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Abstract

A modeling process is presented for extracting timing-
accurate simulation models from complex embedded real-
time systems. The process is supported by two complemen-
tary methods for tool-supported model extraction, Model
Synthesis and Hybrid Model Extraction. The generated
models enable impact analysis for complex real-time sys-
tems with respect to dynamic system properties, such as
timing and resource usage. This can make software mainte-
nance more predictable with respect to time-to-market and
development costs, since timing errors can be identified
early and avoided. The contribution of the paper is the mod-
eling process, the Hybrid Model Extraction method and an
interactive modeling tool, MASS, designed to support Hy-
brid Model Extraction of large implementations in C.

1 Introduction

Managing the evolution of software systems is important
in order to preserve the large investments associated with
the software. Complex embedded software systems, such
as industrial control systems or automotive systems, often
consists of several million lines of code and are maintained
over many years, sometimes decades, during which the soft-
ware is exposed for changes continuously. Due to the many
changes made over the years, the software systems become
larger and more complex. As a consequence, the perspicuity
of the system decreases, i.e., it becomes increasingly harder
to predict how a change, e.g. a new feature, will impact the
behavior of the system. Thereby, it becomes harder to main-
tain the software, which reflects in development cost and
time-to-market. For embedded software systems, which of-
ten are multitasking real time systems, an impact analysis
is especially difficult as a change’s impact on the system’s
temporal behavior may cause timing errors.

We aim to enable impact analysis for complex embedded
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real time systems with respect to properties of the system’s
temporal behavior, such as response time and utilization of
limited logical resources. The impact analysis should not
only predict the extremes of the system’s temporal behavior,
but also predict the system’s typical temporal behavior. This
allows for predicting the performance impact of a change,
an important issue for e.g. industrial robot control systems.

Our approach for impact analysis is based on proba-
bilistic, timing-accurate models of the software, intended
for simulation based analysis. By prototyping a proposed
change on such a model and running simulations of the up-
dated model, negative side effects of the change can be iden-
tified early. This saves a lot of time and money, since timing
errors often are expensive. In general, they can not be de-
tected until late phases of testing, when the complete system
runs under realistic load conditions.

The accuracy of a simulation-based impact analysis can
be very high when predicting the system’s typical behavior,
given that the model and the prototype implementation of
the change on the model are correct and accurate. However,
since simulation is not an exhaustive analysis method, it is
not ideal for predicting worst case behavior. It can give es-
timations regarding the values and frequencies of extremes
cases, but these are not guaranteed to be the actual worst
case values.

An alternative to simulation are formal methods, like
model checking, where models are analyzed exhaustively.
There are several tools for model checking of timed au-
tomata models [1], which can safely determine if a model
violates specific requirements on e.g. maximum response
time. Examples are e.g. UppAal [8, 11, 28] and Kronos
[9, 12, 18]. Model checking unfortunately suffers from an
inherit problem known as thestate space explosion, i.e.
when state space of the model is too large to search, due
to resource limitations (time or memory). For models of a
complex industrial systems this would be a major problem.

Another alternative are the different analytical methods
for response time analysis, e.g. rate monotonic analysis
[6, 7, 19, 20, 26]. These are however too restrictive in their
assumptions to be applicable on the systems that we have



studied. Moreover, the expressiveness of the temporal mod-
els defined by these methods is not enough to capture the
complex behavior that our targeted systems exhibit, e.g. in-
terprocess communication, which would make an analysis
extremely pessimistic.

Simulation based analysis should not be regarded as a
replacement for rigorous methods such as model checking
or analytical response time analysis. Simulation is more
related to testing in the sense that it is about finding potential
problems rather than giving guarantees. For many systems,
simulation is the only feasible analysis method.

