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Abstract

Static Worst-Case Execution Time (WCET) ana-
lysis is a technique to derive upper bounds for the ex-
ecution times of programs. Such bounds are crucial
when designing and verifying real-time systems. A key
component for static derivation of precise WCET esti-
mates is upper bounds on the number of times different
loops can be iterated.

In this paper we present an approach for deriving
upper loop bounds based on a combination of standard
program analysis techniques. The idea is to bound the
number of different states in the loop which can influ-
ence the exit conditions. Given that the loop termi-
nates, this number provides an upper loop bound.

An algorithm based on the approach has been imple-
mented in our WCET analysis tool SWEET. We eval-
uate the algorithm on a number of standard WCET
benchmarks, giving evidence that it is capable to derive
valid bounds for many types of loops.

1 Introduction

The WCET is an important parameter when ver-
ifying real-time properties. A static WCET analysis
finds an upper bound to the WCET of a program by
analysing the statical properties of the hardware and
software involved. Given that the methods used are
correct and safe, the analysis will derive a timing esti-
mate that is safe, i.e., a value ≥ WCET.

To statically derive a timing bound for a program,
information on both the hardware timing characteris-
tics, such as the execution time of individual instruc-
tions, as well as the program’s possible execution flows,
to bind the number of times the instructions can be
executed, needs to be derived. The latter includes in-
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formation about the maximum number of times loops
are iterated, which paths through the program that are
feasible, execution frequencies of code parts, etc.

The goal of flow analysis is to calculate such flow
information as automatically as possible. Flow analy-
sis research has mostly focused on loop bound analysis,
since upper bounds on the number of loop iterations
must be known in order to derive WCET estimates.
Recent industrial WCET case studies [9] have shown
that it is important to develop good support for flow
analysis, in particular loop bound analysis, in order to
reduce the need for manual annotations.

This article presents an approach how to calculate
upper loop bounds statically. The approach builds on
the observation that terminating loops always must
reach a new state for each new iteration. Thus, if
we can somehow bound the number of states which
are possible to reach during any execution of the loop,
then that number provides an upper bound to the num-
ber of loop iterations provided that the loop terminates.
Since in general many states may be equivalent w.r.t.
program flow, it suffices to count the number of equiva-
lence classes of states. An upper bound to the number
of possible equivalence classes is the number of possible
combinations of values for variables affecting the exit
conditions of the loop.

Based on this observation, we perform a loop bound
analysis using a combination of standard program anal-
ysis techniques:
1. By program slicing we derive a set of variables and

statements that must be considered when deriving
a loop bound for a given loop. Only this code is
analysed.

2. By abstract interpretation (AI) we derive, for each
program point and variable, an upper approxima-
tion of the possible set of values held by the variable
in that program point. This information can be used
to limit the possible number of (equivalence classes
of) states in loops.
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3. A variable can sometimes have many possible values
in a loop, altough its value will always remain the
same for each execution of the loop. By invariant
analysis we identify variables not having their values
changed in loops. These variables are removed from
the corresponding loop bound calculations.
All the analyses above terminate. Thus, the sug-

gested loop bound analysis also terminates. Moreover,
since AI is input dependent, (bounds on input values
can be specified), the analysis is also input dependent.

Since our approach assumes that analysed loops ter-
minate, separate proofs of termination will have to be
provided. In Section 7 we discuss this problem.

The reminder of this article is organized as follows:
Section 2 presents related work. Section 3 presents an
illustrating example. Section 4 gives more details of
the approach, including some implementation details.
Section 5 presents our WCET tool. Section 6 presents
some evaluations of the approach. Finally, Section 7
gives our conclusions and ideas for future work.

2 Related work

Upper bounds on the number of loop iterations are
needed in order to derive a finite WCET estimate at all.
Similarly, recursion depth must also be bounded. Due
to the halting problem, no automatic method for loop
bounds analysis can give an exact answer for all loops.
Thus, WCET analysis tools provide means to give loop
iteration bounds manually [5, 6, 17]. However, this is
often laborious, and a source of possible errors.

