

Legacy Issues in Industrial Software Development
Johan Kraft and Joel Huselius

Mälardalen Real-Time Research Centre
Mälardalen University

{johan.kraft, joel.huselius}@mdh.se

This report presents the results of the graduate course ”Legacy Issues in Industrial Software
Development”, which was organized at Mälardalen Real-Time Research Centre (MRTC) at
Mälardalen University during winter 2006-2007. The course was open for all graduate
students at the department, of which five actively participated in the course. PROGRESS is a
major research project at MRTC, as well as a strategic research centre at Mälardalen
University, aiming at enabling predictable component-based development of embedded
systems. PROGRESS spans several areas, organized in clusters: component-based
development, life-cycle processes, platform technology, dependability, and legacy systems.
The PROGRESS legacy cluster focuses on legacy issues of industrial software. There are
however two common views of the term “legacy software”. In the traditional view, legacy
software is no longer maintained but used as there no suitable alternative, for various reasons.
In this view, the user of the software has the legacy problem, not the developer (they typically
don’t support the software anymore). In our view, legacy software is software that is still
maintained and further developed, but is becoming increasingly hard to maintain due to its
long history of changes. The size and complexity of the system have increased over many
years. Such systems often contain millions of lines of code, and due to personnel turnover
many of the original developers and architects are no longer available. This view focuses on
the problems of developing the software; the user of the software does not experience any
explicit legacy problem.
The PROGRESS legacy cluster has two major goals. The first goal is to find a method for
how to analyze complex embedded legacy systems with respect to quality attributes like
performance (end-to-end response time) and resource usage. The main issue here is how to
extract an analyzable model from the existing legacy system. The second goal of the legacy
cluster is to enable integration of existing legacy code in embedded systems developed using
component-based technology. Closely related work is very limited. In research areas such as
component-based software engineering (CBSE) and real-time systems many results exists
regarding how systems can be constructed assuming that one builds a new system starting
from zero, but how to handle legacy systems is not considered. There are many results related
to legacy systems in the reverse engineering community, but typically focusing on
documentation/comprehension purposes rather than enabling analysis of behavioural
properties. Moreover, the special requirements of embedded real-time systems are most cases
not considered. The PROGRESS legacy cluster intends to bridge this gap.

Motivation
The course was intended as a bootstrapping activity for the PROGRESS legacy cluster and a
framework for presenting and discussing existing scientific results related to the PROGRESS
legacy cluster. To get credits for the course, the participants should give a lecture regarding a
relevant topic and write a paper on another relevant topic. The papers were not expected to
report own novel research results, but rather intended to present and relate exiting results
relevant to the legacy cluster from an area selected by the participant. The papers were peer-
reviewed and presented at a final course workshop. Five graduate students in different phases

Page 1 of 43

of their education participated in the course, which resulted in five lectures and five papers.
As there were only five participants, all papers were peer-reviewed by all four other
participants. Revised versions of the papers are collected in this report, where any review
comments have been addressed.
The lack of closely related research has naturally influenced the course contents. Many results
discussed in this course will not have a direct impact on the future work of the legacy cluster,
but rather serve to motivate the research and to help understanding the “big picture” with
respect to the problems of legacy software and the state of related research areas.

Deliverables
In the first part of the course, the following lectures where given by the course participants:

• Lecture 1: Course Introduction and Legacy Systems in General, given by Johan Kraft,
December 6th, 2006.

• Lecture 2: Re-engineering/Migrating Legacy Code to new technologies, given by Joel
Huselius, December 13th, 2006:

• Lecture 3: Reverse engineering and program comprehension, given by Hongyu Pei-
Breivold, January 24th, 2007.

• Lecture 4: The E-Cares research project, given by Farhang Nemati, January 24th,
2007.

• Lecture 5: Specification, Verification of Real-Time Operation System and IDE
Framework Design, given by Yue Lu, Feburary 28th, 2007.

The slides to these presentations are available at the course webpage1.

The second part of the course resulted in the following papers, which was presented at the
final course workshop on April 4th, 2007:

• [1] - Farhang Nemati, Using Reengineering Techniques for the Component Based
Software Systems
As Component Based Software Engineering (CBSE) becomes more frequently used,
the need for reengineering methods for CBSE is accentuated. The paper presents an
overview, where results in this field are related. Requirements for reengineering
component based real-time systems are provided.

• [2] - Hongyu Pei Breivold, Quality Impact Analysis in Refactoring
Evolution deteriorates software quality. Refactoring, i.e., restructuring internals
without effecting externals by small steps of transformations, can serve to tackle this
deterioration. The paper relates a general process of refactoring, and details the
various steps and constraints that are involved in the process. A comparison of three
methods of refactoring is presented.

• [3] - Joel Huselius, On the Difficulties of Maintaining Legacy Systems: Can it be
solved by Model-Based Development?
The academia is less interested in maintenance than motivated by the costs of
maintenance paid by industry. With the recent academic focus on model based
development (MBD), maintenance issues can be directed, but since MBD is not legio
in legacy systems, methods are needed to refactor code oriented legacy systems into

1 http://www.idt.mdh.se/kurser/legacy/, May 2007.

Page 2 of 43

model based systems.

• [4] - Johan Kraft, Software Aging and the Code Decay Phenomenon
Code decay describes the increased complexity and reduced quality in software
subjected to suboptimal maintenance. The paper relates a definition of code decay,
provides motivation to how and why code decay arises, and finally discusses the
measuring of code decay.

• [5] - Yue Lu, An Introduction to Renaissance method: A Method to Support Legacy
System Evolution
The paper provides an introduction to the Renaissance method, which is supporting
reengineering primarily for business software, and has been developed in cooperation
with industry. In addition, the paper also relates fundamental considerations and
strategies of reengineering.

Notably, all papers are related. Three papers describe aspects of concrete activities in
industrial software development, i.e. methods to apply when further developing legacy
systems: reengineering [1], refactoring [2] and maintenance [3]. The paper about software
aging [4] describes the forces that motivate refactoring and reengineering activities in a legacy
context, while [5] describe strategies for managing legacy systems, when to apply e.g.
refactoring. The relations between the papers are depicted in
Figure 1.

Legacy Management [5]
(Yue Lu)

Refactoring [2]
(Hongyu Pei-Breivold)

Software aging [4]
(Johan Kraft)

Motivates

Reenigineering [1]
(Farhang Nemati)

Methods

Maintenance [3]
(Joel Huselius)

Impacts

Legacy Management [5]
(Yue Lu)

Refactoring [2]
(Hongyu Pei-Breivold)

Software aging [4]
(Johan Kraft)

Motivates

Reenigineering [1]
(Farhang Nemati)

Methods

Maintenance [3]
(Joel Huselius)

Impacts

Figure 1: Relations between papers

Conclusions
With this report, we present the findings of the course “Legacy Issues in Industrial Software
Development”. The lectures and the papers produced during the course served to highlight
important lessons in the area of software evolution, and as a pre-study for our continued
research. It is interesting to note that even though the participants were free to choose paper
topics, the resulting papers are related, all have some overlap to at least one other paper. This
is a very nice result, which indicates that all papers are relevant for the course focus, legacy
systems. The paper presents and explains several terms of which some are not well defined in
literature. We have identified several related works, in different areas, not previously known
in the group. The seminars organized during the course generated many interesting
discussions, which served to communicate our view of different issues among the
participants. This document summarizes the course and provides a base for new course
instances, where this report can be included as course material. We conclude that the desired
goals of this course, to serve as a bootstrapping activity and as a framework for discussing
related work, have been achieved.

Page 3 of 43

Papers – Table of Contents

Page 5-11, paper 1:
Using Reengineering Techniques for the Component Based Software Systems
Author: Farhang Nemati
As Component Based Software Engineering (CBSE) becomes more frequently used, the need
for reengineering methods for CBSE is accentuated. The paper presents an overview, where
results in this field are related. Requirements for reengineering component based real-time
systems are provided.

Page 12- 23, paper 2:
Quality Impact Analysis in Refactoring
Author: Hongyu Pei Breivold
Evolution deteriorates software quality. Refactoring, i.e., restructuring internals without
effecting externals by small steps of transformations, can serve to tackle this deterioration.
The paper relates a general process of refactoring, and details the various steps and constraints
that are involved in the process. A comparison of three methods of refactoring is presented.

Page 24-31, paper 3:
On the Difficulties of Maintaining Legacy Systems: Can it be solved by Model-Based
Development?
Author: Joel Huselius
The academia is less interested in maintenance than motivated by the costs of maintenance
paid by industry. With the recent academic focus on model based development (MBD),
maintenance issues can be directed, but since MBD is not legio in legacy systems, methods
are needed to refactor code oriented legacy systems into model based systems.

Page 32-36: paper 4:
Software Aging and the Code Decay Phenomenon
Author: Johan Kraft
Code decay describes the increased complexity and reduced quality in software subjected to
suboptimal maintenance. The paper relates a definition of code decay, provides motivation to
how and why code decay arises, and finally discusses the measuring of code decay.

Page 37-43: paper 5:
An Introduction to Renaissance method: A Method to Support Legacy System Evolution
Author: Yue Lu
The paper provides an introduction to the Renaissance method, which is supporting
reengineering primarily for business software, and has been developed in cooperation with
industry. In addition, the paper also relates fundamental considerations and strategies of
reengineering.

Page 4 of 43

Using Reengineering Techniques for the Component
Based Software Systems

Farhang Nemati

Department of Computer Science and Electronics

Mälardalen University, Västerås, Sweden
farhang.nemati@mdh.se

Abstract

Many reengineering techniques have been presented in the software engineering communities
and some of them have been successful in the evolution and maintenance of complex legacy
systems, but so far the target of these techniques has mostly been traditional software such as
modular software. On the other hand Component Based Software engineering (CBSE) is
growing in both academic research communities and industry, because the costs of the
software development, maintenance, and evolution can be decreased by the benefits that
CBSE offers, e.g. reusing components, better communication protocols, etc. As CBSE grows,
the importance of using experiences of the reengineering community to migrate the
traditional software to component based software and also to mature the component based
development is revealed. This paper is an overview of using reengineering techniques in
CBSE. We present a summary of component based technology in general, and in real-time
context in particular. Then we review how CBSE can benefit from reengineering techniques.
We also describe the extra considerations that should be taken into account when using the
reengineering techniques for real-time components.