In previous work we have presented a modeling lan-
guage, ART-ML, for probabilistic modeling of complex real
time systems for the purpose of analyzing timing and re-
source utilization properties. We also presented supporting
analysis tools: a simulator, and a query language, PPL, for
examining the simulation results [31]. When we evaluated
the approach of simulation based analysis on a real indus-
trial system [29, 30] we realized that the main problem is
how to obtain a valid model in a reasonable effort. This re-
quires a modeling process that structures the modeling work
and tool supported methods for model extraction and model
validation. Tool support is absolutly necessary due to the
vast size and the complexity of the type of systems consid-
ered. To perform the modeling manually is too tedious and
error prone to be applicable in an industrial context. The
tool support reduces the effort of modeling to an acceptable
level and the resulting model will be of higher quality.

In this paper we propose a modeling process utilizing
two complementary methods for tool-supported modeling;
Model Synthesis, a fully automated method initially pro-
posed in [16], complemented by a novel method namedHy-
brid Model Extraction. The paper also presents an interac-
tive modeling tool, MASS, designed to support the method
of Hybrid Model Extraction. This paper does not discuss
methods for model validation, but we have discussed model
validity in [3, 4, 2], which also contains references to works
in the area of simulation model validity. Further investiga-
tion of model validation methods is part of future work.

Our work assumes systems based on real time operat-
ing systems (RTOS) with the possibility to record the task
scheduling, i.e. the time and tasks of each context switch.
This is possible in e.g. VxWorks, an RTOS from Wind
River [33]. We assume that the tasks may be either event
triggered or time triggered, may communicate with other
tasks or external systems. The tasks may be servers that
execute variousservicesin response to incoming requests,
from other tasks or other nodes. The services of a task may
have very different functional and temporal behavior, but
share a single thread of control. We assume online priority-
driven scheduling, but make no assumptions on scheduling
algorithm used, since we rely on simulation rather than an-
alytical analysis methods.

The system domain that we are targeting is large and
complex industrial control systems, e.g. industrial robot
controllers and automotive control systems. We have two
industrial partners in these domains:

• ABB - develops industrial robots and control systems
for such robots - a complex real time system.

• Bombardier Transportation - develops trains, which
contains distributed real time computer systems. This
collaboration started 2006, which explains the focus
on the ABB system in previous works.

The outline of this paper is as follows. Section 2 presents
our approach for simulation model extraction, including the
system modeling process (Section 2.1), Model Synthesis
(Section 2.2) and Hybrid Model Extraction (Section 2.3).
Section 3 presents a tool supporting Hybrid Model Extrac-
tion and in Section 4 references to related work is presented.
Finally, Section 5 presents plans for future work.

2 Simulation Model Extraction

An impact analysis based on timing-accurate simulation
requires an analyzable model of the system that describes
both functional- and temporal behavior of the individual
tasks on a proper level of abstraction. The model should
focus ontask eventswhich significantly impact the tempo-
ral behavior of the system, i.e. what tasks that execute, in
what order and for how long.

Examples of such task events are interprocess commu-
nication events, synchronization events and state change
events that impacts the execution of other task events. Infor-
mation regarding relevant task events can be obtained either
from the source code (static analysis) or by analyzing data
recorded from the running system (dynamic analysis).

To allow for timing-accurate simulation, the model also
needs to describe the amount of CPU time required by a
task to execute from one task event to the next, i.e. the exe-
cution time of the code between these model events. This is
modeled not as a fixed value, but as an interval of possible
execution times. The model also need to describe how the
system’s environment, e.g. other nodes, human operators,
sensors readings etc., stimulates the system.

The desired model needs to be expressed in a rich mod-
eling language, such as ART-ML, presented in a previ-
ous work [29, 30], or the modeling language used in the
simulator Virtual Time, from Rapita Systems [23]. Such
modeling languages are in essence imperative programming
languages, extended with modeling primitives such as a
global clock, which is advanced explicitly by the tasks in
the model, and probabilistic selection. Such modeling lan-
guages also contain OS services such as task management
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(start new task, change task priority etc), IPC communica-
tion (send message, receive message) and synchronization
features (semaphores). The OS services of the modeling
language need to have the same semantics as the corre-
sponding OS services of the modeled system, which may
limit the applicability of such modeling languages. The lan-
guage we use, ART-ML, mimics the OS services of the Vx-
Works RTOS, from Wind River [33], while Virtual Time is
adapted for OSE, an RTOS developed by ENEA [13].

