
Sequential PLEX, and its Potential for Parallel
Execution

Johan Lindhult1 and Björn Lisper1

Dept. of Computer Science and Electronics, Mälardalen University
P.O. Box 883, SE-721 23 Västerås, SWEDEN,

{Johan.Lindhult, Bjorn.Lisper}@mdh.se

Abstract. Some computer systems have been designed under the as-
sumption that activities in the system are executed non-preemptively.
Exclusive access to any shared data in such a system is automatically
guaranteed as long as the system is executed on a single-processor ar-
chitecture. However, if the activities are executed on a multiprocessor,
exclusive access to the data must be guaranteed when memory con-
flicts are possible. An analysis of the potential memory conflicts can be
used to estimate the possibility for parallel execution.
Central parts of the AXE telephone exchange system from Ericsson is
programmed in the language PLEX. The current software is executed
on a single-processor architecture, and assumes non-preemptive exe-
cution.
In this paper, we investigate some existing PLEX code with respect to
the number of possible shared-memory conflicts that could arise if the
existing code, without modifications, would be executed on a parallel
architecture. Our initial results are promising; only by examining the
data that actually can be shared, we manage to reduce the number
of conflicts from the assumed 100% to figures between 25-75% for the
observed programs. Simple optimizations decrease the numbers even
further.

1 Introduction

Over the years, many computer systems have been designed under the (some-
times implicit) assumption that activities in the system are executed non-
preemptively. Examples of such systems are small embedded systems that
are quite static to their nature, or priority-based systems where activities on
the highest priority are assumed to be non-interruptible. Non-preemptive
execution gives exclusive access to shared data, which guarantees that the
consistency of such data is maintained.

However, new machines will increasingly be parallel [14]. On a paral-
lel architecture, activities executed on different processors may access and
update the same data concurrently, and non-preemptive execution does not
protect the shared data any longer. On the other hand, the very idea of
parallel architectures is to increase performance by parallel execution. The

question is: how utilize the power of a parallel processor for a system de-
signed for non-preemptive execution?

Our subject of study is the language PLEX, used to program the AXE
telephone exchange system from Ericsson. The AXE system, and the PLEX
language, have roots that go back to the late 1970’s. The language is event-
based in the sense that only events, encoded as signals, can trigger code
execution. Signals trigger independent activities (denoted jobs), which may
access shared data stored in different shared data areas. Jobs are executed
in a priority-based, non-interruptable (at the same priority level), fashion
on a single-processor architecture, and the language lacks constructs for
synchronization. Due to the atomic nature of jobs (further discussed in the
following section), they can be seen as a kind of transactions. Thus, when ex-
ecuting jobs in parallel, one will face problems that are similar to maintain-
ing the ACID1 properties when multiple transactions, in a parallel database,
are allowed to execute concurrently.

Our primary motivation for this study is the fact that multicore architec-
tures will become a de-facto standard in a near future. There are millions
of lines of legacy event-based code in industry. Rewriting this code into ex-
plicitly parallel code would be extremely expensive. Thus, there is a need
to investigate methods to migrate such code to parallel architectures with a
minimum of rewriting.

In order to estimate the possibility for parallel execution of the existing
PLEX code, we have performed a static program analysis of the potential
memory conflicts that actually can arise. The number of conflicts are mea-
sured as the relative numbers of different jobs that can interfere with each
other through the shared data areas. Our initial results show that compared
to a straightforward parallel implementation, where each shared data area
is protected by a lock, we can by a simple static analysis of the data usage
reduce the potential conflicts between jobs to be in the range 25-75% for
the observed programs. Furthermore, we also show that simple, static, opti-
mizations are likely to reduce the number of potential conflicts even further,
thereby reducing the amount of manual work that probably still needs to be
performed in order to adapt the code for parallel processing.

The rest of this paper is organized as follows: the main characteristics of
the language PLEX is covered in Section 2. Section 3 contains a brief sum-
mary of the assumed parallel architecture as well as a closer examination
of the shared data. Section 4 contains a description of our static approach,
whereas the examination of the code is covered in Section 5. Related work
in Section 6, before the paper is wrapped up with conclusions and further
research in Section 7.