Although necessarily incomplete, an automatic loop
bounds analysis can still be useful to reduce the man-
ual work by bounding most of the commonly occurring
loops. A common approach is to identify loop coun-
ters, and then determine (or bound) their start values,
increment (decrement), and highest (or lowest) possi-
ble value. From this information, an upper bound for
the iteration count can be obtained. Whalley et al.
[12] use data flow analysis and specialized algorithms
to calculate loop bounds for both single and some spe-
cial types of nested, triangular loops. This approach is
quite syntactical and will fail for loops which do not fit
the patterns. The loop-bound analysis of the Bound-T
tool [17] estimates range and increment for loop coun-
ters using Presburger arithmetics, and the latest loop
bound analysis of the aiT tool [4] decides start values
by an interval-based AI and the possible increments by
a data flow analysis. These methods have in common
that they only work for well-structured loops with a
proper nesting, and where loop counters are updated
using addition or subtraction only. In contrast, our
analysis is based entirely on abstract interpretation,

1. int foo(int INPUT) { // INPUT = [10..20]

2. int OUTPUT = 0;

3. int i = 1;

4. while(i <= INPUT) { // p

5. OUTPUT += 2;

6. i++;

7. }
8. return OUTPUT;

9. }
Figure 1. Illustrative code example

which makes is less sensitive to the kind of operations
applied to loop counters. It works also for unstructured
loops without proper nesting.

We have previously presented Abstract Execution
(AE), a form of symbolic execution based on an AI
framework. AE is able to derive loop bounds and in-
feasible path information for many type of programs
[10, 11] but has a potential bad worst-case complexity,
and no guaranteed termination. Thus, the approach
presented in this article complements the AE by being
less general, since it cannot bound all type of loops,
but with guaranteed termination.

3 An illustrative example

As an illustrative example, consider foo in Figure 1.
The INPUT variable is given the value limit [10..20].

A slicing w.r.t. the exit condition of the loop dis-
covers that OUTPUT does not affect the outcome of the
condition, and could, together with statements 2, 5 and
8, be sliced away. i and INPUT are both used in the
loop exit condition and must therefore be kept.

An AI using the interval domain together with
widening and narrowing (see Section 4.2) will find that
at program point p, the possible values of i lie in the
range [1..20], and those of INPUT in [10..20]. Thus,
a safe bound on the number of times the loop body
can be executed, given that the loop terminates, is
given by size(i,p)∗size(INPUT,p) = size([1..20])∗
size([10..20]) = (20−1+1)∗ (20−10+1) = 20∗11 =
220. Here size(v,p) is the number of possible values
of variable v at a program point p as given by the AI.

We improve the loop bound by observing that the
INPUT variable is invariant in the loop, although it
might assume any value in the range [10..20] in the
loop. Therefore, it does not contribute to the calcu-
lated loop bound. Thus, a safe upper loop bound, given
that the loop terminates, is given by the number of val-
ues of i at point p: size(i,p) = 20.

Note that the derived loop bound is input depen-
dent, i.e., another value limitation of the INPUT vari-
able could result in a different loop bound.
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4 Method details

This section will present our loop bound analysis
and its included analyses in more detail. We also
present some implementation details, useful for obtain-
ing a faster and more precise analysis.

4.1 Program slicing

Our approach for loop bound analysis uses program
slicing [18]. Program slicing finds a subset of a program
containing the program parts which can affect some
given part of the program like a specific condition, or
a set of conditions.

Our program slicing works by first building a pro-
gram dependency graph (PDG) which holds the data
flow and control dependencies between the statements
in the program [7, 13]. The slice which is computed
with respect to some program part is the part of the
PDG which is backwards reachable from the program
part. For more details on our program slicing, see [16].

We slice w.r.t. to the exit conditions of the loop to be
analyzed. Only the computed slice has to be analysed.
In order to reduce the size of the program states of
subsequent analyses we also remove variables that are
not accessed.

Step-wise slicing Our current implementation ac-
tually performs a stepwise slicing. First, the program
is sliced w.r.t. all conditionals in the program. This
removes code that can never affect the outcome of any
condition. Then the computed slice is sliced w.r.t. the
exit conditions of each single loop to be analysed. Com-
pared to slicing the original program for each loop, this
two-step approach gives much better performance, es-
pecially if the first slicing is able to remove many state-
ments and variables.

4.2 Abstract interpretation

Abstract interpretation (AI) is a theory of sound
approximation of the semantics of computer programs.
It was formalized by Cousot & Cousot [2].

AI gives a safe, but potentially pessimistic, estima-
tion of the possible sets of states in different program
points. To achieve this, abstract domains with ele-
ments representing sets of states, so-called “abstract
states” are used. The abstract domains are complete
lattices, with a top and a bottom value. For each state-
ment in the language, a corresponding transfer func-
tion is derived which maps abstract states to abstract
states. The transfer functions are used to set up a set
of equations relating the abstract states for the differ-
ent program points. An initial abstract state specifies
possible constraints on the input variables. The set

of equations is solved using least fixed-point iteration.
The least fixed-point defines an abstract state for each
program point, and each abstract state represents a
safe overapproximation of the set of states in its pro-
gram point. Often, the abstract states are mappings
from program variables to abstract values representing
possible sets of “concrete” values held by the variables.