1. Introduction

Reengineering of complex big systems is important because often huge investments have
been done on them, therefore they can’t be thrown away. Often a legacy system is maintained
during many years and during the lifecycle of the system many changes are applied to it that
make the system even more complex. The target of reengineering a legacy system can be
maintenance, evolution or performance improvement of the system. So far the reengineering
has mostly dealt with the systems of non component based software such as modular
software. As component based development grows in the software engineering community,
the need for using the reengineering techniques in this area is revealed. According to [1],
recently it has been shown that reengineering techniques can be useful in the context of the
new technologies like component based software. Although these techniques are in their early
stages, some successful developments have already been done by using the techniques.
Reengineering techniques can be used to provide a migration framework toward the
component based software engineering (CBSE) and also to mature evolution of the
component based software products that have been developed recently [1]. During lifecycle of
component based legacy systems, ad-hoc changes make the system more complex and harder
to understand; they decrease cohesion between components and increase coupling among
them, on the other hand often these changes are not well documented or reflected in the
existing models [3]. Also according to [3] component recovery, by using reengineering

Page 5 of 43

techniques, is used to retrieve components from the existing systems. Component based
software engineering has recently been considered by real-time systems community as well;
therefore using component based reengineering techniques in this area is also a challenge.

2. Component Based Software Engineering (CBSE)

The base of CBSE is the concept of component. There are many definition of what a
component is; according to [4] a component is a reusable unit of deployment and composition
which is closely related to an object and therefore, in some aspects, component based
development is an extension of object-oriented development. However components differ
from objects in many concepts such as granularity, deployment, composition and the process
of development, etc.

Besides components there are some other concepts such as interface, contract, framework and
pattern that are related to CBSE; these concepts in [4] are defined as following:

• An interface specifies the access points to a component, and thus helps clients to
understand the functionality and usage of a component.

• A framework describes a large unit of design, and defines the relationships within a
certain group of participants. According to [6] a component framework provides a
variety of runtime services to support and enforce a component model.

• Contracts provide component specification; they focus on specification of conditions
in which a component interacts with its environment.

• Patterns define recurring solutions to recurring problems on a higher abstract level,
and in this way they enable the reuse of the solutions.

Figure 1 depicts a component pattern in which the relations between concepts in CBSE are
illustrated.

According to [5], CBSE is mainly used:

• To provide support for the development of systems as assemblies of components
• To support the development of components as reusable entities
• To facilitate the maintenance and upgrading of systems by customizing and replacing

their components.

Page 6 of 43

Figure 1: Relations between Concepts of CBSE [6]

3. Real Time Components

In real time systems besides expected logical results of the system, timing constraints play a
big role and they have to be satisfied. One of main requirements in a real time system is the
predictability of the timing attributes of the system, e.g. maximum response time of a task,
deadlines, etc. [7]. According to [7] developing real time components is harder and more
complex than none real time component, first because a real time component should satisfy
timing constraints, second the resources in the embedded real time context are limited and
finally real time applications should often run for a long period without errors and need for
debugging. Requirements expected from real time components are divided into
communication, synchronization and timing attributes [7].

4. Reengineering Techniques for Component Based
Software

In [1] two reengineering techniques for component based software are considered:

1. Reengineering to support the maturation and evolution of component based
software

In this case it is considered that a valuable amount of the component based software is
available. Reverse engineering is used to extract component based concepts. Feasibility and
accuracy of reverse engineering transformations very much depend on the component model
and the information is concerned to be extracted. According to [1], recovering information of
internal structure of components is usually possible, but recovering connections can be easy if
connections are externalized, i.e. CCM, or can be complex if the connections are too much
buried in the code, i.e. EJB or COM. Due to the mechanisms used, e.g. polymorphism, the
connections can not be recovered by only using source code analysis, but also by using the
behavior of the system during run time, therefore both static analysis (including source code ,
configuration files, etc) and dynamic analysis (by recording components behavior during run
time) techniques of reengineering should be used to extract the architecture of the
components and their connections.

Most of the reengineering techniques can be adjusted for component based software if the
information extraction regarding components and connections is provided. The Reengineering
techniques can be used for the evolution of the language of component model as well as for
the evolution of the software; some parts of the software may be specified with previous
versions of the component model language that can be replaced with the new versions.

2. Reengineering to support the migration to component based technology and
integration with traditional ones

Using reengineering techniques for recovering components and connections out of a
component based software, as described in the previous section is only appropriate for the
software products that have used component based development. Reengineering techniques

Page 7 of 43

can also be used to transform traditional software, e.g. modular software, to component based
software by reusing the traditional software parts and wrapping it into components. This also
depends on how good the target component technology can wrap the code written in
traditional software, but this is not enough and more effort is needed to adapt the legacy code
into component based technology since component based technology provides better
communication protocols such as event triggered communication and also some component
based mechanisms, e.g. EJB provide other services like transaction management and
asynchronous messaging [1].

4.1. Establish Cooperation between Distributed Component Based
Software

In [2] a component based reengineering methodology is proposed to provide cooperation
between components in applications that are composed of distributed components. These
components are not synchronized and are not aware of exchanging information. In this top-
down approach, establishing cooperation between components starts from the highest level
(constitution of workgroups) to the lowest level (the components that compose the
workgroups). A workgroup is a set of eventually distant components with a common goal [2].
An optimal management of components needs a good organization of workgroups; this
improves the performance regarding the amount of processed information and timing
attributes which is suitable with a real-time context. The approach provides a cooperative
platform that automatically manages the distribution of components involved in the
cooperation. The solution deals with reusing of existing components and proposes developing
of a layer above them to provide cooperation between them. The solution proposed by [2]
consists of six steps:

1. Workgroup level: In this step workgroups in the application are identified; the

identification of the workgroups is done according to constraints such as geographical
constraints, method of work, etc. These constraints often correspond to the structural
divisions of the firm [2]. The elements of cooperation are events, messages and the
exchanged data. For each workgroup these elements are identified and the information
they need and the information they produce is described with a natural language into a
dictionary. For each of the cooperation elements an entry is added to the dictionary:
(name, type, semantic description).

2. Component level: The existing components are identified in this step. Then it’s identified

of what workgroups the components can be members; the information in the dictionary
(about the role of each component) is used to do this identification. The cooperation
elements (events, messages, output and input data) related to each component are also
identified in this step. The structure of the workgroups is dynamic which means that all
member components may not be present at the same time. Also depending on the state of
the application, a component can be a member of more than one workgroup; in this case
the sharing of components is organized according to application constraints.

3. Dynamic group management: So far the elements of the cooperation have been

identified, not the cooperation itself, meaning that the addressees (workgroups or
components) of events, messages and produced data are not identified. In this step the
constraints for each component, enter/exit and to/from workgroups, are revealed; this is
done by dynamic rules. Dynamic rules are ECA rules which means when an event E

Page 8 of 43

occurs, if the condition C is verified, the action A is executed [2]. Several workgroups can
share a component, in this case for each of the workgroups the component has a dynamic
rule associated to the workgroup. These rules show when a component has to enter into or
exit from a workgroup, the rules will consider the global state of the application when
evaluating a condition and the action triggered by the rule modifies the global state and
therefore a new distribution of data should be done [2].

4. Links and creation of missing cooperation elements: In this step the focus will be on

linking the elements that are defined in the dictionary during previous steps. A link may
adjust the format of information to be compatible to its addressee. Some of the
cooperation elements may not be linked to any entities within the application since they
may be inputs (are not produced by any entities of the application), or outputs (are carried
to outside of the application). Based on the dictionary, links to elements are established.
First inter group links, .e.g. between components of a workgroup, then between
workgroups are defined. Sometimes needed information is produced by composing the
information in the dictionary, meaning that some of the links can’t be explicitly extracted
from the dictionary. If it’s not possible to produce some needed information (neither
explicitly nor by composing existing information), some elements must have not been
discovered, if it’s so we have to go back and explore the missed elements. If the exact
information is not at all producible, another information (maybe less precise) can be
identified. For composition and format the information to be compatible to its addressee
some rules are used that are called detective rules. A specification language is used for
definitions, links and creation of cooperation elements [2].

5. Formal Check: Before implementing the results they should be verified formally if all

cooperation elements can effectively be produced. The specification language provides the
possibility to formally check the results.

6. Derivation the Specification Language into Rules: To implement the obtained results,

the specification language is derived into ECA and detective rules. The rules then will be
integrated into the platform to manage the distribution of information. The rules also will
manage the dynamic aspect of the workgroups, e.g. sharing components.

5. Reengineering of Real-Time Components

Reengineering of real-time components is more complex than of not real time components,
because in all phases of reengineering (reverse engineering, restructuring and forward
engineering) not only functional aspects of the system but also timing attributes of the system
should be taken into consideration. Especially for a safety critical system, in which a failure
may lead to a catastrophic accident, the timing constraints should be satisfied, e.g. deadlines
shouldn’t be missed. In reengineering of a real time system composing of components,
besides guarantying the behavior of each component, composition of the components should
also guarantee communication, synchronization and timing attributes of the whole system;
this problem is called composition problem [7]. Most of reengineering techniques that have
been used, especially the techniques that are used for reengineering of traditional real time
systems can be extended, either to migrate to component based real time software or for
evolution of the existing real time component based software. In [8] a dynamic verification of
safety critical real time software for reusing components is proposed, in this approach they
present a framework for determining when the components in a safety critical real time

Page 9 of 43

system can be reused, when they should be retested, and when only some parts of the system
needs retesting. However the reliability of components, no matter if they are extracted form
traditional legacy system or are reused, should be achieved before implementing them into the
system. In [8], by examples that have led to catastrophic accidents, they show that the
reliability of components is not necessarily preserved when reusing them.

