
Evaluating Software Evolvability
Hongyu Pei Breivold
ABB Corporate Research
721 78 Västerås, Sweden

+46 21 323243

hongyu.pei-
breivold@se.abb.com

Ivica Crnkovic
 Mälardalen University

 721 23 Västerås, Sweden
+46 21 103183

ivica.crnkovic@mdh.se

Peter Eriksson
ABB AB

721 78 Västerås, Sweden
+46 21 344310

peter.j.eriksson@se.abb.com

ABSTRACT

Software evolution is characterized by inevitable changes of

software and increasing software complexities, which in turn may

lead to huge cost unless rigorously taking into account change

accommodations. This has intensified the need on evolvable

software systems that can correspond to changes in a cost-

effective way. Nevertheless, although software evolvability is one

of the most important quality attributes of software, it is not

precisely defined today. Besides, the lack of evolvability model

hinders us from analyzing, evaluating and comparing software

systems in terms of evolvability. To address these issues, we

distinguish software evolvability from maintainability in this

paper and outline a suggestion for an evolvability model which

analyzes software evolvability from various perspectives, as well

as an evolvability evaluation method. The model and the method

are evaluated through its application in an industrial automation

system. The contribution of this paper is the initial establishment

of an explicit definition of software evolvability, an evolvability

model and an evolvability evaluation method that can be applied

for large complex software-intensive systems.

Keywords

Software evolvability, maintainability, quality model

1. INTRODUCTION
Software maintenance and evolution are characterised by their

huge cost and slow speed of implementation [3]. The ability to

change and evolve software quickly and reliably has become a

challenging issue for both software engineering community and

industry.

Industry rarely develops new products from scratch [11]. New

features, constraints and enhancements of most new products are

usually built on top of the earlier versions of software products.

This is due to the fact that in most cases, the cost of evolving

software is lower than developing from scratch [20]. Typical

examples are industrial automation systems. Since industrial

automation systems are often long-lived software-intensive

systems that can have a lifetime of 20-30 years, they are subject to

changes and may undergo a substantial amount of modifications

in order to be responsive to the constantly changing demands

from the marketplace, stakeholders, business requirements,

environment or technologies during their lifecycles. This implies

that these software-intensive systems become more and more

complex and may contain up to several million lines of code as

the software is enhanced, modified and adapted during the

software evolution process. Complexity increases unless work is

done to maintain or reduce it [15]. These phenomena in

continuing change and increasing complexity were recognized by

Lehman and expressed in his well-known laws of software

evolution [15]. The properties of large software systems noted by

F. P. Brooks [6], e.g. software complexity, inevitable changes of

software systems and invisibility in terms of software structure

representation, further confirm the software evolution

characteristics and exhibit the intensified need on evolvable

software systems that can be long-lived and correspond to

changes in a cost-effective way.

One way to ensure that any software system does not deteriorate

as it is evolved is to provide feedback to the development team

about the evolvability, since there is usually a potentially huge

risk that the software systems will degrade and cost huge amount

of money. Statistics have shown that the largest part of lifecycle

costs for long-lived software systems is concerned with the

evolution of the software [2] to cope with the challenges of the

continuing change, increasing complexity and the tendency of

declining software quality. Therefore, the systems’ capability to

cost-effectively adapt to and accommodate various changes has

become essential for companies to survive in the competition and

maintain a leading position among competitors. The inability to

effectively and reliably evolve software systems means loss of

business opportunities [3]. Consequently, there is strong demand

to carry out software evolution efficiently and reliably, thus, to

prolong the productive life of a software system.

Today, software needs to be changed on a constant basis with

major enhancements within short timescale, in order to launch

new products and services and keep up with new business

opportunities, through coping with the changing environments

and the radically changing requirements. All these put critical

demands on the software system’s capability of rapid modification

and enhancement. In this sense, software evolution is one term

that can express the software changes during software system’s

lifecycle and software evolvability is an attribute that describes

the software system’s capability to accommodate these changes

with the condition of having the lifecycle costs under control. As

software evolution activities are performed, essential

characteristic software evolvability must be considered.

Nevertheless, although software evolvability is one of the most

important quality attributes or characteristics of software, it is not

precisely defined today. It is not explicitly defined in any well-

known quality models that we have investigated, e.g. McCall’s

quality model, ISO/IEC 9126, etc. Because of the lack of a

standard definition, many people use software evolvability as

synonymous to software maintainability. Although both have

similarities in many senses, software maintainability and

evolvability have specific focus, which has resulted in confusion

in understanding and applying similar concepts designated

differently. Furthermore, software evolvability is affected by many

factors and it is difficult to quantify.