1 Atomicity, Consistency, Isolation and Durability

2 Programming Language for EXchanges

PLEX is a pseudo-parallel and event-driven real-time language developed
by Ericsson. The language is used in the AXE telephone exchange sys-
tem, and it was developed in conjunction with the first AXE versions in
the 1970’s. Apart from an asynchronous communication paradigm, PLEX
is an imperative language, with assignments, conditionals, goto’s, and a re-
stricted iteration construct. It lacks some common statements from other
programming languages such as while loops, negative numeric values and
real numbers.

A PLEX program is structured in blocks. Each block contains several, in-
dependent sub-programs together with block-wise scooped data, see Fig. 1.
As we will see in the following section, this data (variables) can be classified
into different categories depending on whether or not the value of a variable
’survives’ termination of the software. Blocks can be thought of as objects,
and the subprograms are somewhat reminiscent of methods. However, there
is no class system in PLEX, and it is more appropriate to view a block as a
kind of software component whose interface is provided by the entry points
to its sub-programs. Data within blocks is strictly hidden, and there is no
other way to access it than through the sub-programs.

The sub-programs in a block can be executed in any order: execution of
a sub-program is triggered by a certain kind of event called signal arriving
to the block. Signals may be external: arriving from the outside or internal:
arriving from other sub-programs, possibly executing in other blocks. The
execution of one, or several, sub-programs constitutes a job; a job begins
with a signal receiving statement, and is terminated by the execution of
an EXIT statement. Due to the ’atomic’ execution of a job, i.e., once a job
is started it will run to completion, we may also view them as a kind of
transactions.

 ENTRY POINT
some code

 EXIT POINT

Code

Code

Code

Code

COMMON
DATA AREA

PLEX program file (Block)

Sub-program

Fig. 1. A PLEX program file (a block) consists of several sub-programs.

Since sub-programs can be independently triggered, it is accurate to con-
sider jobs as “parallel”. However, the jobs are not executed truly in parallel:
rather, when spawned, they are buffered (queued), and non-preemptively
executed in FIFO order, see Figs. 2 (b) and 3 (a). Because of the sequential
FIFO order imposed, we term the language as “pseudo-parallel” since exter-
nally triggered jobs could be processed in any order (due to the order of the
external signals). We also note that different types of jobs are executed on
different levels of priority, and that jobs of the same priority are executed
non-preemptively. User jobs (or call processing jobs), i.e., handling of tele-
phone calls, are always executed with high priority, whereas administrative
jobs (e.g„ charging) always are executed with low priority (and never when
there are user jobs to execute).

A key aspect, which distinguishes PLEX from an “ordinary” imperative
language, is the asynchronous communication paradigm: jobs communicate
and control other jobs through signals. Signals are classified through combi-
nations of different properties, where the main distinction is between direct
and buffered signals, see Fig. 2. The difference is that a direct signal contin-
ues an ongoing job, whereas a buffered signal spawns off a new job. We refer
to [5] for a more thorough description on signals as well as the asynchronous
communication paradigm.

Finally, we denote the set of jobs originating from the same external
signal a job-tree. See also Fig. 3 (b), where the corresponding job-tree for the
execution in Fig. 3 (a) is shown.

Execution

SEND
Signal-A

Execution
continues

EXIT

Block A

FIFO

Job Buffer

OS

ENTER
Signal-A

Execution

Block B

(1)

(2)
(3)

(4)Execution

SEND
Signal-A

Block A

ENTER
Signal-A

Execution
continues

Block B

(a) (b)

Fig. 2. (a): a direct signal, ”similar” to a jump. (b): buffered signals: a buffered signal
is sent from Block A which is inserted at the end of the job buffer (1). When the job
in Block A terminates, the control is transferred to the OS (2), which fetches a new
signal from the buffer (3). This signal then triggers the execution in Block B (4).