Lüders in [9] presents an evolutionary approach in which adoption of existing component
models for embedded real-time systems is explored. As benefits of this adoption he refers to
using existing development environments, reusing or adopting existing components for the
real-time domain, and simplifying integration with applications from other domains.

6. Summary

In this paper we presented an overview of using reengineering techniques for component
based software engineering. First we pointed out the importance of reengineering and the
extension of reengineering techniques to CBSE. We described what CBSE is, and what a
component means in general and in real time in particular. We described how techniques in
the reengineering community can help the maturation and evolution of component based
software. We also described how these techniques can be used to migrate to component based
technology and integrate them with traditional software. Then we pointed out a six step
approach that provides cooperation between components in an application composed of
distributed components. Finally we explained what should be considered in the reengineering
components from a real time perspective.

References

[1] J.M. Favre, H.Cervantes, R. Sanlaville, F.Duclos, and J.Estublier. Issues in Reengineering
 the Architecture of Evolving Component-Based Software. In proceeding of Working
 Conference on Reverse Engineering (WCRE'2001), 2001.

[2] P. Roose. ELKAR: a component based re-engineering methodology to
 providecooperation. In proceeding of 25th Annual International Computer Software and
 Applications Conference (COMPSAC 2001), 2001.

[3] R.Koschke. Atomic architectural component recovery for program understanding and
 Evolution. In proceeding of International Conference on Software Maintenance, 2002.

[4] I. Crnkovic, B. Hnich, T. Jonsson, and Z. Kiziltan. Basic Concepts in CBSE. Chapter in
 Builiding Reliable Component-Based Systems, I. Crnkovic, M. Larsson editors, Archtech
 House publishers, to appear, 2002.

[5] G. T. Heineman, and W. T. Councill. Component Based Software Engineering: Putting
the
 Pieces Together, Reading, MA: Addison-Wesley, 2001.

[6] F. Bachman, et all. Technical Concepts of Component-Based Software Engineering.
Report CMU/SEI-2000-TR-008, Software Engineering Institute, Carengie Mellon University,
2001.

Page 10 of 43

[7] D. Isovic, and C. Norström. Components in Real-Time Systems. Chapter in
 Builiding Reliable Component-Based Systems, I. Crnkovic, M. Larsson editors, Archtech
 House publishers, to appear, 2002.

[8] H. Thane, and A. Wall. Testing Reusable Software Components in Safety-Critical Real-
 Time Systems. Chapter in Builiding Reliable Component-Based Systems, I. Crnkovic, M.
 Larsson editors, Archtech House publishers, to appear, 2002

[9] F. Lüders. An Evolutionary Approach to Software Components in Embedded real-Time
 Systems. PhD thesis, Mälardalen University, Sweden, 2006.

Page 11 of 43

Quality Impact Analysis in Refactoring

Hongyu Pei Breivold

hongyu.pei-breivold@mdh.se

Abstract

Software evolution is an important issue in software engineering. During the evolution of software

intensive systems, reducing system complexity and improving software quality are the most after

striving goals. Refactoring technique is regarded as one of many efficient ways to achieve the goals.

However, to make appropriate refactoring decisions is a challenging task and demands quality impact

analysis as main inputs. Consequently, the ability to estimate and measure the refactoring impact on

quality characteristics of the system has become critical. Various techniques have emerged and they

assess quality impact either qualitatively or quantitatively in terms of specific quality metrics. They

differ from each other in terms of principles, concepts and analysis capabilities as well. All these

factors lead to the difficulties in selecting appropriate refactoring impact analysis technique, thus

influencing the widespread application of quality impact analysis techniques.

In this paper, we will present essential requirements for quality impact analysis techniques in

refactoring and apply these requirements as criteria to review three techniques that are used for

assessing the effect of refactoring on quality characteristics.

We believe that the requirements addressed in this paper can serve as a base and checking metrics for

software analysts in selecting appropriate quality impact analysis technique that suits their specific

needs in refactoring. They can also act as a starting point as well for further improvement and

development of quality impact analysis techniques in refactoring validation process.

1. Introduction

In the past few years, we have witnessed an enormous expansion in the use of software in business,

research, industry, and critical infrastructure systems such as civil, telecommunications and medical

systems. While new software and systems are developed at tremendous speed, they become legacy

systems at fast speed too. Several factors contribute to this phenomenon.

(1) Software aging

Software ages quickly because the overall business requirements change at tremendous speed.

Therefore, in order to survive the competition and maintain a leading position among competitors,

the software systems need to keep up to the changing demands from the customers to meet new

functionality requirements and to overcome any existing system limitations. The inevitable aging

of all software systems have turned even rather new object oriented systems into legacy systems

[6]. This factor corresponds well with Lehman’s Laws of software evolution regarding continuing

change, i.e. an E-type program that is used must be continually adapted, and else they become

progressively less satisfactory [8].

(2) Increasing software complexity

Most of the software intensive systems nowadays become more and more complex due to the

constantly incoming new requirements and evolution of technologies. It is quite common that as

Page 12 of 43

an evolving program is continually changed, its structure deteriorates [12], especially when we

have too tight schedule to consider and analyze the consistency of design and have to fix problems

before deadline and within budget. Consequently, complexity increases unless work is done to

maintain or reduce it [9].

(3) Declining software quality

Unless rigorously adapted to take into account changes in the operational environment, the quality

of an E-type system will appear to decline as it is evolved [9]. The extreme time-to-market

pressure contributes to the degradation of software in the sense that quick fixes are done in the

code without considering the potential impact of code change to the program structure and

software architecture.

The knowledge and experience of software developers can influence a lot to the outcome of

software system evolution as well. Developers need to have deep understanding and knowledge

about software architecture, quality attributes, developing software-intensive systems and modern

software engineering techniques. Misuses of object-oriented principles such as encapsulation,

inheritance, etc. also contribute to the declining software quality.

Meanwhile, poor documentation leads to lack of understanding of the software, resulting in

declined software quality.

To summarize, as the software is enhanced, modified and adapted to meet new requirements, the

system becomes more complex. Therefore, while designing and implementing a large scale and

complex system has been a challenging task, evolving and maintaining the software system to reduce

complexity and meanwhile meet quality attribute requirements during the system life cycle has

become even more challenging.

Today, a lot of attention and effort have been focused on how to cope with and reduce software

complexity and increase software quality. One emerging technique is called refactoring. It is a

disciplined technique for restructuring an existing body of code, altering its internal structure without

changing its external behaviour. Its heart is a series of small behaviour preserving transformations.

Each transformation which is also called a 'refactoring' does little, but a sequence of transformations

can produce a significant restructuring. Since each refactoring is small, it is less likely to go wrong.

The system is also kept fully working after each small refactoring, reducing the chances that a system

can get seriously broken during the restructuring [4].

Refactoring is regarded in general as one of the important ways to improve software quality.

Therefore, the ability to measure and estimate qualitatively and/or quantitatively the impact of

refactoring on quality characteristics is of great interest because it helps in identifying and selecting

refactoring strategies and decisions in order to apply appropriate refactoring to meet quality

requirements. In this paper, we will present the essential requirements for quality impact analysis in

refactoring and use these requirements as criteria to compare several techniques assessing the effect of

refactoring on quality characteristics.

The rest of the paper is structured as follows. Section 2 describes the role of quality impact analysis in

refactoring. Section 3 describes the essential requirements for quality impact analysis in refactoring.

Section 4 presents different quality impact analysis techniques in refactoring. Section 5 gives a

comparison of the presented analysis techniques against the requirements. Section 6 concludes the

paper.

2. The role of quality impact analysis in refactoring

Page 13 of 43

Refactoring is defined as ‘process of changing a software system in such a way that it does not alter

the external behaviour of the code yet improves its internal structure’ [5]. The goals of refactoring are

to extract a reusable component, to improve consistency among components [11], to improve software

design, to make software easier to understand and etc. The overall goal is to improve quality

characteristics, such as maintainability, of the software [1].

Refactoring is an iterative process that involves three main phases, i.e. identification, validation and

application [7] as shown in Figur 1.

Identification of

Refactoring Candidates

Validation of Refactoring

Effect
Application of Refactoring

Figur 1 Refactoring Process

The identification phase identifies refactoring candidates, i.e. where the software should be refactored.

The validation phase validates the refactoring effect. It provides inputs to which refactoring should be

applied to the identified candidates through assessing the effect of refactoring from both technical and

business perspectives. Technical assessment estimates the effect of refactoring on quality

characteristics such as complexity, maintainability of the software. Business assessment estimates the

cost and effort on applying refactoring. The application phase applies the identified refactorings.

The underlying assumptions throughout the refactoring process are that the applied refactoring

preserves behaviour and that the consistency between refactored artefacts and other software artefacts

in the system can be guaranteed, in the sense that requirement specification, architectural design

documentation, software code and test specification, etc. should match with each other.

In this paper, we focus on quality impact analysis in validation phase. The validation phase of

refactoring effect as depicted in Figur 2. It is also an iterative process consisting of analyzing the

overview of refactoring candidates, identifying the counterpart refactoring candidates and executing

refactoring effect analysis from technical and business perspectives, i.e. quality impact analysis with

cost/effort analysis in consideration.

Page 14 of 43

As stated earlier, the validation of refactoring effect provides invaluable inputs to making refactoring

strategies and decisions. An ideal situation is to be able to validate the quality impact of a certain

refactoring and estimate the cost and effort for the refactoring before applying it in the real system.

Therefore, quality impact analysis plays a central role in refactoring process since it provides a

primary basis for software evolution. Consequently, it is important that techniques for estimating the

impact of refactoring on the quality characteristics of the software can take into account the essential

requirements that will be described in section 3.