Thus, in this paper, we intend to (i) show differences between

software maintainability and evolvability, (ii) define a software

evolvability model, (iii) identify the required sub-characteristics

of software evolvability based on the analyses of several well-

known quality models and comparisons between evolvability and

maintainability, and (iv) evolvability evaluation method. This

evolvability model is established as a first step towards

quantifying evolvability, a base and check points for evolvability

analysis and evaluation as well as evolvability improvement.

Further we demonstrate the model and the method through an

industrial case study.

The rest of the paper is structured as follows. Section 2 analyzes

several existing well-known quality models, compares

evolvability with maintainability and gives a definition of

software evolvability and proposes the evolvability model.

Section 3 presents evaluation of software evolvability using the

model and relates it to different architecture evaluation methods

that may be adapted for evolvability evaluation. A comparison

between the evolvability model and the related methods is also

addressed in this section. Section 4 presents a case study in

applying the evolvability model and evaluation method. Section 5

concludes the paper and outlines the future work.

2. SOFTWARE EVOLVABILITY MODEL
To be able to define the evolvability model we start with a short

analysis of different quality models in which we can find the

elements of evolvability. In particular we analyze sub-

characteristics of maintainability and defined the sub-

characteristics of evolvability. Based on this analysis we provide

the evolvability model.

2.1 Analysis of Quality Models
A quality model provides a framework for quality assessment. It

aims at describing complex quality criteria through breaking them

down into concrete sub-characteristics. The best known quality

models include McCall [17], Boehm [4], FURPS [18], ISO 9126

[13] and Dromey [10]. The quality characteristics that are

addressed in these quality models are summarized in Table 1. As

shown in Table 1, although several quality attributes are

correlated to software evolvability, e.g. adaptability, extensibility

and maintainability, the term evolvability is not explicitly

addressed in either of the quality models. On the other hand, this

table provides useful inputs for the establishment of the software

evolvability model, e.g. the identification of sub-characteristics of

evolvability.

2.2 Evolvability
We define software evolvability as follows:

Definition: Software evolvability is the ability of a software

system to adapt in response to changes in its environment,

requirements and technologies that may have impact on the

software system in terms of software structural and/or functional

enhancements, while still taking the architectural integrity into

consideration.

Software evolvability is both a business issue as well as a

technical issue, since the stimuli of changes can come from both

perspectives, including change of business models and business

objectives, changes in environment, quality requirements,

functional requirements, underlying technologies as well as

emerging technologies.

This definition may remind of the definition of adaptive

maintainability but there are principle differences, and differences

in some characteristics, as discussed below.

Since maintainability is covered in most of the well-known quality

models and it is generally considered as most related to

evolvability, we will study the definitions of maintainability in

order to make the definition and features of evolvability

distinguishable. A summary of the definitions of maintainability

in various quality models is presented in Table 2.

Table 1 Quality characteristics addressed in quality models

Quality

Characteristics

M
cC

a
ll

B
o

eh
m

F
U

R
P

S

IS
O

9
1

2
6

D
ro

m
ey

Adaptability x

Supportability

x Portability

Compatibility x

Supportability

Correctness x

Efficiency x x x x

Extensibility x

Supportability

Flexibility x

Human

Engineering

 x

Integrity x

Interoperability x x Functionality

Maintainability x x x

Supportability

x x

Modifiability x x

Maintainability

Performance x

Portability x x x x

Reliability x x x x x

Reusability x x

Supportability x

Testability x x x

Maintainability

Understand-

ability
 x x Usability

Usability x x x x

Table 2 Definitions of maintainability in quality models

Quality

Models

Maintainability Definition Focus

McCall The effort required to

locate and fix a fault in the

program within its

operating environment

Corrective

maintenance

Boehm It is concerned with how

easy it is to understand,

modify and test.

Understandability,

modifiability and

testability

FURPS Implicit Adaptability,

extensibility

ISO 9126 The capability of the

software product to be

modified. Modifications

may include corrections,

improvements or adaptation

of the software to changes

in environment, and in

requirements and functional

specifications.

Analyzability,

changeability,

stability, testability

We intend to distinguish software evolvability from

maintainability from a collection of aspects that characterize them,

such as software change stimuli that trigger the changes, type of

change, impact on development process, respective focus and type

of scenarios used in analysis, etc. The differences are summarized

in Table 3.