3 A Parallel Architecture, and the Shared Data

We consider a hypothetical, parallel architecture which is a conventional
shared-memory architecture. It is equipped with a run-time system, which

Timeblock 1 block 3block 2

enter

send

exit enter

send

send

exit enter

enter

exit

Signal 2

Signal 2
put in job buffer

Signal 3

Signal 4 exit

Signal 4
put in job buffer

Signal 3
put in job buffer

(a)

external
signal 1

(b)

external
signal 1

J1

J2

J3 J4

Fig. 3. The ”pseudo-parallel” execution model of PLEX (a), and a corresponding job-
tree (b).

is designed to execute PLEX programs as they are. The execution of jobs is
done by a static number of threads, which may or may not equal the number
of processors. Each thread has its own local state. Threads are executing
user jobs in parallel. However, to make the system functionally equivalent
with the original, sequential system, jobs from the same job-tree execute
in the same sequential order as in the single-processor case, and a block is
locked as soon as a job is executing in it in order to protect its data from
being concurrently accessed. We assume that the run-time system has a
method to resolve deadlocks at runtime.

Locking blocks will guarantee consistency of data, since data in a block
can never be accessed by a job executing outside that block. However, it
may be overly conservative, since two parallel jobs accessing the same block
may well never touch the same data. Our analysis of the potential memory
conflicts aims at allowing a more loose locking scheme, where a block need
not be locked if we know for sure that the jobs executing in it cannot have
any memory conflicts.

We only consider parallel execution of user-level jobs in this study. It
is assumed that jobs executing on other levels are handled by some other
means.

Since the data in a block is shared between all its sub-programs (as
shown in the previous section), it might seem as all variables may be po-
tentially shared. However, as we indicated in the previous section, the vari-
ables belong to different categories: basically, the variables can be divided
into the following two main categories; stored (DS) or temporary.

– The value of a temporary variable exists only in the internal processor
registers, and only while its corresponding software is being executed.

Variables are by default temporary, and thus cannot be shared between
different jobs.

– DS variables are persistent: they are loaded into a processor register
from the memory when needed, and then written back to the memory.
These variables can be further divided into2:
1. Files
2. Common variables

Common variables are “scalar” variables, whereas files essentially are ar-
rays of records (similar to “structs” in C). Elements of records are called
individual variables. A special kind of variable, called pointer, holds inte-
ger indices identifying elements of files. Fig. 4 shows an example file with
n records and a pointer, whereas Table 1 tries to relate the above PLEX
concepts to its closest counterparts in C.

n

4
3

2
1

SUBNUMBER

NAME

STATE

0
POINTER

Fig. 4. An example file with n records and a pointer with the current value 2.

PLEX C
record struct
file array of structs
pointer array index
individual variable struct member
common variable global variable

Table 1. Some PLEX concepts, and their ”counterparts” in C.

2 See also [8] where this distinction is discussed more thoroughly.

4 Analysis of Conflicts

We say that two signals in the same block are in conflict if they might access
the same variable in such a way that the consistency of data is threatened if
the code triggered by the signals is executed concurrently. This is the case if
both signals might access the variable and least one may write to it. If two
signals are not in conflict, they may safely be executed concurrently with
no protection at all. A run-time system may use this information to lock a
block selectively only for signals that are in conflict. This improves on the
assumed parallel architecture in Section 3, which locks a block as soon as
one of its signals is executed.

To determine whether or not two signals might be in conflict with each
other, the usage of each variable in each signal is classified in the following
way:

⊥- The variable is never used by the signal in question.
R - Read Only, i.e., the only way the signal is accessing the variable is in

read operations.
W - If the signal accesses the variable, the first access will always be a

write operation.
>- It is not possible to (statically) classify the variable according to the

previous cases, i.e., the usage of the variable might be input dependent,
or there might be different paths through the code that use the variable
in different ways. It might also be the case that the signal performs a
read operation as a first access to the variable.