2.1 The System Modeling Process

The extraction of a simulation model from a complex
software system is far from trivial and requires a well-
defined process that structures the modeling work and tool
supported methods for the individual modeling activities.
In this section we propose such a process, which utilize two
complementary methods for the task modeling:Model Syn-
thesis[16], for fully automated modeling of less complex
tasks, and we propose a novel method,Hybrid Model Ex-
traction, for modeling of complex tasks. In Hybrid Model
Extraction, presented in Section 2.3, static analysis is used
together with dynamic analysis in order accurately model
tasks with complex behavior. The method can be automated
to a large extent through appropriate tool support (see Sec-
tion 3). The other method, Model Synthesis, is less suitable
for modeling of tasks with complex behavior, since it relies
solely on dynamic analysis. On the other hand it is fully au-
tomated, which makes it excellent for automatic modeling
of less complex tasks, often numerous in a complex embed-
ded system.

Based on previous experiences of modeling a complex
embedded system [30], we propose the following process
for modeling a complex embedded system, using Hybrid
Model Extraction and Model Synthesis:

1. Preparation If not available, add timing recording
functionality to system, typically in the form of a soft-
ware recorder. The recording needs to capture the task
scheduling, i.e. the context switches and calls to rel-
evant OS functions, e.g. for interprocess communi-
cation, task priority changes or synchronization. It
should also be possible to log variables in the appli-
cation code, e.g. by inserting calls to the recorder
(probes) at relevant locations in the application code.
The recorder and any probes needs to be permanently
added to the system and always be active, in order to
avoid aprobe effect[21] when removing or disabling
them.

2. Reference use-casesIdentify common system use-
cases on which to focus the modeling and analysis.
Thesereference use-casescan be obtained from e.g.
system test specifications, end user documentation, or

by asking experienced engineers at the company. The
reference use-cases are necessary for all steps involv-
ing dynamic analysis, i.e. step 3, 5 and 6. Moreover,
the reference use-cases are also of importance for the
source code modeling, step 4, since they can be used
to avoid modeling tasks or task services that are not
executed in the reference use-cases.

3. Model SynthesisMake recordings of the system in the
reference use-cases and apply Model Synthesis (Sec-
tion 2.2) to automatically generate models for all tasks
that has been observed in the recordings. Inspect the
generated models and determine which tasks that are
too complex for Model Synthesis and therefore should
be modeled using Hybrid Model Extraction. A crite-
rion to use is the number of probabilistic selections in
a task model; models with fewer probabilistic selec-
tions can be used in the final simulation model while
task models with many probabilistic selections should
be modeled using Hybrid Model Extraction.

4. Hybrid Model Extraction Model the more complex
tasks using Hybrid Model Extraction. The method is
presented in Section 2.3.

(a) Source code modelingApply the source code
modeling process described in Section 2.3.1 to
one task at a time, starting with time-triggered
tasks and tasks triggered by environmental stim-
uli. Continue modeling each task that is found
to be triggered by a previously modeled task. In
general, model only the task services (behaviors)
that are executed in the reference use-cases to
limit the modeling effort.

(b) Dynamic Analysis Extract execution time data
from the recordings made in step 3 for the tasks
modeled using Hybrid Model Extraction. This
can easily be automated through the appropriate
tool-support. See Section 2.3.2 for more infor-
mation regarding the dynamic analysis in Hybrid
Model Extraction.

5. Environment modeling Model the environmental
stimuli of each reference use-case based on the previ-
ously made recordings. The stimuli can be, e.g., com-
mands from a human operator, messages from other
external systems, interrupts caused by network traffic
or I/O signals, or variations in input values from sen-
sors. The environment can be modeled as tasks with
highest possible priority that can preempt the simu-
lation at any time in order to generate environmental
stimuli. Such environment tasks should not consume
CPU time, but should still describe the interarrival time
of the stimuli events, e.g. through a loop containing an
appropriate delay operation.
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6. Simulation Model Composition Compose the sub-
models (task models and environment models) into
a complete simulation model and validate the model
by comparing execution traces recorded of the system
with traces from simulations of the model. The traces
has to be compared with respect to specific properties,
e.g. observed response times of particular tasks or task
services, or preemption patterns.