Table 3 Comparisons between evolvability and maintainability

Characteristics Evolvability Maintainability

Software

Change

Stimuli

Business model,

business objectives,

functional and quality

requirement,

environment, underlying

and emerging

technologies, new

standards, new versions

of infrastructure

Defects, functional

requirement,

requirements from

customers

Type of

Change

Coarse-grained, long

term, higher level, [19]

radical functional or

structural enhancements

or adaptations

Fine-grained, short

term, localized

change [19]

Focus Activity Cope with changes Keep the system

perform functions

Software

Structure

Structural change Relatively constant

Analysis

Scenarios

Growth scenarios

(change scenarios)

Existing use case

scenarios

Development

Process

May require

corresponding process

changes

Relatively constant

Architecture

Integrity

Conformance is required Conformance is

preserved

2.3 Software Evolvability Model
Since software evolvability is a multifaceted quality attribute, we

propose a software evolvability model with identification of the

required sub-characteristics that a software system needs to

possess in order to easily adapt to various changes during

software evolution. The sub-characteristics that are identified and

selected for the evolvability model are based on their importance

for software developing organizations in general and their

relevance for evolving software in a cost-effective way.

The process of identifying and selecting sub-characteristics is

based on the earlier mentioned maintainability and evolvability

analysis as well as the mentioned quality models. Evolvability-

related sub-characteristics are identified and classified into six

aspects. Each aspect addresses a set of quality characteristics that

are covered in the well-known quality models as illustrated in

Table 4. Besides, we have followed ISO 9126 standards and

checked their quality attributes against our classification for

completeness. Apart from the development quality attributes that

are explicitly addressed in the evolvability model, the operational

quality attributes, such as performance, reliability are also

indirectly addressed in the sense that the improvement of these

attributes are handled through e.g. analyzability and

changeability. Portability and extensibility are explicit in the

classification because they are essential for software evolvability.

As a result, these identified sub-characteristics are relevant for

evolution of software-intensive systems and cover the ranges of

potential future changes that a software system may encounter

during its life cycle.

Table 4 Classifications of Evolvability-Related Sub-

Characteristics

Classification Quality Characteristics in Quality Models

Analyzability Human Engineering, Understandability

Changeability Flexibility, Modifiability

Integrity Reusability

Extensibility Extensibility

Portability Adaptability, Compatibility, Interoperability

Testability Correctness, Efficiency

The proposed evolvability model provides a base and a catalog of

check points for analyzing and evaluating software evolvability.

The sub-characteristics that evolvability incorporates and their

motivations are explained below.

Analyzability The capability of the software system to enable the

identification of influenced parts due to change stimuli (adapted

from [13]). The change stimuli include changes in business

model, business objectives, functional and quality requirements,

environment, underlying technologies and emerging technologies,

new standards, new infrastructure, etc.

Analyzability is important since a software system must have the

capability to be analyzed and explored in terms of the impact to

the software by introducing a change. Many perspectives can be

included in analyzability dimension, e.g. decisions on what to

modify, analysis and exploration of emerging technologies from

maintenance and evolution perspective, etc.

Integrity The capability of the software system to maintain

architectural coherence while accommodating changes.

Integrity is a key element that may be easily ignored during

software evolution. It is mostly related to understanding and

coherence to the previous architectural decisions and adherence to

the original architectural styles, architectural patterns or strategies.

Insufficient understanding of the initial architectural constructs

may have indirectly negative consequences on software structures

and lead to evolvability degradation in the long run. However,

taking integrity as one sub-characteristic of evolvability does not

mean that the architectural constructs are not allowed to be

changed. On the contrary, it helps in recognition, extraction and

documentation of these architecture- related constructs as well as

prevents unconscious violations against architectural principles.

As a result, any necessary changes to the architecture can be

conducted in a controlled way. The software architecture of an

evolvable software system should allow considerable

unanticipated changes in the software without compromising

system integrity and invariants and can evolve in a controlled way

[3].

Changeability The capability of the software system to enable a

specified modification to be implemented [13].

Changeability is important since a software system must have the

ease and capability to be changed without negative implications to

the other parts of the software system or in a controlled way. The

changeability of the software should be analyzed in

correspondence to various evolution categories, e.g. new version

of infrastructure or meeting business objectives. Thus,

changeability is correlated to extensibility and portability in the

sense that any re-factoring candidates identified in them will be

eventually justified through changeability. Changeability is

closely related to coupling, cohesion, modularity and software

complexity in terms of software design and coding structure [14],

though it is often constrained by business and economical factors.