>

R

~~~~~~~~~
W

AAAAAAAAA

⊥

@@@@@@@@@

}}}}}}}}}

Fig. 5. The hierarchical ordering of variable usage.

Based on our knowledge on how the variables are used, we can order
them in a hierarchical way as in Fig. 5, where we go from absolute knowl-
edge (⊥- never used) to actually no knowledge at all (>- can’t be deter-
mined). We also make the following observations:

– A variable that is never used (⊥) can never cause the signal to be in
conflict with other signals.



– The value of a Read Only variable is only used (read from), and similar
to ⊥ does not cause the signal to be in conflict with other signals unless
some other signal writes to the variable.

– For a variable classified as W , we notice that if every signal that accesses
the variable always performs a write as a first possible access, it will be
safe to perform the following transformation; let each signal work on
a local copy of the variable. This does not change the semantics of the
program since no signal will ever use a value written by another signal,
regardless of whether or not this transformation is performed.

– Since an unambiguous use of a variable classified as > can not be de-
termined, we must always assume a potential conflict between signals
that use this variable.

A conflict matrix for each block would then be straight forward to deduce
based on the classification of variables. We give a small example; consider
three signals Sig1, 2, 3, and three variables V ar1, 2, 3. Table 2 shows how
the signals use the variables, as well as the corresponding conflict matrix.
The conflict matrix indicates potential conflicts between Sig1 and Sig2, and
between Sig1 and Sig3. Sig2 and Sig3 can however execute concurrently.

V ar1 V ar2 V ar3 Sig1 Sig2 Sig3

Sig1 R W ⊥ Sig1 X X
Sig2 R R R Sig2 X
Sig3 ⊥ R R Sig3 X

Table 2. Variable usage in three example signals, together with a corresponding con-
flict matrix.

Once the conflict matrix has been constructed, it could be used by the
run-time system to perform a table look-up before allowing a signal to start
executing.

5 Examining the Code

Our studies are performed on existing PLEX code, and a total of four blocks
have been examined. Common for these blocks is that their fraction of the
execution time is high compared with other blocks. Each examined block
contains a number of signals that are executed more frequently than other
signals in each respective block. We call these “HF-signals” (High Frequency
Signals). For every common variable that are read from, or written to, by
such a HF signal, we have examined the usage of this variable in every other
signal in that block in order to find out which signals that may possibly be
in conflict with these HF-signals. Table 3 summarizes the characteristics of



each examined block: type of block, fraction of execution time, as well as the
number examined signals, and variables.

The code has been inspected manually, and the reason for not trying
to automate the process was that we believed that manual inspection also
would increase our general knowledge on how the language is used, in “re-
ality”, i.e., it would be ”possible to “see” the semantics of the program” [8].

Block Type Execution
time (%)

HF Examined
signals

Examined
variables

CHVIEW Middleware 6.70 % 6 45 of 92 20
LAD OS 0.64 % 2 8 of 28 77
MFM OS 3.40 % 3 26 of 75 51
MSCCO Application 1.76 % 2 59 of 75 14

Table 3. The examined blocks.

As said above, only the common variables are considered in this study.
Thus, the presented figures will in general underestimate the actual num-
ber of conflicts since we have omitted conflicts caused by simultaneous ac-
cess to the same file. However, we believe that conflicts through files tend
to be rare. A conflict takes place through a file only when the same indi-
vidual variable, in the same record, is accessed simultaneously. For a file of
size n the probability of two accesses going to the same record is 1/n, if the
accesses are random, independent, and equally distributed. Files in PLEX
are usually used to hold subscriber data or similar. The index of an access
thus usually depends on externally supplied data, like a subscriber number,
which should be quite random under normal circumstances.

The assumed parallel architecture in Section 3 corresponds to a conflict
ratio of 100%, since it always locks a block when used. However, when we
examined the common variables and excluded simultaneous ’Read-only ac-
cesses’ the actual figures were found to be between 25-75% as shown in
Table 4, column 3. The last column (of Table 4) also shows that the figures
can be further reduced.

Some comments about the figures in Table 4:

CHVIEW: As can be seen in Table 4, we do not get any improvements on
the number of conflicts in this block when we try to optimize the code