Overview of Refactoring

Candidates

Indentification of

Counterpart Refactoring

Candidates

Refactoring Impact

Analysis

Technical/Business

Figur 2 Validation Phase of Refactoring Impact

3. Requirements for quality impact analysis in refactoring

This section describes the essential requirements that techniques for quality impact analysis in

refactoring should support. These requirements can serve as checking metrics for choosing appropriate

quality impact analysis technique in refactoring. They provide an indication as well on how the quality

impact analysis techniques in refactoring can be further improved and developed. The identified

requirements are described in the following sessions.

3.1 Analysis requirements

Quality impact assessment consists of both technical analysis and business analysis. Technical

analysis focuses on the refactoring impact on quality characteristics, such as maintainability.

Business analysis focuses on cost and effort in applying refactoring, including the impact analysis

on synchronizing requirement specification, design documentation, software code and test

specification for each refactoring.

– Quality concerns

In order to help with the identification and prioritization of counterpart candidates, the

analysis process should include identification of important quality attributes and

Page 15 of 43

refinement of the selected quality attributes into concrete and specific quality requirement

expressions. Any trade-offs among quality attributes need also to be identified.

– Cost and effort concerns

In order to help with making appropriate refactoring decision and prioritization of

counterpart candidates from business perspective, the analysis process should include cost

and effort analysis, because it is critical to have the ability to identify refactoring

candidates that have great refactoring effect potential and reasonable cost and effort,

especially when there is extreme time-to-market pressure. Therefore, cost and effort

analysis provides assistance in making long term refactoring plans and sometimes

constrains the achievement of certain quality characteristics as well.

Cost and effort analysis is the change impact of a refactoring, ranging from applying

refactoring on the code level to synchronizing relevant changes in documentation related

to the refactoring, such as requirement specification, architectural design documentation,

test specification, etc.

– Architectural concerns

Software architecture plays a central role in software systems. It has tight connection to

the system’s quality requirements in the sense that software architecture constrains the

quality attributes [3]. Software architecture is expressed in terms of various architectural

styles, design patterns and design models that contribute to the achievement of certain

quality characteristics [16]. On the other hand, refactorings improve the internal structure

of the software without altering the external behaviour of the system. Therefore, the

quality impact analysis techniques need to support identifying, extracting, expressing and

managing architectural styles and design patterns.

– Analysis level

Quality impact analysis can be applied on various levels, such as method level, class level

and architectural design level.

3.2 Assessment requirements

There are different types of quality assessment: qualitative or quantitative assessment. Both

complement each other. Qualitative assessment can serve as a base and indication for further

quantitative assessment if necessary. On the other hand, quantitative assessment can further prove

the correctness of qualitative assessment through measurement values.

– Qualitative assessment

Although qualitative assessment can not be graphed or displayed in terms of mathematical

expressions, it is still an important indication in supporting the refactoring decision and

strategy making process.

– Quantitative assessment

A quantification metrics need to be selected for measurement in the case of a quantitative

assessment. The measurement values provided from the quantitative assessment are of

great importance and can act as evidences in comparisons, especially when trade-off

concerns are involved and decisions need to be made among various alternatives during

quality impact analysis process.

– Trade-off concerns in quality analysis

Three aspects exist regarding trade-off concerns:

Page 16 of 43

Firstly, counterpart refactoring candidates can not be applied at the same time [7].

Secondly, quality impact analysis from both technical and business perspectives can

sometimes come into conflict with each other in the sense that a comprehensive

refactoring needs to be made from technical point of view while the cost and effort

analysis from business perspective constrains the application of the refactoring due to the

time-to-market pressure and limited budget.

Thirdly, trade-offs among quality attributes need to be considered.

In all three cases, a comprehensive plan for refactoring and trade-off decisions should be

decided before any further step in refactoring process.

3.3 Tool requirements

Quality impact analysis is a repetitive and complicated process. Consequently, it is important to

have good tool support in assisting effective execution of the quality impact analysis process.

4. Quality impact analysis techniques

Many different techniques can be used to measure or estimate the impact of a refactoring on quality

attribute [10]. We present three representatives in this paper. They differ from each other in terms of

concepts, principles and analysis capabilities.

4.1 Coupling metrics

Kataoka et al. propose coupling metrics as a quantitative evaluation method to measure the

maintainability enhancement effect of a program refactoring [7].

There are various aspects of maintainability of a program, such as coupling, cohesion, size and

complexity, description, etc. All of them contribute to the maintainability quality attribute of the

software system in the sense that low coupling and high cohesion modules enhance system

maintainability, simple and small modules are easy to maintain, appropriate naming rules help with

program understanding.

Among the above mentioned aspects, coupling is selected as a maintainability quantification metrics

and classified into three categories, i.e. return value coupling, parameter coupling and shared variable

coupling. Coefficients for respective coupling need to be defined in order to represent the impact

degree of respective coupling in a method refactoring. Thereafter, measurement of the metrics is made

before and after the refactoring and comparison becomes explicit, with the delta value indicating the

maintainability enhancement effect.

An example is shown in Figur 3. It is results from applying refactoring methods that are supposed to

reduce coupling among methods, such as Extract Method and Extract Class. The column ‘before’

shows the coupling metrics value of the target method while the column ‘after’ shows the coupling

metrics value after refactoring the target method and the effect of refactoring in parentheses.

Page 17 of 43

Figur 3 Example of refactoring impact analysis result [7]

The application of this evaluation method demands extensive experiences in making good judgement

on finding appropriate coefficient values to calculate the coupling metrics value.

4.2 Transformation using soft-goal graph

Tahvildari and Kontogiannis propose a re-engineering transformation framework for object oriented

legacy systems. This transformation framework correlates non-functional requirements with design

patterns to guide transformation process [14]. The definition and refinement of quality requirement is

based on NFR framework [2], where a soft goal interdependency graph is used to support modelling of

design rationale. The transformation process is based on a transformation meta-model illustrated in

figur 4.

Figur 4 Meta-model of the transformation [14]

The transformation process defines concretely step by step on how to implement a transformation:

Step 1: Evaluate if pre-conditions for applying a transformation hold, using investigative functions.

Step 2: A step by step implementation is defined, using supportive functions and positioning

transformation.

Step 3: Evaluate if specific conditions hold after a transformation is applied, using investigative

functions.

Page 18 of 43

Because the use of design patterns has impact on system quality attributes, the goal of the

transformation framework is to associate each design pattern transformation to one or more soft goals.

The transformation framework has the feasibility to analyze any quality attributes of a software system

though Tahvildari and Kontogiannis focused on maintainability as an illustrating example. The soft

goals that are refined from maintainability are:

(1) Coupling: low control flow coupling and low data coupling enhance system maintainability.

(2) Cohesion: high cohesion modules are easy to maintain.

(3) Modularity: programs that have many direct interrelationships between any two random parts

of the program code are less modular than programs where those relationships occur mainly at

well-defined interfaces between modules [19]. High modularity enhances system

maintainability.

(4) Encapsulation: a software module hides information by encapsulating the information into a

module that are most likely to change, thus protecting other parts of the program from

changing [18] and enhancing system maintainability.

(5) Complexity: low I/O complexity modules are easy to maintain.

(6) Consistency: high control flow consistency and high data consistency enhance system

maintainability.

(7) Reuse: high module reuse enhances system maintainability.

Six categories of primitive design pattern transformations are identified, such as Abstraction,

Extension, Movement, Encapsulation, etc. and they can be combined to produce complex design

pattern transformations related to various design patterns.

A qualitative association (positive or negative impact) is identified between each design pattern

transformation and the above mentioned soft goals, i.e. the aspects of maintainability. Figur 5 shows

the association between primitive design patterns and maintainability soft goal graph. The association

between complex design patterns and maintainability soft goal graph can be further derived.

Figur 5 Qualitative association between primitive design patterns and maintainability soft goal graph [14]

Page 19 of 43

4.3 Metric-based transformation

Tahvildari and Kontogiannis propose also another framework for detection and correction of design

defects on class level in object oriented legacy systems [15].

A catalogue of object-oriented metrics is used as indicators for automatically detecting where a

particular transformation can be applied to improve the software quality. The object oriented metrics

are classified into three categories: complexity metrics, coupling metrics and cohesion metrics.

Examples of these object oriented metrics are CDE (Class Definition Entropy), NOM (Number of

Methods), WMC (Weighted Methods per Class) in complexity category, DAC (Data Abstraction

Coupling) and RFC (Response For a Class) in coupling category, LCOM (Lack of Cohesion in

Methods) and TCC (Tight Class Cohesion) in cohesion category.

The detection process in the framework includes checking design principles and detecting violations

by using different design heuristics [13], such as key classes, one class – one concept. The correction

process in the framework is based on analyzing the impact of meta-pattern transformations, extracted

from the previous approach (transformation using soft goal graph in session 4.2), on these object

oriented metrics. The impact of meta-pattern transformations on these object oriented metrics is shown

in Figur 6.

When classes that need refactoring are detected by applying certain design heuristics, suitable meta-

pattern transformation can be selected based on Figur 6 to solve the violation problem to design

heuristics, thus to enhance system maintainability.

Figur 6 Impact of meta-pattern transformations on object oriented metrics [15]

This approach combines using metrics for quality estimation and performing transformation based on

soft goal graphs. It analyzes the interaction between software transformations and metrics.

5. Comparison of quality impact analysis techniques

A review of the presented techniques for quality impact analysis in refactoring is made against the

essential requirements described in section 3, which form the base for the comparison criteria. These

Page 20 of 43

three techniques differ from each other in terms of concepts, principles and analysis capabilities.

Therefore, we believe it is suitable to analyze them as representatives against the essential

requirements that we have extracted in section 3.

5.1 Analysis requirements

– Quality concerns

Coupling metrics technique focuses on maintainability and analyzes only coupling aspect.

Therefore, there is no trade-off consideration in terms of various quality attributes.

Soft goal graph transformation focuses on various quality attributes and identifies refinement

of the quality attributes into concrete and specific quality requirement expressions through soft

goal graph. Trade-offs among quality attributes can be detected through analyzing the soft

goal graphs.

Metric based transformation focuses on quality attributes in terms of a set of object oriented

metrics, which can be used to assess system qualities.