We have introduced a software recorder in the control
system for industrial robots developed by our industrial
partner ABB. We have also developed a supporting tool, the
Tracealyzer, where recordings can be analyzed and vizual-
ized [4, 3]. This does not only allow for model extraction
but also facilitates general understanding and debugging of
the software, a fact which was quickly realized by software
engineers at the company. The recorder is today active by
default in the system, also in the release version, and fre-
quently used for debugging and performance testing. One
recorded event requires 4 bytes of memory and around 0.8
µs of CPU time on a 500 MHz Intel Pentium III CPU, ac-
cording to measurements [2]. This result in a CPU overhead
of 0.4% and a data rate of 20.000 bytes/s at an event rate of
5 KHz, which is typical for the amount of code instrumen-
tation proposed [2]. Thus, only 400.000 bytes is required
for recording 20 seconds of execution, which is sufficient
for both debugging and model extraction purposes. Since
the systems considered have plenty of memory, 256 MB or
more, using a few hundred KB is no problem.

2.2 Model Synthesis

Model Synthesis [16] is a fully automated method for
obtaining models, where models are generated from record-
ings made on the system, i.e. a form of dynamic analysis.
The method for Model Synthesis is complemented by an au-
tomated validation process [15] that ensures the recordings
used are of sufficient length, number, and quality with re-
spect to the system. The Model Synthesis process is compu-
tationally efficient; recordings containing thousands of task
executions are synthesized in a few seconds. Although it
may require an effort to perform the monitoring, models are
obtained quickly enough not to interfere with continuous
maintenance. We have investigated Model Synthesis on the
robot control system from our industrial partner ABB. One
of the conclusions made from that study is that, even though
the models were reflecting the system operation properly in
simulation based analysis, the models may be of a different
structure than source code of the system. Model extrac-
tion based on source code is likely to produce more models
more understandable to the human developer, in the sense
that they are more similar to the source code. Moreover, to
model tasks with more complex behavior, the method re-
quires that the application code is instrumented to monitor

state variables of importance for the temporal behavior. So
far this has to be done manually, which may be a signifi-
cant effort. Model Synthesis is however very useful for the
modeling of less complex tasks, which are often numerous
in complex embedded systems.

2.3 Hybrid Model Extraction

Hybrid Model Extraction relies on two information
sources, both static and dynamic analysis. The static analy-
sis models dependecies between tasks based on the source
code, such as interprocess communication and shared state
variables. In the dynamic analysis, recorded execution
traces are analyzed in order to obtain empirical data on e.g.
execution time (see Section 2.3.2). The Hybrid Model Ex-
traction is better suited for modeling more complex tasks
compared to Model Synthesis, but is on the other hand not
fully automatic. The philosophy behind Hybrid Model Ex-
traction is to automate as far as possible, but leave impor-
tant modeling decisions regarding abstractions to an expe-
rienced software engineer with a deep understanding of the
system. This ensures high-quality task models and by au-
tomating the time consuming and “boring” parts of source
code modeling, a simulation model can be extracted from
very large software systems in a reasonable effort.

When the modeled system is changed, to update the
model it is only necessary to re-model the functions that
have been directly changed and functions that become
model-relevant as a sideeffect of changes in other functions.

If re-modeling is made on a regular basis, e.g. after
each major release, the effort of maintaining the model is
kept small, and even if the model is not updated for a long
time, the effort of re-modeling the system is still reason-
able. Howewer, as we have not yet evaluated this approach,
we have no data on the effort required. An evaluation inves-
tigating this issue is part of future work.

