component
Analysis Model

Traditional wcet analysis (figure 1) is not suitable
for large scale components since the analysis consid-
ers the absolute worst-case for all possible uses. Com-
ponents and systems are developed separately, some-
times even by different companies and it is important
to be able to get accurate predictions from the com-
ponents when they are used in a specific system. The
method to do this has been to use specific component



models for embedded real-time systems. When us-
ing highly specialized components it becomes virtu-
ally impossible to reuse them in any other system or
context. Thus there is a trade-off between the gener-
ality required for efficient reuse, and the particularity
of accurate component properties and efficient trans-
formation to real-time system. The potential bene-
fits of reuse are particularly high in the embedded do-
main where product differentiation is ever increasing
and competitiveness is driven by time-to-market and
costs; thus there is reason to find a solution to the
trade-off.

WCET

Context Sensitive
Analysis

Mapping to 
tasks / HW

Execution

WCET tool

System developer

Figure 1. Traditional Analysis model

3.1 Context and Reuse

In order to be easily reused a component should
be general and context-unaware [5]. As components
grow and become more general and more reusable,
they get a more diverse behavior, thus more varying
execution-times. This is not an issue in most desktop
systems but in embedded and real-time systems it is
not “cost-efficient” to dimension hardware resources
after the absolute worst-case, although that would be
required in lack of more sophisticated methods to pre-
dict the actual-case execution time of the system as a
whole.

To achieve reuse at the same time as accurately
predicting wcet we propose division of the analy-
sis into (i) context-unaware analysis, and, (ii) con-
text and usage sensitive analysis, as depicted in fig-
ure 2. In addition monitoring and feedback to the
context (usage-profile) is added. The analysis model
is driven by a context-unaware wcet analysis (de-
picted as wcet-tool and measurements in figure
2), and context-sensitive expert domain knowledge
about the system usage. The context-unaware wcet
analysis (Reusable Analysis) is combined with the
context-sensitive usage knowledge (Usage-profile) to
assess an accurate, context-sensitive, wcet (Context-
sensitive analysis). When the system analysis has

been performed, and the system has been mapped
to a run-time system and is executed, observations
(Monitoring and Usage feedback) are used to for-
tify the usage-profile, depicted as a feed-back to the
usage-profile in the figure. Reuse in a new system,
or changed usage of the system potentially results in
a more accurate wcet with higher confidence. An
even greater gain is reuse without performing a new
analysis with wcetanalysis-tools.

Reusable
Component 

Analysis
Usage-profile

Information
harvesting

WCET

Context Sensitive 
Analysis

Accurate WCET

Mapping to 
tasks / HW

Execution

Domain 
expert

WCET tools

Monitoring & 
usage feedback

System developer Component developer

Figure 2. Reusable Component Analysis
model

3.2 Reusable Timing Analysis

Analysis is performed for different reasons in the
development. Of course components are required
to be analyzed when the component is developed or
changes to the code are made because of, e.g., main-
tenance, updates, etc. However, because of the gen-
erality of components there are more occasions when
analysis must be renewed to get enough accuracy in
the analysis. When the usage is changed, i.e., the
input-profile or the composition, analysis must be up-
dated to avoid a too pessimistic wcet. The need
for reanalysis at every reuse is a definite obstacle for
reuse in embedded real-time systems.

In [13] we have proposed a context-unaware anal-
ysis by making wcet analysis for a large number of
input combinations. The wcet’s and inputs are gath-
ered in a table-like structure. In that work we show
how optimization can be used to minimize the size of
the table and get as few entries as possible without



loosing information. Let us exemplify by introducing
an example of the resulting analysis.

Ex. The component developer has performed wcet
analysis of the component with respect to inputs
(usage). We assume a component with two in-
puts, A and B. The method has resulted in a
very simple table (see table 1). The system wide
wcet (for any usage) is 2400 ms.