according to the discussion in the previous section. However, worth not-
ing is the fact that all remaining variables are either used as counters,
or are holding different pointer values needed for file access.



Block Observed
signals

Nr of conflicts \w

CHVIEW 45 of 92 25.89% 25.80%
LAD 8 of 28 47.22% 8.33%
MFM 26 of 75 64.67% 64.67%
MSCCO 59 of 75 73.50% 73.50%

Table 4. Summary of the (relative) number of possible conflicts, between the observed
signals, with (and without) optimization applied.

LAD: Here, the W -optimization almost manages to remove all conflicts.
The remaining conflicts are caused by variables that are used in the
same way as in the CHVIEW block.

MFM and MSCCO: A first examination of the variables shows conflict ra-
tios of 64.67%, and 73.50% respectively. Further improvements (by the
W -optimization) can not be achieved in any of these blocks. This is due
to that several signals share not only one, but several variables. A closer
examination of the variables does not improve the result either (as oppo-
site to the blocks CHVIEW and LAD), since many of the variables in this
block is used for communication, e.g., ”the current state of the system is
X”.

6 Related Work

Due to its event-based execution model, it may seem natural to relate the
possibility of parallel execution of existing PLEX programs to other event-
based systems, and especially to Rational Rose RT-models since PLEX and
Rose have a similar asynchronous communication paradigm with events
encoded as signals [13]. However, the few works that we are aware of in
the event-based domain, [10,11] and [12], are all concerned with optimiz-
ing performance on a single-processor architecture. Since different model-
ing languages such as UML and Rose are basically used in the OO domain,
the lack of literature might be caused by known difficulties to parallelize an
OO program (inheritance, late binding, encapsulation and reusability) [7].

As seen in previous sections, 1 and 2, we have related the execution of
a job to the execution of a transaction, and we will therefore review rele-
vant works in the field of parallel databases. First of all we note that there
are two architectural “extremes”; the shared-nothing (SN) and the shared-
memory (SM) architectures [4,17,15]. The only way two processors commu-
nicate in the SN-architecture is by message passing, and hence transactions
can not interfere with each other. The SM-architectures resolve the problem
with interfering transactions by locking schemes [16]. Due to better scaling
and non-interference between transactions the SN-architecture has been



considered superior to the SM-architecture. However, the emerge of multi
core architectures will most likely force the database community to revisit
the SM-architecture [2]. The latter work explores a parallel database imple-
mented on a Cray MTA-2. This architecture provides hardware primitives
for locking of single words of memory, and hashes the physical address space
to distribute memory references.

The current approach to keep the system consistent is the coarse lock-
ing scheme (lock an entire block) which was described in Section 3. The
static analysis described in the previous section is able to safely state that
some of the potential conflicts never occur, which implies that the current
locking scheme is unnecessarily conservative. However, potential conflicts
that we can’t resolve still need to be handled dynamically. An alternative
to the current “mutual exclusion” approach are reactive concurrent data
structures: shared data with non-blocking synchronization, with an ability
to adapt their algorithmic complexity to contention variation. Examples of
such structures include spin-locks [1], reactive diffracting trees [3], and soft-
ware transactional memory [9]. The known drawbacks with such structures
are that the reactive schemes (i.e., the algorithms) rely on either some ex-
perimentally tuned thresholds or know probability distribution of inputs.
However, as shown by Ha [6] it is possible to implement the algorithms in a
“self-tuning” way.

7 Conclusions and Further Research

As stated in the beginning of this paper, the primary goal with this study
was to get an opinion on whether or not the existing PLEX code is suit-
able for parallel processing. So what conclusions can be drawn based on the
results in the previous section?

As a starting point, we had to assume the worst case scenario; i.e., that
the number of conflicts in the examined programs were close to 100%. How-
ever, a simple static analysis of the data usage reduce the potential conflicts
between jobs to be in the range 25-75% for the observed programs. Sim-
ple static optimizations are, in some cases, able to reduce the figures even