The model of a task is extracted from the source code in
an iterative process, where each iteration of the process adds
additional details to the model. This makes the model larger
and more complex, but also more accurate. To separate this
process from the system modeling process presented in Sec-
tion 2.1, we refer to this process as thesource code model-
ing process. The process terminates when an iteration of the
process results in a fix point, i.e. when the output equals the
input. However, unless appropriate abstractions are made
in the modeling, the process may not terminate. We refer to
this issue as thetermination problem. We intend to inves-
tigate the severity of this problem in future work when we
evaluate the method on a real system.

2.3.1 Source Code Modeling

The source code modeling process is performed for one task
at a time and is depicted in Figure 1, where the grey boxes
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correspond to the activities and the white boxes represents
information.
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Figure 1. The source code modeling process

We define the source code modeling process formally in
definitions 1-7 and Algorithm 1.

Definition 1. Target function - A function that when exe-
cuted may impact the task execution order or the utilization
of logical resources.

Typical target functions are OS services for communi-
cation, synchronization services or task management (e.g.
starting of new tasks, suspending tasks, or changing the
scheduling priority of tasks). Another example of tar-
get functions are services for allocation/deallocation of
application-specific resources.

Definition 2. Model variable - A variable explicitly repre-
sented in the model.

Definition 3. Model event - A program statement that

• calls a target function, or that

• assigns a model variable, or that

• calls a function containing at least one model event.

Definition 4. Model-relevant function - A function con-
taining at least one model event.

Definition 5. Model-relevant condition - A condition of a
loop or a selection that determines the exection of a model
event.

Definition 6. The call-graph search is represented by the
function

F = cgSearch(s, T, V )

, wheres is the entry function of the search,T a set of target
functions,V a set of model variables. The function returns
a setF containing all functions reachable from s that are
model-relevant with respect toT andV .

Definition 7. The conditions modeling is represented by the
function

V = cModel(F )

, whereF is a set of model-relevant functions. The function
returns a setV containing the model variables identified in
the model-relevant conditions of the functions inF .

Algorithm 1. Based on definitions 1 to 7, we define the
source code modeling process as the algorithm

1. i = 0, V0 = 0

2. repeat

(a) i = i + 1

(b) Fi = cgSearch(s, T, Vi−1)

(c) Vi = cModel(Fi)

3. until V i = Vi−1

4. Generate model based onVi andFi

where T is the set of target functions,Fi is the set of model-
relevant functions after process iterationi andVi is the set
of model variables after process iterationi .

Applying the source code modeling process requires 6
steps:

1. Definition: Initially, define the set of target functions,
i.e. known OS functions that correspond to model
events, such as IPC communication, synchronization,
and task management services like starting a new task
or changing a task’s priority. The set of model vari-
ables is only empty in the first iteration when modeling
the first task. It is never cleared since we like the set of
model variables to be global for all tasks, since model
variables might be shared between tasks.

2. Call-graph Search: The call graph of the task’s en-
try function is searched for model events, i.e. calls
to model-relevant functions or assignments to model
variables. This corresponds to thecgSearch function
in the formal definition. We have used a commercial
reverse engineering tool for this step, see Section 3.2.
The output of this step is a set of model-relevant func-
tions.

3. Conditions Modeling: Using an appropriate tool (see
Section 3), construct a model of each model-relevant
function. This corresponds to thecModel function
used in the definition.
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(a) Generate a model skeletonby filtering the
source code of the function with respect to the
model events, by removing all statements that
are not model events or encapsulate model events
(i.e. a loop containing a model event should re-
main in the model).

(b) Model the conditionsof selections and loops in
the model skeleton manually. Appropriate tool
support can facilitate this step by showing the
corresponding source code, storing modeling de-
cisions made (conditions and model variables)
and in the end generate the resulting model of the
function. A condition of a loop or selection can
be modeled in three ways:

i. As a logical expressionon variables in-
cluded the model. If the variable is not in
the model already, it is added to the model
and the set of model variables used in the
next process iteration.

ii. As a constant value, e.g. by modeling a
loop using a fixed number of loop iterations
or by modeling a selection condition as al-
ways true. This is useful abstraction for
removing behavior that is out of scope for
the model, like “unnecessary” error handling
caused by defensive programming.

iii. As a probabilistic expression, which is
useful when the underlying cause of the se-
lection is out of scope for the model due to
abstractions made. Probabilistic selections
may be required in order to terminate the
source code modeling process, but should
not be used too often, as the model becomes
less accurate. The “probabilities” are later
derived from the dynamic analysis (see Sec-
tion 2.3.2).