No A [0,255] B [0,255] wcet
1 0 ≤ A < 30 0 ≤ B < 100 2400
2 0 ≤ A < 30 100 ≤ B < 180 1900
3 30 ≤ A < 100 100 ≤ B < 180 1200
4 100 ≤ A < 150 B < 100 1000
5 A < 100 B > 200 400

Table 1. wcet with respect to any input
0 ≤ A < 256 ∧ 0 ≤ B < 256. All predi-
cates are true.

For sake of readability we have made the exam-
ple very simple (for a real component there may be
many input parameters, and based on our simulations
the many combinations could easily result in a lookup
table with thousands of entries; there is a correspon-
dence of course between the number of entries and
the chosen size of clusters). In previous work [13] we
also consider probabilities of inputs and outputs with
respect to inputs to get a composable approach. For
the sake of simplicity we leave out all details and only
give a general view of the concept.

3.3 Context-sensitive analysis

By assessing which input combinations are valid
for a specific system and applying them to the
reusable analysis we attain a seamlessly reusable
analysis. In this way a component can be reused
and reanalyzed without having to do any actual wcet
analysis. The benefits of not having to perform tra-
ditional wcet-analysis for every usage is that only
the developer of the component is required to have
licenses and expertise of commercial wcet-tools. It
is our firm conviction and experience that it is eas-
ier to do a lookup in a table compared to using com-
mercial wcet-tools. Domain expert information and
observed behaviors are utilized to attain specific in-
formation about each system. This information is re-
fined during development, testing and execution by
monitoring the system, as indicated in figure 2.

We propose a usage-profile with input dependen-
cies, i.e., probabilistic relationships between inputs.
Consider the following example:

Ex. After an assessment of the usage by the sys-
tem developer and the domain expert, the usage-
profile has been determined to be the following:

0 ≤ A < 100 ∧ 130 ≤ B < 200. Thus, we see
that some of the wcets may be ignored, lead-
ing to a more accurate prediction of the system
behavior.

By applying the usage-profile to table 1, we
see right away that rows 2 and 3 (marked with
gray) are affected, thus resulting in a wcet of
max(1900, 1200) = 1900, as shown in table 2.

No A [0,255] B [0,255] wcet
1 0 ≤ A < 30 0 ≤ B < 100 2400
2 0 ≤ A < 30 100 ≤ B < 140 1900
3 30 ≤ A < 100 100 ≤ B < 140 1200
4 100 ≤ A < 150 B < 100 1000
5 A < 100 B > 200 400

Table 2. wcet with respect to a usage-
profile 0 ≤ A < 100 ∧ 130 ≤ B < 200.
The predicates of rows 2 and 3 are true.

3.4 Monitoring and usage feedback

Further information about the usage is gathered
throughout testing and execution by monitoring the
system. The information that is required to be gath-
ered is the inputs of the components and a cross ref-
erence so that it is possible to assess the input state,
i.e., the values of all inputs at every observation point.
Similar work has focused on gathering information
about execution times to make the worst-case predic-
tion itself more accurate [3].

Ex. Lets revisit the component with the two inputs A
and B. After a large number of input observations
the probability it may be possible to further asses
a more refined usage, e.g., 170 ≤ B < 240 can
be identified, further refining the analysis.

By applying the revised usage-profile we can fur-
ther remove some wcet’s from table 3, resulting in a
wcet of 400. Note that this is an artificial example
and refinements can be arbitrarily large depending on
the initial knowledge of the usage.

No A [0,255] B [0,255] wcet
1 0 ≤ A < 30 0 ≤ B < 100 2400
2 0 ≤ A < 30 100 ≤ B < 140 1900
3 30 ≤ A < 100 100 ≤ B < 140 1200
4 100 ≤ A < 150 B < 100 1000
5 A < 100 B > 200 400

Table 3. wcet with respect to the usage-
profile 0 ≤ A < 100 ∧ 170 ≤ B < 240.
The predicate of row 5 is true.

For each time the system is executed the usage-
profile is improved. In turn re-analysis will be more
accurate and have higher confidence.