– Cost and effort concerns

None of the three techniques takes into account cost and effort concerns as constraints to

quality impact analysis in refactoring.

– Architectural concerns

Coupling metrics technique focuses on method level. Therefore, there is no strong emphasis

on high level architecture.

Soft goal graph transformation technique takes into account the primitive and complex design

patterns and analyzes quality impact from architectural design level.

Metric based transformation technique detects refactoring candidates through applying design

heuristics and analyzes the correlation between design patterns and object oriented metrics.

– Analysis level

Coupling metrics approach is on method level.

Metrics based transformation is on class level.

Transformation using soft-goal graph is on architectural design level.

5.2 Assessment requirements

– Qualitative assessment

Both soft goal graph transformation technique and metric based transformation technique use

qualitative assessment.

– Quantitative assessment

Coupling metrics technique uses quantitative assessment.

– Trade-off concerns in quality analysis

There are no trade-off concerns in terms of quality attributes in coupling metrics technique.

Both soft goal graph transformation technique and metric based transformation technique take

into account the quality trade-off factors by refining the quality attribute in soft goal

Page 21 of 43

interdependency graph and analyzing the positive and negative impact of design patterns on

quality attribute refinements.

The trade-off concerns between technical assessment and business assessment are not

applicable because none of the techniques take into account cost and effort analysis.

5.3 Tool requirements

Coupling metrics technique uses Refactoring Assistant as tool support for bad-smell detection.

Based on this detection result in terms of coupling metrics and interviews with software

developers, the most serious problems in terms of maintainability are extracted for further

analysis.

NFR Assistant [17] can be used in the soft goal interdependency analysis graph for both soft

goal graph transformation technique and metrics based transformation technique.

Generally, tool support in quality impact analysis is desired to facilitate effective execution of

impact assessment of refactoring.

A summary of the comparisons of the quality impact analysis techniques against the essential

requirements is shown in Figur 7.

Requirements Coupling Metrics Soft Goal Graph

Transformation

Metric Based

Transformation

Analysis Quality Coupling aspect only yes yes

 Cost & Effort no no no

 Architectural no yes yes

 Analysis Level method architectural design class

Assessment Qualitative no yes yes

 Quantitative yes no no

 Trade-off no partial partial

Tool Support no no no

Figur 7 Summary of quality impact analysis techniques comparison

6. Conclusion

In order to reduce system complexity and enhance software quality, refactoring technique has emerged

as one of the many efficient solutions. However, refactoring process is complicated and covers a set of

comprehensive activities. Quality impact analysis is one of them and plays a central role in assisting

refactoring decision making during the refactoring process as well as in making contributions to

successful system and software evolution.

This paper addressed the essential requirements for quality impact analysis techniques in refactoring.

We reviewed three representative quality impact analysis approaches that differ from each other in

terms of concepts, principles and analysis capabilities. Based on the analysis of these techniques, we

investigated how they match against the essential requirements.

We believe that the requirements that are derived from this paper can serve as a base and checking

metrics for software analysts in selecting appropriate quality impact analysis technique that suits their

Page 22 of 43

specific needs. They can also act as a starting point and indication for further improvement and

development of quality impact analysis techniques in refactoring process.

References

[1] BD. Bois and T. Mens: Describing the Impact of Refactoring on Internal Program Quality.

(2003)

[2] L. K. Chung, B. A. Nixon, E. Yu and J. Mylopoulos: Non-Functional Requirements in

Software Engineering. (2000)

[3] I. Crnkovic and M. Larsson: Building Reliable Component-Based Software Systems.

(2002)

[4] M. Fowler: http://www.refactoring.com (visited 2007)

[5] M. Fowler: Refactoring Improving the Design of Existing Code. Addison-Wesley (1999)

[6] A. Hessellund: Refactoring as a Technique for the Reengineering of Legacy Systems.

(2004)

[7] Y. Kataoka et al: A Quantitative Evaluation of Maintainability Enhancement by

Refactoring. (2002)

[8] MM. Lehman: Laws of Software Evolution Revisited (1996)

[9] MM. Lehman and JF. Ramil: Rules and Tools for Software Evolution Planning and

Management. (2001)

[10] T. Mens and T. Tourrwé: A Survey of Software Refactoring. (2004)

[11] WF. Opdyke: Refactoring Object-Oriented Frameworks. (1992)

[12] S. L. Pfleeger: The nature of system change. IEEE Software (1998)

[13] A. J. Riel: Object-Oriented Design Heuristics. (1996)

[14] L. Tahvildari and K. Kontogiannis: A Methodology for Developing Transformations

Using the Maintainability Soft-Goal Graph. (2002)

[15] L. Tahvildari and K. Kontogiannis: A Metric-Based Approach to Enhance Design

Quality through Meta-Pattern Transformations. (2003)

[16] L. Tahvildari and K. Kontogiannis: On the Role of Design Patterns in Quality-Driven

Re-Engineering (2002)

[17] Q. Tran and L. Chung: NFR – Assistant: Tool Support for Achieving Quality (1999)

[18] Information Hiding. http://en.wikipedia.org (visited 2007)

[19] Modularity in Computer Science. http://en.wikipedia.org (visited 2007)

Page 23 of 43

On the Difficulties of Maintaining Legacy
Systems: Can it be solved by Model-Based

Development?

Joel Huselius (joel.huselius@mdh.se)

May 22, 2007

Abstract

One of our observations is that maintenance is a much neglected subject in
contemporary research. We motivate the need for maintenance in industry and
discuss difficulties, different research results, and their potential.

1 Maintenance
In the context of this report, a legacy system has all or some of the following properties:
it consists of millions of lines of code, it is maintained by a large team of engineers from
several generations,1 it contains code originated several years ago, and it is expected to
function for many more years to come. Real examples of these systems can easily be
found within many domains such as automation, automotive, and telecom industries.

Maintenance is defined by the IEEE [9] as:

“. . . modifying a software system or component after delivery to correct
faults, improve performance or other attributes, or to adapt the product to
a changed environment.”

There are four types of maintenance:

1. Corrective: repair of discovered faults

2. Adaptive: environmental adaptations (e.g. upgraded hardware)

3. Perfective: functional enhancements due to new and/or revised requirements

4. Preventive: changes to increase maintainability of software

1Several generations, i.e. the set of engineers that have contributed to the system is a superset of the set
of engineers currently working on the system.

1

Page 24 of 43

Industries around the world are continuously maintaining their respective legacy
systems. From the industry point of view, this is a major issue (and has been for some
time [1, 15, 22]). However, from the academia, little attention has been given to these
matters [1, 16]. For example, according to their web page, the IEEE organized 759
conferences in 2005. Six (6) out of these had a clear focus on maintenance.2 To put this
in perspective, twenty nine (29) of the conferences had the word “Wireless” in the title.
The lack of research in this field may be due to that it is difficult to objectively classify
software maintenance as anything more detailed than arbitrary changes to arbitrary
things [6].

1.1 Motivating maintenance
In his seventh law of software evolution [13, 14], where an E-type program is a program
that solves a problem or implements a computer application in the real world, Lehman
proclaims that:

“E-type programs will be perceived as of declining quality unless rigor-
ously maintained and adapted to changing operational environment.”

Thus, software maintenance is needed to keep the quality of the legacy system. In
an uncontrolled quality decline the legacy system is made obsolete prematurely, which
leads to even larger costs than required for maintenance.

Apart from legacy system quality, also the legacy system complexity is jeopardized
by poor maintenance. Lehman’s second law (still concerning E-type systems) states
that:

“As a program is evolved its complexity increases unless work is done to
maintain or reduce it.”

According to intuition, a less complex legacy system is less difficult to maintain,
and a more complex legacy system is more difficult to maintain (this has also been
shown in [4]). Thus, maintenance should be a continuous effort throughout the life
cycle of the legacy system, and affordable efforts aimed to maintain the complexity
within acceptable bounds will limit the cost of maintenance.

1.2 A process for maintenance
Maintenance to direct a given change request consists of a set of sub-activities (slightly
adapted from [16]):

1. Understanding the change request

2. Understanding the system and its structure (i.e. reverse engineering [3])

2(1.) The Working Conference on Reverse Engineering, (2.) the Annual Reliability and Maintainability
Symposium - Product Quality & Integrity, (3.) the 9th European Conference on Software Maintenance and
Reengineering, (4.) the IEEE International Conference on Software Maintenance, (5.) the IEEE Workshop
on Source Code Analysis and Manipulation, and (6.) the IEEE 13th Workshop on Program Comprehension.

2

Page 25 of 43

3. Designing the implementation of the change request

4. Implementing the change request

5. Determining ripple effects

6. Designing new change requests based on ripple effects

7. Performing maintenance for the new change requests

8. Testing that the system fulfills all previous and new requirements

1.3 Requirements on maintenance
Short-term requirements on maintenance includes avoiding to violate previously stated
requirements and choosing a simple change implementation with limited ripple effects.
A more intricate long-term requirement is to maintain the scalability of the legacy sys-
tem so that future maintenance can be easily performed. This may require choosing
another alternative than the simplest change implementation, which makes the act of
choosing a design implementation slightly more complex. Another important require-
ment is of course to reduce the cost of maintenance.

1.4 Example of tool assisted maintenance: MORALE
Abowd et al. [1] present the tool supported development framework Mission ORi-
ented Architectural Legacy Evolution (MORALE). The framework is mission oriented
as opposed to being oriented by technical criteria, i.e. a proposed change is seen in the
context of the goals and behavior of the legacy system. Abowd et al. state that archi-
tectural modifications are those that are most difficult and most time consuming. In an
attempt to reduce costs in the introduction of architectural modifications, MORALE
allows risk calculation for failure to implement specified architectural changes and an
analysis to determine what parts of the legacy system that is affected by an architectural
change. As a pre-stage to these, MORALES also includes a manual reverse engineer-
ing process for extracting architectural information from a legacy system.

Though some tool support exists [18], the amount of manual labor implied is pro-
hibitive.