4. Termination: If no new model variables have been
found, the source code modeling process has reached
a fix point and is thereby finished, continue to step 5.
Otherwise, the process is repeated from step 2, with
the updated set of model variables. This corresponds
to step 3 in Algorithm 1.

5. Verification: When all tasks have been modeled, ver-
ify that all assignments to model variables have been
modeled by repeating the modeling process for each
task using the latest version on the model variables list.
This is necessary since the list of model variables have
grown during the conditions modeling. Tasks may
contain undiscovered assignments to model variables
identified in later modeling of other tasks. However,
the number of state variables shared between tasks is

typically fairly low, so this step will only require a mi-
nor modeling effort.

6. Composition: Compose the function models into a
task model. We see two alternative methods for this.
A very simple solution is to write all function mod-
els to a single code file, in a format suitable for the
simulator in mind, e.g. ART-ML. This will probably
generate a lot of small function models, many contain-
ing just a call another model function, perhaps with
a simple condition. Models looking like this may be
hard to overview and comprehend. A more attractive,
but more complex, solution is to compose small model
functions into larger ones, to get a better overview. A
technique for composition of function models if part
of our future work. This step corresponds to step 4 of
Algorithm 1.

2.3.2 The Dynamic Analysis

To enable timing accurate simulation, the model also needs
to contain data on execution times, i.e. the amount of CPU
time needed to execute from one model event to the next in
the real system. The execution times are modeled as inter-
vals rather than fixed values. This information is obtained
using dynamic analysis, but information from worst case
execution time (WCET) analysis could also be used to ex-
tend the execution time intervals up to a safe worst case es-
timate. If not all modeled tasks, or task services, are found
in these recordings, there are two possible causes:

1. The recordings were not sufficiently long and/or did
not stimulate the system according to the identified ref-
erence use-cases. This requires additional recordings
to be made and/or an adjusted system configuration
and/or an adjusted procedure for stimulating the sys-
tem during the recording.

2. The source code modeling included tasks that never
execute in the reference use-cases. In this case, either
remove the extra task models and references to them in
other task models, or add new reference use-cases that
involves these tasks, if desired.

Since the recordings typically contain hundreds or thou-
sands of jobs of each task, these intervals should be a good
estimation of the typical temporal behavior in the reference
use-cases. To introduce the execution time data in the model
obtained from the source code modeling, a CPU-time con-
suming statement is inserted in the model (in ART-ML:ex-
ecute) between each model event, with the execution time
interval as parameter. This can easily be automated. When
executing such a statement in a simulator, a value is picked
from the interval and CPU-time is consumed accordingly.
This is further described in e.g. [29, 30, 4]. The dynamic
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analysis may also extract estimated probabilities for con-
ditions modeled in a probabilistic manner. These proba-
bility estimations are based on the number of charateristic
task events observed in the recorded execution trace. For
instance, consider a task that “sometimes” sends a request
X to TaskB, where the actual mechanism is not desired to
model in detail. If that particular task event is observed in
100 of 200 observed jobs, the corresponding probabilistic
selection in the model would be given a 50 % probability of
occurance.

2.3.3 An Illustrative Example

Next follows an example of the source code modeling
process. In three iterations of the process we model a fairly
uncomplicated task. The example is fictional but inspired
by early experiences of applying the process on industrial
embedded code.

In figures 2-6, the boxes represents model-relevant func-
tions found in the source code, the arrows represents po-
tential function calls and the annotations on the arrows are
the condition that must be fulfilled for the call to take place.
Gray indicates functions or function call that is removed
during the conditions modeling. Bold style indicates newly
discovered functions and function calls.

Figure 2 shows the result of the initial call-graph search,
three call-chains are found from the task entry function to a
model event, the target functionsendMsg. Thus the model-
relevant functions of iteration 1,F1 are{A, B, C, D, E}.