4 Positioning the Analysis in the System
Development Process

Turning to the highest level of system devel-
opment, the benefits of the proposed division into
reusable and context-sensitive analysis become appar-
ent. The component-based system development pro-
cess can be described in two parts: a system devel-
opment process and a component development pro-
cess [8] (this distinction is useful even when com-
ponent development and system development takes
place within the same organization). The interface
between these two processes may be fairly complex.
First during system development, existing compo-
nents may be surveyed already during requirements
phase (and influence the entire scope and direction
of the system). Later components are tested to as-
sess functionality and quality characteristics; they are
used in prototyping during design, and of course fi-
nally integrated and deployed with the system. And
conversely, requirements on the system may also af-
fect the evolution of its constituent components more
or less directly (depending on the business relation-
ship).

Figure 3 shows how a general model for CB pro-
cesses would be extended with the exhaustive com-
ponent analysis as part of the Verification phase of
the component development process, and the analy-
sis results packaged with the component in the Re-
lease phase. These results may then be used in sev-
eral ways during the context-sensitive analysis, which
would be done in the Verify phase of the component
assessment process. One may dimension the hard-
ware by looking up the wcet by the known or es-
timated input, and/or in some circumstances it may
be possible to restrict the allowed input, to gain a low
(known) wcet and thus fit the component into certain
resource-constrained hardware. During the Verifica-
tion and Operation phases of the system, the actual
usage of the component is monitored, which may lead
to the usage profile being fine-tuned and the context-
sensitive analysis to be redone.

This development process allows for wcet anal-
ysis to be moved from the system development to the
component development. In this way, not only the
component itself but also the wcet analysis is reused
several times. The system developer escapes the effort
of learning and using advanced wcet analysis tools,
and the overall process becomes more efficient. In
our experience it is a matter of several man weeks to
setup, learn and effectively use many of the commer-
cial and research wcet analysis tools, in comparison
to a few minutes of simple table lookups, as proposed
in our work. The work effort is effectively moved
from the system developer to the component devel-
oper, and for every reuse there are potentially big time
gains.

Verify

Store

System
Development

Component 
Assessment

Component
Development

Select

Find

Requirements

Design

Verification

Release

Operation

Implementation

Integration

Maintenance

Requirements

Design

Verification

Release

Maintenance

Implementation

Integration

Exhaustive 
Component

Analysis

Context-
sensitive
Analysis

Monitoring 
& Usage 

Feedback

Figure 3. Development process

5 Future Work and Conclusions

We are witnessing an enormous expansion in the
use of software in embedded systems. Software is no
longer marginal in technical systems, but has now be-
come a central factor in many fields. System features
based on software are becoming the most important
factor in competing on the market.

We have previously developed methods for
reusable real-time analysis and component to task
mappings for increasing predictability and resource
efficiency [13, 14]. In this paper we have described
a development process where these methods are cen-
tral, focusing on support for reuse; in the resulting
reusable component analysis part of the analysis is
performed by the component developer instead of the
system developer as is implied by existing analysis
methods. The development process facilitates anal-
ysis of the system characteristics and thereby facili-
tates dimensioning of resources for the system. The
model is independent of component technology, and
in on-going work [11] we explore how to apply the
same principles to other types of analyses. The provi-
sion of context-unaware analysis models for reusable
components would be a selling argument for compo-
nent vendors.

On-going and future work also includes evaluat-
ing the process and methods with simulations, exper-
iments and industrial evaluations.

Acknowledgements

This work is partly funded by SSF, the Swedish
Foundation for Strategic Research.

References

[1] M. Åkerholm, J. Carlson, J. Fredriksson,
H. Hansson, J. Håkansson, A. Möller, P. Pet-



tersson, and M. Tivoli. The save approach to
component-based development of vehicular sys-
tems. The Journal of Systems and Software,
2006.

[2] A. S. Andreou, A. C. Zographos, and G. A.
Papadopoulos. A three-dimensional require-
ments elicitation and management decision-
making scheme for the development of new soft-
ware components. In ICEIS (3), pages 3–13,
2003.