For certain abstract domains, the fixed-point itera-
tion will not always terminate. Termination can how-
ever be guaranteed through a binary widening opera-
tor on abstract states, which will enlarge the abstract
states during the iteration [2]. Widening can also be
used to speed up termination. The solution obtained
using widening will be safe, but maybe not the least
one. It can sometimes be improved using a narrowing
operator [3].

Supported abstract domains Our current imple-
mentation supports two abstract domains, namely the
interval- [10] and the congruence domain [1, 8]. It also
supports the product domain of these two domains.

In the interval domain the possible values of a vari-
able is approximated by an interval [l..u]. E.g., an ab-
stract state holding the assignment i = [1..20] repre-
sents all concrete states where 1 ≤ i ≤ 20, i.e., 20
different states.

In the congruence domain the possible values of a
variable is approximated by an abstract value of the
form n(mod m). For example, an abstract state hold-
ing the assignment i = 0(mod 5) represent all concrete
states where i contains the factor 5.

The abstract values in the product domain are
pairs 〈i, c〉 where i is an interval and c a congru-
ence. The pair 〈i, c〉 represents the intersection of
i and c. For instance, 〈[1..20], 0(mod 5)〉 represents
[1..20] ∩ 0(mod 5) = {5, 10, 15, 20}.

In our implementation each basic data type in C,
such as char, int and float has a corresponding ab-
stract data type. We also have abstract versions of ag-
gregate data structures, such a structs and arrays, as
well as pointers. Our abstract domains model fixed-size
integers with possible overflow. To guarantee termina-
tion of the AI we have implemented widening and nar-
rowing operations for our different abstract domains.
For details, see [10].

Figure 2 gives an illustrative example of the bene-
fit of using the product domain. An interval analysis
would derive i = [0..9] at point p, corresponding to
10 concrete values. Similarly, a congruence analysis
would derive i = 0(mod 2) at point p corresponding
to an infinite number of concrete values. However, the
intersection of the two domains contains all values be-
tween 0 and 9 evenly dividable by 2, i.e., {0, 2, 4, 6, 8}.
This set has the size 5, which is a precise loop bound.
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1. int i = 0;

2. while(i < 10) {
3. // p

3. i += 2;

4. }

Interval analysis:

i = [0..9] at p

Congruence analysis:

i = 0(mod 2) at p

Figure 2. Interval and congruence example

4.3 Loop bound calculation

We use the result of the AI analysis of the sliced
program to derive a loop bound for the selected loop.
We first select a program point guaranteed to be within
the loop, which all iterations of the loop are guaran-
teed to pass, e.g., the program point just before the
last instruction in the loop header node1. Then, for all
variables not ruled out by the analyses in Section 4.4,
the sizes of their respective abstract values are taken
as upper bounds to their numbers of possible concrete
values. The loop bound is finally calculated by multi-
plying all these sizes.

For integer and pointer variables, the size of the set
of concrete values defined by an interval, or an element
in the product domain, is straightforward to compute.
The same holds for aggregate objects (array, struct)
containing only fields of integer and pointer type. If
the variable is or contains a floating-point value then
we consider the number of concrete values to be either
zero, one or infinite.

If any variable in the abstract state holds the top
value, then the loop bound cannot be derived (we con-
sider top to represent an infinite set of concrete values).
Similarly, if some variable in the abstract state holds
the bottom value, then the loop body is unreachable
and we set the loop bound to zero.

4.4 Invariant analysis

Invariant analysis is a program analysis used in
many compilers [15]. It identifies statements in loops
which can be moved outside the loop since they always
recompute the same value. We have implemented a
simplified version, which simply checks if any variable
used in the (sliced) loop body is also possibly writ-
ten in the body. A variable that cannot be written is
considered loop invariant and can safely be excluded
from the loop bounds calculation. Statements reach-
able through function calls must also be considered.
Since pointers can be used to update values, e.g., in
int* p = &i; *p = 5; variable i is assigned a value
through the pointer p, we use the result of a pointer
analysis to find which variables that could possibly be
updated through dereferenced pointers.

1Assuming, for simplicity, that the loop is well-structured.

int i = 1;

while(i <= 100) {
j = 1;

while(j <= i) // p

j++;

i++;

}

int temp; // no init

int j = 0;

while(j < 100) {
temp = 1;

j = j + temp;

temp = 2;

}
(a) Nested loops (b) Problematic code

Figure 3. Invariant analysis examples

Figure 3(a) gives an example where the invariant
analysis helps producing a tighter loop bound. At
program point p an AI using intervals would derive
i = [1..100] and j = [1..100]. This gives a loop bound
of 100 ∗ 100 = 10000 of the inner loop. However, i is
invariant in the inner loop, giving that the loop bound
can be calculated using j’s abstract value only. This
gives a loop bound of 100 for the inner loop.