In the conditions modeling, depicted by Figure 3, the
variableactive is removed from theB − D condition as
the modeler understands that the variable is always true in
the reference use-cases. TheB − E call is also removed
as it is identified as error handling outside the scope of
this model. The remaining three variables (StateX, cmd
and CounterX) are added to the list of model variables,
i.e. V1 = {StateX, cmd, CounterX}. This concludes the
first iteration, and the next iteration is started by performing
a new call-graph search, where assignments to the newly
discovered model variables are considered model events as
well.

Figure 4 depicts the result of the call-graph search in
the second iteration. Four new model-relevant functions
are discovered, in two call-chains; the call-chainF − H

may assignStateX, depending on the variableinit and the
call-chainG − I may assignCounterX, depending on the
variableStateY. The set of model-relevant functions is now
F2 = {A, B, C, D, F, G, H, I}.

The result from conditions modeling ofF2 is presented
in Figure 5. The call-chainF − H is removed since the
variableinit is found to be always false in the reference use-
cases. When the call toH is removed,F no longer contains
a model event and is therefore removed as well. The other
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Figure 6. Call-graph Search, Iteration 3

new variable,StateY, is however added to the model vari-
ables, soV2 = {StateX, cmd, CounterX, StateY }.

Finally, Figure 6 depicts the result of the third call-graph
search. The difference compared to the call-graph search in
iteration 2 (Figure 4) is the new model variableStateY. The
call-graph search finds one new model-relevant function, J,
that assignsStateY, soF3 = {A, B, C, D, G, I, J}, and it is
also discovered that the already modeled functionsC andD

contains new model events. An assignment ofStateYwas
found inC andD may callH . These were not detected in
previous iterations since they were not regarded as model
events.

However, no new model variables were detected, so
V3 = V2. Thus the process has reached a fix point and
is thereby finished. Note thatStateXis not assigned in this
model. This could be the case if the variable is shared be-
tween several tasks. In that case, assignments toStateXwill
be discovered by the call-graph search when modeling other
tasks, since the same list of model variables is used for all
tasks. The function models are then composed into task
models, according to step 6 of the source code modeling
process. To obtain a complete simulation model, the timing
information is finally inserted, as described in Section 2.3.2.

3 Tool Support for Hybrid Model Extraction

We are developing a tool for Hybrid Model Extraction,
named MASS (Modeling Assistant). The MASS tool tar-
gets large implementations in C, consisting of millions of
lines of code. C is commonly used for embedded systems
including the systems of our industrial partners. The tool is
still a prototype but we aim to release a first version during
2007. Currently, the tool only address the source code mod-
eling process, proposed in Section 2.3.1, but we also intend
to implement support for populating models with data from
the dynamic analysis, as presented in Section 2.3.2.

3.1 The MASS Tool

MASS is implemented in Java and has a graphical user
interface containing five main elements: Two code views,
one for source code and one for the resulting model, and
three lists: the model-relevant functions, the model-relevant
conditions of the current function, and the global list of
model variables. The code views have syntax highlight-
ing which facilitates reading the code. The MASS tool is
depicted in Figure 7.

Figure 7. The MASS tool

The tool takes as input a list of references to model-
relevant functions from a call-graph search (see Section
3.2). The model-relevant functions are parsed using a C
parser, generated using the parser generator ANTLR [5].
For each model-relevant function the parsing generates an
abstract syntax tree, which is filtered with respect to the
model events. This result is model skeletons for each
model-relevant function of the task. A model skeleton con-
tains only the model events and selections or loops that en-
capsulate model events. The selections and loops of the
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model skeleton contain no information regarding the condi-
tions, these are instead manually modeled after the parsing
is complete. The user can select each condition from the
list and enter a suitable condition, based on the source code
view that is visible in parallel. When selecting a condition
from the conditions list, the tool focuses on the correspond-
ing location in the source code and model code. Thereby,
the modeler does not have to search the source code for the
statements corresponding to the model-relevant conditions.
When editing a condition, the modeler can add any vari-
ables used in the condition modeling to the list of model
variables. The list of model variables can be written to a
file, for use in the call-graph search.