2 Maintenance through model-based development
Models represent an abstraction from the legacy system. According to the IEEE [8],
an abstraction is:

“A view of an object that focuses on the information relevant to a particu-
lar purpose and ignores the remainder of the information.”

Abstractions are made and used all the time, they are fundamental for efficient
communication and cognition. In reality, it is often difficult to choose the most appro-
priate abstraction for a given situation. If the abstraction is too high, the value of the

3

Page 26 of 43

information is reduced. If the abstraction is too low, processing the information is te-
dious. Finding the most suitable abstraction is a balance between reducing the amount
of information and preserving potentially relevant information.

2.1 Model-based development
Model-based development (a.k.a. model-based engineering) aims to improve the effi-
ciency and the quality of the development process (including maintenance) by making
it more formal and more mechanical. As opposed to traditional code-oriented devel-
opment, where the source code is the primary view of the developer, models are the
primary view of the development and maintenance process [12]. They are used as me-
dia to formalize, convey, develop, and preserve the properties and requirements of the
legacy system. After that the model is completed and validated, the intension is that the
push of a button (or the technical equivalent) should generate the application code. The
hope is also that the extensive use of models that describe the functional and temporal
properties of the implementation will facilitate reuse, automated validation, automated
verification, and model-based analysis (e.g. impact analysis).

In terms of maintenance, model-based development has the potential to ensure that
old requirements are not violated, and the possibility to apply model-based analysis
on designs of change implementations at an abstract level before full implementation
could help to reduce costs and maintain the complexity of the legacy system.

2.2 Requirements on model-based development
In order to use models as the primary view throughout the life cycle of the legacy sys-
tem and its parts, the models must present a uniform view to avoid divergence between
models [19]. However, different activities in development and maintenance are focused
on different aspects of the legacy system [20]. Modeling represents an abstraction for
a given purpose, and different purposes have different requirements regarding what
information is important and what can be abstracted. Thus, the modeling framework
should allow for separation of concerns.

2.3 Maturity of model-based development
Research in model-based development focus on domain-specific modeling, meta-mod-
eling for architectural descriptions, code generation from models, and analytic meth-
ods for supporting the development and maintenance of models [10]. Though much
research has been conducted in these areas, it is probably safe to say that model-based
development is not yet ready to make its mark in industry on a broad front.

Legacy systems maintained in industry are generally code-oriented, and as Lit-
tlejohn et al. [17] point out: wholesale redevelopment is cost prohibitive, and prior
investments must be preserved. In order to take model-based development into indus-
try, reverse engineering methods must be developed that either atomically transform
code into models in a revolutionary manner, or find other means of making a more
gradual or evolutionary shift of development paradigm. In code-oriented development,
the existing code-base is a valuable asset of the company, it is the result of enormous

4

Page 27 of 43

investments and has taken many man-years using other development paradigms to per-
fect. Any technique for introducing model-based development must do so with such
detail and quality that the existing code-base can be discarded. This poses very high
demands on the techniques for introducing model-based development. Contrary to in-
tuition, it is likely that the more gradual shift towards model-based development is
associated with a higher stake. Due to the accumulated work performed to make the
shift, and the reduction in work efficiency during the shift, the stake of a failed para-
digm shift is higher than in the case of the “big-bang”. The risk however, is likely to be
lower with a gradual approach that has the ability to adopt dynamically to issues that
arise during the paradigm shift. Most sources seem to agree that a gradual paradigm
shift is preferable [11, 17].

Regarding revolutionary means to introduce model-based development, there are
several methods for automating reverse engineering, but we do not know of any method
that allows the introduction of model-based development. We exemplify by mentioning
two methods:

2.3.1 Machine learning of timed automata

Grinchtein et al. [5] present a method for reverse engineering to time deterministic
event recording automata (i.e. transition guards of the automata are mutually exclusive)
based on traces of the program. Their approach is to view this as a learning problem:

In machine learning [2] a Learner is concerned with hypothesizing a model from
a system by asking a Teacher if the system accepts a given behavior trace (i.e. asking
membership queries). Which membership queries to ask is given by inconsistencies
in the Learner’s currently available data; if a set of behavior traces that the Learner
thinks are equal yields different answers when the Teacher is asked, an inconsistency
exists. By reformulating the hypothesized model and asking a set of more detailed
queries, these inconsistencies are resolved. When a Learner has obtained a sufficient
confidence in the correctness of the hypothesis (i.e. when all inconsistencies has been
resolved), the hypothesized model is checked with an Oracle to determine its correct-
ness (i.e. asking equivalence queries). If the model is incorrect, the Oracle will present
a counter example that can be used to extend the model. Implementation issues involve
realizing the Teacher and the Oracle. Implementing a Teacher may be prevented due
lack of reproducibility in the system [21]. Regarding complexity: Since membership
queries need to be asked until all inconsistencies are resolved, the number of member-
ship queries can potentially be large. The final model is not guaranteed to have the
same structure as the system.

2.3.2 From code to model

Holzmann and Smith [7] introduced a method called Modex (acronym for MODel EX-
tractor) for reverse engineering from code. They describe static model extraction as
a hierarchical process, which makes it very comprehensible. As a proof of concept,
they present a one shot experiment on a large telephone application. Modex takes the
source code of the implementation as input, which makes the model accurate to the
implementation.

5

Page 28 of 43

Apart from the source code of the implementation, four additional types of inputs
are required; these can be seen as non-operational models that are supplied as input. It
is claimed that the production of these inputs is a simple task, but that some updates to
the input can take in the order of hours to complete.

3 Conclusions
In this paper, we have discussed the differences between the industry and academic
views on maintenance. We have exemplified a framework for maintenance, and dis-
cussed the possibility of easing maintenance by introducing model-based development.

Our conclusion is that model-based development provides features and capabilities
needed in industry to ease maintenance, but more research is needed to facilitate its
introduction. The model-based technologies must mature, and introduction of model-
based development must be directed.

References
[1] Gregory Abowd, Ashok Goel, Dean Jerding, Michael McCracken, Melody

Moore, William Murdock, Colin Potts, Spencer Rugaber, and Linda Wills.
MORALE. mission oriented architectural legacy evolution. In Proceedings of In-
ternational Conference on Software Maintenance, pages 150–159, October 1997.

[2] Dana Angluin. Learning regular sets from queries and counterexamples. Infor-
mation and Computation, 75(2):87–106, November 1987.

[3] Elliot J. Chikofsky and James H. Cross II. Reverse engineering and design recov-
ery: A taxonomy. IEEE Software, 7(1):13–17, January 1990.

[4] Virginia R. Gibson and James A. Senn. System structure and software mainte-
nance. Communications of the ACM, 32(3):347–358, 1989.

[5] Olga Grinchtein, Bengt Jonsson, and Paul Pettersson. Inference of event-
recording automata using timed decision trees. Lecture Notes in Computer Sci-
ence, 4137:435–449, 2006. In Proceedings of the 17th International Conference
on Concurrency Theory.

[6] David Hearnden, Paul Bailes, Michael Lawley, and Kerry Raymond. Automating
software evolution. In Proceedings of the 7th International Workshop on Princi-
ples of Software Evolution, pages 95–100, September 2004.

[7] Gerard Johan Holzmann and Margaret H. Smith. An automated verification
method for distributed systems software based on model extraction. Transactions
on Software Engineering, 28(4):364–377, April 2002.

[8] IEEE. IEEE Standard Glossary of Software Engineering Terminology. IEEE,
December 1990. IEEE Std. 610.12-1990.

6

Page 29 of 43

[9] IEEE. IEEE Standard for Software Maintenance. IEEE, June 1998. IEEE Std.
1219-1998.

[10] IEEE Computer Society. Proceedings of the Fourth Workshop on Model-Based
Development of Computer-Based Systems and Third International Workshop on
Model-Based Methodologies for Pervasive and Embedded Software, March 2006.

[11] Ivar Jacobson and Fredrik Lindström. Re-engineering of an old system to an
object-oriented architecture. In Proceedings of the ACM Conference on Object
Oriented Programming Systems Languages and Applications, pages 340–350,
October 1992.

[12] Gabor Karsai, Janos Sztipanovits, Akos Ledeczi, and Theodore Bapty. Model-
integrated development of embedded software. Proceedings of the IEEE,
91(1):145–164, January 2003.

[13] Meir Manny Lehman. Programs, life cycles and the laws of software evolution.
Proceedings of the IEEE, 68(9):1060–1076, September 1980.

[14] Meir Manny Lehman. Laws of software evolution revisited. In Proceedings
of the 5th European Workshop on Software Process Technology, pages 108–124,
October 1996.

[15] Bennet P. Lientz, E. Burton Swanson, and Gerry Edward Tompkins. Charac-
teristics of application software maintenance. Communications of the ACM,
21(6):466–471, June 1978.

[16] Mikael Lindvall, Seija Komi-Sirviö, Patricia Costa, and Carolyn Seaman. Em-
bedded software maintenance: A dacs state-of-the-art report. Technical Report
DACS SOAR 12, Data and Analysis Center for Software, January 2003.

[17] Kenneth Littlejohn, Michael V. DelPrincipe, and Jonathan D. Preston. Embed-
ded information system re-engineering. IEEE Aerospace and Electronic Systems
Magazine, 15(11):3–7, November 2000.

[18] Spencer Rugaber. A tool suite for evolving legacy software. In Proceedings of the
IEEE International Conference on Software Maintenance, pages 33–39, August
1999.

[19] Bernhard Schtz. Model-based engineering of embedded control software. In
Proceedings of the Fourth Workshop on Model-Based Development of Computer-
Based Systems and Third International Workshop on Model-Based Methodologies
for Pervasive and Embedded Software, pages 53–62, March 2006.

[20] Tivadar Szemethy, Gabor Karsai, and Daniel Balasubramanian. Model transfor-
mations in the model-based development of real-time systems. In Proceedings of
the 13th Annual IEEE International Symposium and Workshop on Engineering of
Computer Based Systems, pages 177–186, March 2006.