[3] G. Bernat, A. Colin, and S. Petters. pWCET, a
Tool for Probabilistic WCET Analysis of Real-
Time Systems. In WCET, pages 21–38, 2003.

[4] J. Bhuta and B. Boehm. A method for compat-
ible cots component selection. In International
Conference on COTS-Based Software Systems,
pages 132–143, 2005.

[5] O. Ciupke and R. Schmidt. Components
as context-independent units of software. In
WCOP’96 in conjunction with ECOOP’96,
Linz, Austria, July 1996.

[6] I. Crnkovic. Component-based software engi-
neering – new challenges in software develop-
ment. Focus Review, Software Focus, 2(4):127–
133, 2002.

[7] I. Crnkovic. Component-based approach for em-
bedded systems. In WCOP’04, Oslo, June 2004.

[8] I. Crnkovic, M. Chaudron, and S. Lars-
son. Component-based development process
and component lifecycle. In ICSEA’06, Tahiti,
French Polynesia, October 2006. IEEE.

[9] L. David and I. Puaut. Static determination of
probabilistic execution times. In Proceedings
of the 16th Euromicro Conference on Real-Time
Systems (ECRTS’04), pages 223–230, 2004.

[10] M. Duranton. The challenges for high perfor-
mance embedded systems. In 9th Euromicro
Conference on Digital Systems Design, DSD,
pages 3–7. ieee, September 2006.

[11] J. Fredriksson and T. Nolte. Contract-based
reusable analysis for software components with
extra-functional properties. Technical report,
Mälardalen Real-Time Research Centre, April
2007. (submitted to ECRTS’07).

[12] J. Fredriksson, T. Nolte, A. Ermedahl, and
M. Nolin. Clustering worst-case execution times
for software components. Technical report,
Mälardalen Real-Time Research Centre, April
2007. (submitted to WCET’07).

[13] J. Fredriksson, T. Nolte, M. Nolin, and
H. Schmidt. Contract-based reusable worst-
case execution time estimate. Technical report,
Mälardalen Real-Time Research Centre, April
2007. (submitted to RTCSA’07).

[14] J. Fredriksson, K. Sandström, and M. Åkerholm.
Optimizing Resource Usage in Component-
Based Real-Time Systems. In Proceedings of
th 8th International Symposium on Component-
Based Software Engineering (CBSE8), May
2005.

[15] J.-I. Lee, S.-H. Park, H.-J. Bang, T.-H. Kim, and
S.-D. Cha. A hybrid framework of worst-case
execution time analysis for real-time embedded
system software. In Aerospace, 2005 IEEE Con-
ference, pages 1–10. ieee, March 2005.

[16] K. L. Lundbäck, J. Lundbäck, and M. Lindberg.
Component-based development of dependable
real-time applications, 2003.

[17] A. Möller, M. Åkerholm, J. Fröberg, and M. No-
lin. Industrial grading of quality requirements
for automotive software component technolo-
gies. In ERTSI’05 in conjunction with RTSS’05,
2005 Miami, USA, December 2005.

[18] C. Ncube and N. A. Maiden. Component-
Based Software Engineering: Putting the Pieces
Together, chapter Selecting the Right COTS
Software: Why Requirements Are Important.
Addison-Wesley, 2001. ISBN 0-201-70485-4.

[19] D. Sehlberg, A. Ermedahl, J. Gustafsson,
B. Lisper, and S. Wiegratz. Static wcet analysis
of real-time task-oriented code in vehicle con-
trol systems. In 2nd International Symposium
on Leveraging Applications of Formal Methods
(ISOLA’06), Paphos, Cyprus, November 2006.

[20] R. van Ommering. Building Reliable
Component-Based Software Systems, chap-
ter The Koala Component Model, pages
223–236. Artech House Publishers, July 2002.
ISBN 1-58053-327-2.

[21] M. Winter, T. Genssler, et al. Components
for Embedded Software – The PECOS Appo-
rach. In The Second International Workshop on
Composition Languages, in conjunction with the
16th ECOOP, June 2002.