Single-valued-uses analysis The condition de-
tected by the invariant analysis, that a variable never
is assigned a new value in the loop body, is unnecessar-
ily strong. Actually, to remove the variable from the
loop bounds calculation it suffices that in any program
point in the loop body where the variable might be used,
it can hold at most a single value for a given execution
of the loop. An example is shown in Figure 3(b): here,
an invariant analysis will fail since temp is reassigned
two times in the loop, and yet it will always have the
single value 1 when used.

We have implemented an analysis to discover if a
variable only can have a single value at each relevant
use. The analysis simply uses the abstract value de-
rived by the AI, for each relevant variable and program
point within the sliced loop body where it is used, to
see if the variable can only hold a single value in that
point. If this is true for all these program points the
variable is removed from the loop bounds calculation.

5 The SWEET tool

SWEET (SWEdish Execution time Tool) [5, 10] is a
research tool developed at Mälardalen University [14].
SWEET can handle ANSI-C programs including point-
ers, unstructured code, and recursion. The basic anal-
ysis steps of SWEET are depicted in Figure 4.

Unlike most WCET analysis tools, SWEET is inte-
grated with a compiler and performs its flow analysis
on the intermediate representation (IR) of the com-
piler. The control structure of the IR and the object
code is similar, and flow analysis results for the IR, in
terms of execution bounds on basic blocks, is therefore
also applicable for the object code. The low-level anal-
ysis of SWEET currently supports the NECV850E and
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Figure 4. The SWEET WCET analysis tool

ARM9 processors. SWEET supports three different
calculation methods: a path-based method, an IPET
method, and a hybrid clustered method [5].

The loop bound analysis presented in this article is
one of several analyses performed in the flow analysis
phase. There is an annotation language which can be
used to assign abstract values in the interval domain.

6 Measurements and evaluations

We have used programs from the Mälardalen WCET
Benchmark suite [14] to test our flow analyses. The
benchmarks are a diverse collection of test programs
differing in types of flows, code structure and instruc-
tions, intended to thoroughly test different aspects of
WCET analysis including flow analysis. Our current
implementation of the loop bound analysis cannot han-
dle recursive code, due to limitations in our AI. Thus,
no recursive program has been used in our evaluations.

Table 1 gives some basic data about the programs,
including lines of C code (#LC) and the number of
loops (#L). The number of loops is counted in a con-
text dependent manner since a loop might have dif-
ferent upper bounds depending from where its corre-
sponding function is called, e.g., crc contains such an
input dependent loop. For each benchmark we give the
number (#B) and the percentage (%B) of loops bound
by the analysis. We also give the number (#E) and
the percentage (%E) of loops which are exactly bound,
i.e., given a bound equal to the actual loop bound. The
column (Time) gives the analysis time in seconds on
a 3 GHz PC running Linux.

The Total row summarizes our analysis results. We
see that more than 60% of all loops gets upper bounded
and more than 50% are given an exact loop bound.
The loops bounded are in most cases rather simple
loops usually dependent on one or two integer index
variables. For more complex loops, or loops containing
floating point index variables, the analysis often fails.

The analysis time of the loop bound analysis de-
pends very much on how much of the program that
could be removed by the slicing. A large remaining
program means that the AI usually will take quite a

long time. For programs which take long time to anal-
yse, like adpcm, ns, and ludcmp, the analysis time is
dominated by the AI.

The results in the table are based on analysis using
the interval domain. If we use the product domain
described in Section 4.2, we are able to get tighter loop
bounds for 6 loops.

7 Conclusions and future work

We have presented a static loop bound analysis
based on a combination of standard program analy-
sis techniques. The method has shown to be powerful,
giving exact loop bounds for more than 50% of our used
benchmarks, with reasonable analysis time.

For future work, we plan to extend the approach to
handle more type of loops. One idea is to look into
more powerful relational abstract domains in the AI,
allowing constraints between values of variables. This
should allow the size of the abstract states used for
loop bound analysis to be minimized.

We plan to extend the approach to discover if a loop
terminates. For example, if it can be shown that each
loop variable is either monotonically increasing or de-
creasing, that no wrap-arounds of these variables could
occur, that for any iteration of the loop at least one of
the loop variables is updated, and we have a bound
on the number of concrete states in the loop, the loop
should terminate. We also plan to extend the approach
to derive infeasible path information, i.e., paths never
possible to execute within a loop body. The latter will
be a combination of program slicing, AI and AE.
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