7

Page 30 of 43

[21] Henrik Thane. Monitoring, Testing and Debugging of Distributed Real-Time Sys-
tems. PhD thesis, Kungliga Tekniska Högskolan, Sweden, May 2000.

[22] Stephen W. L. Yip, Tom Lam, and Stephen K. M. Chan. A software maintenance
survey. In Proceedings of the First Asia-Pacific Software Engineering Confer-
ence, pages 70–79, December 1994.

8

Page 31 of 43

Software Aging and the Code Decay Phenomenon
Johan Kraft

Mälardalen University
johan.kraft@mdh.se

Abstract
This paper describes the issue of software aging and the phenomenon known as code decay.
The paper is gives an introduction to the subject, describes the driving forces behind code
decay and also presents research on measurement of code decay.

Introduction
Software does not wear out in the conventional sense, like a physical object, but do
experience an aging process. It is commonly recognised that software that has been
maintained for some time and where many changes has been made, typically is harder to
change than new software. The accumulated effect of previous maintenance operations is
often described as software aging. The main symptom of software aging, and the main
motivation for studying software aging, is the resulting increase in maintenance costs. The
many changes made, often in a suboptimal manner, makes the code increasingly complex and
hard to understand, both locally (e.g. complex control flow within a function) and on a higher,
architectural level (e.g. many dependencies between modules). This phenomenon is
commonly known as code decay.

A definition of code decay is found in [2], “a unit of code (in most cases, a module) is
decayed if it is harder to change than it should be, measured in terms of effort, interval and
quality”. In this definition, the effort is the number of person-hours required for the change,
interval is the calendar time required and quality is the absence of errors introduced when
performing the change.

There exists another use of the term software aging; when the performance and/or reliability
of software deteriorate during runtime, e.g. due to resource management issues. This is
described in, e.g., [5]. The focus of this paper is however the aging of software due to the
changes made between different revisions of the software.

For industrial software systems, the concept of software aging and code decay is of high
importance. Industrial software systems are often very large, containing millions of lines of
code, and therefore constitute a huge investment for a company – hundreds or thousands of
person-years of development time. Such software systems can not easily be replaced as it is
important to preserve this investment. As a company’s profit from the development
investment is proportional to the time it can be used in the company’s products, it is very
important that the software system can live as long as possible. Industrial software systems
are therefore often maintained for many years, or even decades, after the initial release.
Maintenance operations are inevitable and often frequent, due to the market demand for new
features and the many errors typically discovered post-release.
The costs for software maintenance have been estimated to account for 50-80% of the total
lifecycle cost of software in general [3]. For industrial software systems, that typically is very
long-lived, this is most likely a very conservative estimation. The issue of software aging and
code decay has therefore a large economic impact for developers of industrial software
systems. Imagine a medium size software organisation, with 100 software developers that
spend 75 % of their budget (development time) on maintaining existing code. If the

Page 32 of 43

phenomenon of code decay is responsible for even a 5 % decrease in development efficiency,
this corresponds to a cost of 4 person-years.

In general, the cost for inefficient software development is huge. According to a recent study
[4] by the National Institute of Standards and Technology (NIST) at the U.S. Department of
Commerce, software bugs cost the U.S. economy an estimated $59.5 billion annually. The
study concluded that more than a third of these costs could be eliminated by an improved
testing infrastructure that enables earlier and more effective identification and removal of
software defects, i.e. finding an increased percentage of errors closer to the development
stages in which they are introduced. But how does this relate to software aging? Many bugs
are probably the result of aging, decayed software. In order to improve development
efficiency, increasing the awareness and prioritization of long-term software quality, i.e.
maintainability, is at least as important as novel methods for software verification.

The purpose of this paper is to give an overview of software aging and code decay, why it
occurs and how it can be measured.

Factors behind code decay
Aging is an issue for all successful software products, as they will be changed frequently
during their lifetime. Only software that no one uses remains unchanged. Lehman has
formulated several commonly known “laws” (observations) regarding the nature of software
maintenance [1]. Three of the laws are of special relevance here:

The law of Continuing Change: “An E-type program that is used must be continually adapted
else it becomes progressively less satisfactory”.

The law of Increasing Complexity: “As a program is evolved its complexity increases unless
work is done to maintain or reduce it”.

The law of Continuing Growth: “Functional content of a program must be continually
increased to maintain user satisfaction over its lifetime.”

An E-type solves a problem or implements a computer application in the real world. All
industrial software products are in this category.
The Continuing Change can be explained by the fact that the environment that the program is
used in will most likely change (e.g. technical standards, laws, business rules), which require
adaptations of the software. Moreover, new features and/or better performance will be
requested, either by the customers directly or in response to competing products, in order to
keep market shares. Continuing Change is also due to the errors will be reported long after the
initial release, which will require fixes to be made.
As observed by Lehman (Increasing Complexity), the changes made increases the complexity
of the software. This partly due to the increasing functional content, and thereby increasing
size of the implementation (Continuing Growth), but also due to code decay caused by the
changes.

As noted by Lehman, the complexity increase can be compensated by efforts striving at
improving the system’s maintainability, i.e. perfective maintenance, also known as
refactoring. However, since refactoring does not improve the functionality of the system, such
activities are often not prioritized until the level of code decay has become very high. If time

Page 33 of 43

is allocated for more frequent refactoring activities, the effort required for each refactoring
activity will be much smaller and the system will generally have better maintainability.
There are several contributing factors behind the code decay phenomenon.

• Software Engineering competence
• Personnel turnover
• Focus on short-term goals
• Not designing for change

Software Engineering competence One issue is the fact that many software developers are
not software engineers [6]. They have other academic backgrounds, like mechanics, control
theory, physics, mathematics etc. They know how to write code, but many lack professional
education in large scale software development, e.g. sound design principles and quality
assuring activities like reviews.

Personnel turnover Another issue is the personnel turnover during the system lifecycle.
Many developers are inexperienced, at the company or in general. Moreover, a lot of the
design rules used in system’s original architects have not been explicitly documented and
have been lost as experienced developers have left the company. Thus, many maintenance
operations are performed by developers that don’t know the original design rules of the
system and therefore don’t follow them when implementing changes. In order to fully
understand the system after such changes, it is necessary to understand both the original
design and the rationale behind the later changes. After many such changes, nobody fully
understands the product [6].

Focus on short-term goals A big issue is the time pressure from management or customers
on meeting short term goals. This makes developers take short-cuts, that violate design
guidelines or in other ways constitute sub-optimal solutions. Time pressure also makes
developers neglect updating the design documentation to reflect their changes. Focus is on
getting the program to behave as requested, while long-term quality, i.e. maintainability and
quality of design documentation, has low priority. In [6], the author suggests that managers
not prioritize long-term software quality in order to maximize short term results, to improve
their visible management results and thereby promotion chances. This is probably hard to
avoid, as the long-term software quality is hard to measure. However, one must remember
that short term goals are very important too, long-term quality is not relevant if the company
goes out of business! A balance is necessary.

Not designing for change Programmers in general do not design for future changes, but
focus on achieving desired functionality. This is related to the issued of programmer
competence and pressure on short-term goals. As future changes are inevitable, designing for
maintainability constitute a long-term investment in software quality. As put in [6],
“Designing for change is designing for success”.

The listed factors behind code decay are really symptoms of the immaturity of software
development today. This is a serious and increasing problem, considering the high and rapidly
growing use of software in products.

Measuring Code Decay
The measuring of code decay has been discussed in several works, typically case studies
where source code metrics are collected from different revisions of large software systems
and analyzed in order to identify modules with code decay problems. In this way, refactoring

Page 34 of 43

efforts can be focused on the modules with greatest need. Code decay is always relative to
previous system revisions due to the definition “… harder than it used to be”, and can not be
quantified in absolute terms. The known works that measure code decay focus on identifying
the most decayed modules of a system. In [7], a classification scheme is proposed, dividing
legacy components (modules) into three categories, green, yellow and red components.

• Green components are considered “normal” and do not have any significant code
decay. Some fluctuations are of course possible, but changes can in general be made
without problems.

• Yellow components are components where the code decay has exceeded a lower limit
and where attentions is necessary in order to avoid future problems, if the code decay
increase further. Such components are candidates for directed refactoring activities.

• Red components are components where the code decay have exceeded an upper limit
and where maintenance is significantly harder than usual.

However, it is not trivial to determine where the two limits are (green-yellow and yellow-red),
as it is dependent on many factors and hardly can be decided in absolute terms, but need to be
subjectively selected based on relative measures. The authors present three classes of metrics
used for analyzing the code decay; faults, structural changes and size changes.
The history of fault can be used to identifying the components that often have faults and
thereby are likely to suffer from code decay. By comparing structural properties of the
different modules between revisions, it is possible to identify major structural changes, which
may lead to reduced maintainability. Size changes of the modules could also a measure, major
changes in size could be a warning of code decay. The result from the case study performed in
[7] is however weak, as they used too few data points, they only compared two revisions. In
[8] the authors present a more extensive study, where 8 revisions have been compared. 28
different measures where collected of 130 software components. Using these measures, they
where able to identify a large number of “healthy” components and a small number of
“problematic” components, on which many changes have been necessary.
In [2] the authors present a set of code decay indices (CDI’s) which they have used to
investigate the existence of code decay in a very large telecom switching system, containing
100.000.000 lines of code. The analysis was performed on based on the entire change
management history - 15 years of changes. They observed an increase over time in the
number of files modified by a change and a decrease in modularity. Moreover, through
statistical analysis they found several factors that seemed to influence the amount of faults of
a module, including the frequency and recency of changes.

Conclusions
Code decay is a symptom of software aging and occurs due to the accumulated effect of all
changes performed during the system’s maintenance phase, which often lasts for many years.
The symptom of code decay is treated by perfective maintenance, also known as refactoring.
The reason behind the code decay is that many changes are often performed in a suboptimal
manner due to many factors, e.g., time pressure, inexperienced personnel and poor design
documentation. It is possible to measure code decay by comparing source code metrics
between revisions, but it is always a relative measure, as code decay can not be quantified in
absolute terms. Some academic results exist in this area, but the industry awareness of this
issue is in general low.