3.2 Call-graph Searching

The MASS tool depends on an external tool for perform-
ing the call-graph search, which takes as input an entry
function, set of target functions and a set of model variables,
and returns a set of model-relevant functions, as presented
in Section 2.3.1. We have used a commercial tool for this
part,Understand for C++from Scientific Toolworks [25],
which we have customized to our needs. Understand has
a graphical user interface that provides code analysis, nav-
igation, advanced searching and various visualizations of
code, such as call-graphs. We evaluated two similar tools
before selecting Understand,Imagix 4D, from Imagix [17]
andCodeSurfer, from GrammaTech [10]. There were sev-
eral reasons for selecting Understand for this task. It coped
much better with large amounts of code than the other tools
(we analyzed some 700.000 lines of C code without prob-
lems), it was relatively cheap for this type of tool (a license
is 495 USD), and had a nice well-documented API for mak-
ing custom extensions using Perl-scripts. A 30-day evalua-
tion licence is available free of charge.

4 Related work

There are a number of methods available for model gen-
eration. They can be divided based on input; some use code,
some use recording, some use manual input (e.g. documen-
tation), and some use a mix of all or some of the above.
Of course, due to the information content of the inputs,
the completed model is limited by its inputs. Also, due
to the different levels of flexibility in the available inputs,
the portability may be an issue (a method that requires code
in C++ as input can probably not model a system imple-
mented in an assembly language). A method proposed by
Holzmann and Smith [14] derives verification models from
ANSI C code and some well-defined documentation. The
result is a Promela model can then be analyzed using SPIN,
a widely used tool for model checking. However, SPIN and
Promela doesn’t have a concept of time, so properties such

as response time can not be analyzed. Sifakis et al. [24]
propose a method that uses tagging of the real time soft-
ware with time constraints to facilitate automated modeling
based on the code as input. Yan et al. [34] present Disco-
Tect, a tool that can obtain high-level architecture models
from recordings of system implemented in Java. Moe and
Carr [22] present automated modeling from recordings of
RPC calls in CORBA-based legacy systems. The tool has
reportedly helped discover and identify a number of bugs in
an operation and maintenance system for cellular networks
by Ericsson. Program slicing [32], is a technique for ex-
tracting a subprogram containing only the statements of a
program that affects the specified variable(s). An overview
of program slicing techniques can be found in [27]. The
source code modeling process proposed in this paper re-
minds of program slicing, in the sense that a subprogram is
extracted, a model, but is different in the sense that instead
of extracting a subprogram based on variables, the source
code modeling process generates a subprogram (the model)
based on a set of relevant functions. Even though variables
are used during the source code modeling process they are
an output rather than an input.

5 Conclusions and Future work

This paper have proposed a process for modeling com-
plex industrial real time systems, for the purpose of en-
abling simulation based impact analysis of timing and re-
sources usage. The process relies on two methods for ex-
tracting models of individual tasks, Model Synthesis and
Hybrid Model Extraction. Model Synthesis have been pro-
posed and evaluated in previous work [15], while the mod-
eling process and the method of Hybrid Model Extraction
are novel contributions of this paper, together with a tool
for Hybrid Model Extraction, named MASS.

The single most important part of future work is an in-
dustrial evaluation of the modeling process, especially the
method of Hybrid Model Extraction. We intend to apply our
modeling process and methods on the systems of our indus-
trial partners (ABB and Bombardier Transportation), during
2007. We plan to extract models from the systems using the
proposed modeling process and use these to make predic-
tions regarding real changes that are to be implemented, e.g.
new features. The experiences from using Hybrid Model
Extraction will be very valuable for our future research in
simulation model extraction. We intend to investigate the
accuracy of the impact analysis by comparing the predicted
impact with the actual impact, which is obtained from mea-
surements of the running system when the change have been
implemented. Important parts of future work are also meth-
ods for model validation and conditions modeling with a
higher degree of automation.
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