further.

Our initial results are an underestimation of the actual number of con-
flicts since we have omitted conflicts caused by simultaneous access to the
same file. We have chosen this approximation as a starting point for our
studies since the probability for two jobs to simultaneously access the same
part of a file normally is 1/n, where n is the size of the file. In the contin-
uation of our research, files will be regarded from the other extreme, i.e.,
we will consider every simultaneous access as a potential conflict. This will
provide us with a safe upper bound on the number of potential conflicts.

To maintain consistency in the case the static analysis fails to resolve a
conflict, as well as for allowing simultaneous access to a file, a dynamic solu-
tion is required. We have so far compared our static analysis with a dynamic



approach, where each shared data area is protected by a lock. However, we
have seen that such a “mutual exclusion” approach is too conservative since
two jobs accessing the same block may never touch the same data. (Another
drawback is the risk of deadlocks). As an alternative to the assumed locking
scheme we plan to evaluate some of the reactive data structures as imple-
mented by Ha [6].

To summarize, our initial results are encouraging. We have shown that
simple static methods are sufficient to resolve many of the potential con-
flicts, and we believe that the combination of static analysis and lock-free
synchronization might be sufficient to migrate the code to a parallel archi-
tecture (or at least minimizing the amount of rewriting).

8 Acknowledgements

This work has been supported by Ericsson AB, and Vinnova through the
ASTEC competence center. We want to thank Janet Wennersten and Ole
Kjøller at Ericsson AB for technical support and discussions regarding PLEX
and its implementations. We are also grateful to the anonymous reviewers
for valuable feedback on earlier drafts of this paper.

References
1. T. E. Anderson. The performance of spin lock alternatives for shared-money

multiprocessors. IEEE Transactions on Parallel and Distributed Systems,
1(1):6–16, 1990.

2. J. Cieslewicz, J. Berry, B. Hendrickson, and K. A. Ross. Realizing parallelism in
database operations: insights from a massively multithreaded architecture. In
DaMoN ’06: Proceedings of the 2nd international workshop on Data management
on new hardware, page 4, New York, NY, USA, 2006. ACM Press.

3. G. Della-Libera and N. Shavit. Reactive diffracting trees. Journal of Parallel
and Distributed Computing, 60(7):853–890, 2000.

4. D. J. DeWitt and J. Gray. Parallel database systems: the future of database
processing or a passing fad? SIGMOD Rec., 19(4):104–112, 1990.

5. J. Erikson and B. Lindell. The Execution Model of the APZ/PLEX - An Informal
Description. Technical report, Mälardalen University, 2002.

6. P. Ha. Reactive Concurrent Data Structures and Algorithms for Synchronization.
PhD thesis, Chalmers University of Technology, 2006.

7. S. Kumar. Issues in parallelizing object-oriented programs. In Proceedings of the
1995 ICPP Workshop on Challenges for Parallel Processing, pages 64–71, 1995.

8. B. Lindell. Analysis of reentrancy and problems of data interference in the
parallel execution of a multi processor AXE-APZ system. Master’s thesis,
Mälardalen University, 2003.

9. V. Marathe, W. Scherer, and M. Scott. Adaptive software transactional memory.
In Distributed Computing, Proceedings Lecture Notes in Computer Science 3724,
pages 354–368. Springer-Verlag Berlin, 2005.

10. A. Marburger and D. Herzberg. E-CARES Research Project: Understanding
Complex Legacy Telecommunication Systems. In Fifth European Conference on
Software Maintenance and Reengineering, pages 139 – 147, 2001.



11. C. Mosler. E-CARES Project: Reengineering of PLEX Systems. Softwaretechnik-
Trends, 26(2):59–60, 5 2006.

12. M. Rajagopalan, S. K. Debray, M. A. Hiltunen, and R. D. Schlichting. Profile-
directed optimization of event-based programs. In Proceedings of the ACM SIG-
PLAN 2002 Conference on Programming language design and implementation
PLDI ’02, pages 106 – 116, 2002.

13. Rational. Modeling Language Guide - Rational Rose Realtime, 2002.
14. H. Sutter and J. Larus. Software and the concurrency revolution. ACM Queue,

3(7):54–62, Sept. 2005.
15. A. S. Talwadker. Survey of performance issues in parallel database systems. J.

Comput. Small Coll., 18(6):5–9, 2003.
16. P. Watson and G. Catlow. Architecture of the icl goldrush megaserver. In BN-

COD 13: Proceedings of the 13th British National Conference on Databases,
pages 249–262, London, UK, 1995. Springer-Verlag.

17. M. T. Özsu and P. Valduriez. Distributed and parallel database systems. ACM
Comput. Surv., 28(1):125–128, 1996.