References
[1] – M. M. Lehman, "Laws of Software Evolution Revisited", in Proceedings of the
European Workshop on Software Process Technology, pages 108-124, 1996.

Page 35 of 43

[2] – S. G. Eick, T. L. Graves, A. F. Karr, J. S. Marron and A. Mockus, “Does code decay?
Assessing the Evidence from Change Management Data”, IEEE Trans. on Softw. Eng., v. 27,
n. 1, pp. 1 – 12, 2001.
[3] – D. Gefen and S. L. Schneberger, “The Non-Homogeneous Maintenance Periods: A Case
Study of Software Modifications”, in Proceedings of the International Conference on
Software Maintenance, pages: 134 – 141, 1996.
[4] – “The Economic Impacts of Inadequate Infrastructure for Software Testing”, Planning
Report 02-3, Prepared by RTI for the U.S. National Institute of Standards and Technology,
2002.
[5] – K. C. Gross, V. Bhardwaj, R. Bickford, “Proactive Detection of Software Aging
Mechanisms in Performance Critical Computers”, in Proceedings of the 27th Annual NASA
Goddard Software Engineering Workshop (SEW-27'02), 2002.
[6] – D. L. Parnas, “Software aging”, in Proceedings of the 16th International Conference on
Software Engineering, Pages: 279 – 287, 1994.
[7] – M. C. Ohlsson and C. Wohlin, “Identification of Green, Yellow and Red Legacy
Components”, in Proceedings of the International Conference on Software Maintenance,
pages: 6-15, 1998.
[8] – M. C. Ohlsson, A. von Mayrhauser, B. McGuire, C. Wohlin, “Code Decay Analysis of
Legacy Software through Successive Releases”, in Proceedings of the IEEE Aerospace
Conference, March 1999.

Page 36 of 43

Legacy Course Final Assignment
Yue Lu

1/12

An Introduction to Renaissance method: A
method to Support Legacy System

Evolution

Yue Lu
Mälardalen University, Västerås, Sweden

yue.lu@mdh.se

Page 37 of 43

Legacy Course Final Assignment
Yue Lu

2/12

Abstract

Legacy systems are often business-critical and are associated with high maintenance
costs [2]. The Renaissance project is conducted in the aiming to manage the process of
regaining control over the legacy systems. Recovering a stable basis using reengineering
at first, and subsequently continuously improving the system by a stream of incremental
changes[2], support the system evolution in Renaissance. It is pointed out that the
system evolution is determined by three main factors, e.g. technical, business, and
organisational [2]. Renaissance defines a process framework, a predefined number of
evolution strategies, and information repository, and a generic set of personnel
responsibilities. The method can be tailored to the needs of particular projects and
organisations, instantiated to offer a cost / risk trade-off, and it is not prescriptive of
particular tools and techniques. The Renaissance method is quite interesting. However,
due to the lack of possibility of assessing the real system in our research filed, it is
impossible to research whether it can work and show how much it can perform or should
be improved in the legacy system that we are aiming at. Whereby, only the method is
introduced in this paper with content from the references.

1. Legacy systems

Due to the time and efforts required to develop a complex system, e.g. which consists of
millions of lines of codes, large computer based systems usually have a long lifetime.
After being developed, the systems will progressively become less useful, if they can’t be
changed to response to the changing environments. Whereby, the needs for
accommodating systems changes according to the new requirements from technical,
business, and organizational perspectives, are important and necessary. A legacy system
is an old system that remains in operation within an organisation [2]. Its compositions
can be shown by the following figure 1 [1].

Figure 1 Legacy system components

Page 38 of 43

Legacy Course Final Assignment
Yue Lu

3/12

Many of the legacy systems are business-critical, and hard, ineffective, expensive to
be maintained due to the reasons for short anticipated system lifetimes, lack of well-
organized system design documentations and experienced personnel, decreased
maintainability caused by satisfying other design constraints, obsolete technology used
and the immaturity of software engineering practice at the time of system construction
etc.

Studies have shown that reengineering, where appropriate, is generally more cost
effective and less risky than developing a new system (replacing) [4]. The Renaissance
method [5,6] which is proposed in the RENAISSANCE project, an ESPRIT funded
research project into software reengineering and software evolution, aims to support a
controlled approach to system evolution.

2. Renaissance Method

2.1 System evolution method requirements
In the paper [2], there are four key requirements of a method to supports system
evolution are identified, and can be shown by the Table 1[2].

Table 1 Method requirements

2.2 Renaissance approach
In the Renaissance, they proposed a two-stage process for transforming legacy systems to
evolvable systems. In the first stage, the reengineering, or even in some extreme cases,
replacing, is used to recover a stable basis of system transformation to evolvable system.
The costs and risks associated with the system evolution can be predicted after the system
transformation is done. In stage 2, the further evolution of the evolvable system in its life
cycle will be conducted continuously. The figure 2 [2] shows the Renaissance approach.

Figure 2 Renaissance approach

The Renaissance method comprises a classification of evolution strategies, a process
framework, an information repository, and a set of responsibilities to be met in a typical
evolution project. Each of these elements can be tailored to fit particular project and
organisational factors [2].

2.3 Evolution strategies
There are six proposed evolution strategies in paper [2], which can be shown refer to the
Table 2 [2].

Page 39 of 43

Legacy Course Final Assignment
Yue Lu

4/12

 Table 2 Evolution strategies
Generally speaking, these options are not exclusive, and can be used in the same
application. Since a system is composed of several programs, thus different options may
be applied to different parts of the system.

2.4 Process Framework
The process framework proposed in the Renaissance is split into four high-level phases
with identified key activities. The framework starts with Plan Evolution, which addresses
the systems’ long-term future, and involves assessing the current system from technical,
business, and organisational perspective with a view to develop an evolution strategy[2].
Process framework can be shown with the combination of following figure 4 and Table 2
[2].

Figure 3 Abstract process model Table 3 Key activities in Renaissance

The key effective evolution planning is thorough assessment of the legacy system [7].

The Assessing a system by using an attribute-rating scheme [1] means calculating
measures for the system's technical quality and business value, and taking account of any
organisational factors which might affect an evolution project [2].

From a business perspective, the key point is to decide whether the business really
needs the system. From a technical perspective, the qualities of the application software,
the system’s support software, hardware are taken into account. Then the business value
and system quality will be combined, to inform the decision on what to do with the legacy
system[1]. To illustrate, it is proposed that an organization has 8 legacy systems. The
quality and the business value of each of these systems is assessed and compared with
others by plotting it on a chart showing relative business value and system quality [1].

Page 40 of 43

Legacy Course Final Assignment
Yue Lu

5/12

This is illustrated in Figure 4 [1], where there are four clusters of systems.

System quality

B
us

in
es

s
Va

lu
e

High business value
Low quality

High business value
High quality

Low business value
Low quality

Low business value
High quality

1
4

8
2

7

5

3

6

Figure 4 Legacy system assessments

To assess a software system from a technical perspective, both the system application

and the environment in which the system operates, are taken into consideration. The
environment consists of the hardware and all associated support software, e.g. compilers
linkers, which are required to maintain the system. The changes in environment result in
system changes, such as upgrades to the hardware or operating system. If possible, in the
process of environmental assessment, measurements of system and its maintenance
processes should be made. Example of data that may be useful include the costs of
maintaining the system hardware and support software, the number of hardware faults
that occur over some time period and the frequency of patches and fixes applied to
the system support software [1].

Factors to be considered during the environment assessment are supplier stability,
failure rate, age, performance, support requirements, maintenance costs, interoperability
etc. Notice that these are not all technical characteristics of the environment. The
reliability of the suppliers of the hardware and support software should be taken into
account as well. If these suppliers are no longer in business, there may not be
maintenance support for their systems.

To assess the technical quality of an application system, a range of factors are to be
assessed, e.g. understandability, documentation, data, performance, programming,
language, configuration management, test data, personnel skills etc, that are primarily
related to the system dependability, the difficulties of maintaining the system and the
system documentation. It will be helpful to judge the quality of the system if quantitative
system data are collected. Although this data is often useful, collecting it can be very
expensive and therefore impractical. Furthermore, there are no absolute values that may
be used. The age and size of the system have to be taken into account when making
quality judgments based on measurements.

Page 41 of 43

Legacy Course Final Assignment
Yue Lu

6/12

2.5 Method Evaluation

During the Renaissance project, industrial partners were involved in evaluating the
method. Each partner used applications with different technical, business, and
organisational properties. Based on their findings, the method was refined. Renaissance
method is fit for the system evolution method requirements described in the section 2.1
However, evaluators found that the method was better suited to managing medium-to-
large projects than small projects, due to the overhead introduced in the project initial
stage [2].

Page 42 of 43

Legacy Course Final Assignment
Yue Lu

7/12

References
[1] Software Engineering, SOMMERVILLE, Chapter 2, Legacy systems, Page 39-41,

Legacy system evolution, Page 504-509.
[2] Renaissance: A Method to Support Software System Evolution. Ian warren and

Jane Ransom, Computing Department, Lancaster University.
[3] Lehman, M. M. and Belady, L. Program Evolution: Processes of Software Change.

London: Academic Press. 1985.
[4] Ulrich, W. M. The Evolutionary Growth of Software Reengineering and the

Decade Ahead. American Programmer, 3(10). 1990.
[5] Warren, I. (ed.) The Renaissance of Legacy Systems. Practitioner series, Springer.

2000.
[6] The Renaissance Method. RENAISSANCE project deliverable, D4.2. 1998.

Jane Ransom, Computing Department, Lancaster University. Lancaster, LA1 4YR.
[7] Ransom, J., Sommerville, I., and Warren, I. A Method for Assessing Legacy

Systems for Evolution. Proc. 2nd Euromicro Conference on Software Maintenance
and Reengineering (CSMR). 1998.

Page 43 of 43