Portability The capability of the software system to be transferred

from one environment to another [13]. Portability is an example

of a property that is not a sub-characteristic of maintenance but it

is essential for evolvability.

Portability is one important characteristic for long term

development due to the rapid technical development on hardware

and software technologies. It is concerned with hardware and/or

software changes, including interface and platform aspects.

Therefore, it is one of the key enablers that can provide possibility

to choose between different hardware and operating system

vendors as well as various versions of frameworks. Portability

analyses need to be made from evolution perspective, e.g.

exploration of emerging technologies that may affect portability,

analyzing the effect on the software architecture in terms of

portability, etc.

Extensibility The capability of the software system to enable the

implementation of extensions to expand or enhance the system

with new capabilities and features with minimal impact to existing

system. Extensibility is a system design principle where the

implementation takes into consideration of future growth.

Extensibility is important since a software system must have the

ease and capability to add on extra functionality and features,

components and services to keep up with the plethora of

standards, customer requirements, market requirements, etc. In

order to keep its competitive edge, a software system must

constantly raise the service level through supporting more

functionality and providing more features [5]. This property is

also characteristic for evolvability, but not for maintainability.

Testability The capability of the software system to enable

modified software to be validated [13].

Testability is concerned with the verification of a software system

since software modification may lead to errors and side effects,

e.g. changes to one part of a system may have an unintended

effect on another part of the system. Therefore, every step in the

transformation and changes of software constructs need to be

tested. Test cases that cover both the original and emerged

changing requirements need to be identified to ensure that the

system still can fulfill the original requirements and perform its

intended function while meeting the new requirements.

From the list of the sub-characteristics we could assume that

maintainability is a subset of evolvability, but this is only partially

true. Evolvability and maintainability have different goals

(changes vs. preservation as explained in Table 3) and the sub-

characteristics will be evaluated in relation to these goals.

Analyzability and integrity are the center sub-characteristics and

base for evolvability evaluation. The reason is that analyzability is

the first core step to identify the influenced parts due to change

stimuli and integrity investigation helps gain comprehensive

understanding of architectural constructs related to evolvability

issues of the software system, such as changeability, extensibility,

portability and testability, so as to guarantee that any re-factorings

made to the system will be well-planned instead of unconsciously

violating existing reasonable architectural decisions.

During the software evolution process, there may be shifted focus

among portability and extensibility depending on the types of

emerging changes. Nevertheless, analyzability, changeability,

testability and integrity are the main sub-characteristics that are

required in all circumstances.

3. EVALUATING EVOLVABILITY
Software evolution and software evolvability can be examined in

different phases of systems lifecycle, e.g. requirement phase,

architectural phase, detailed design, and implementation and

integration phases [9]. In this paper, we focus on assessing

software evolvability at architectural phase. This is because

software architecture is a key asset in software systems and it has

tight connection to the system’s quality requirements in the sense

that software architectures allow or preclude nearly all of the

system’s quality attributes, or vice versa, the quality attributes of a

software system are determined by its architecture [8].

3.1 Evaluation Method Supporting the

Evolvability Model
In order to address the evolvability sub-characteristics

systematically, we have extracted an approach for evolvability

evaluation from an industrial case study. The application of this

method and the evolvability model will be examplified in more

details in a case study in section 4. The approach comprises two

phases.

Phase 1: Analyze the implications of change stimuli on software

architecture

This phase addresses analyzability sub-characteristics as shown in

Figure 1, and includes the following two steps:

Step 1: Identify requirements on the software architecture

Step 2: Prioritize requirements on the software architecture

Inputs
• Documentation
• Software Elements
• Knowledge about business and

architecture

Outputs
• Decision of modification candidates (analyzability)
• Identification of architectural defects
• Planning of software improvement

Activities
• Code smells
• Anti-patterns
• Architecture analysis methods
e.g. Quality Analysis Workshop,
ATAM…

Activities
• Code smells
• Anti-patterns
• Architecture analysis methods
e.g. Quality Analysis Workshop,
ATAM…

Figure 1 Software Analysis Process (Phase 1)

Phase 2: Analyze and prepare the software architecture to

accommodate change stimuli and potential future changes

This phase addresses integrity, changeability, extensibility,

portability and testability sub-characteristics as shown in Figure 2,

and includes the following steps:

Step 3: Extract architectural constructs related to the identified

issues from phase 1

Step 4: Identify re-factoring components for each identified issue

Step 5: Identify and assess potential re-factoring solutions from

technical and business perspectives

Step 6: Identify and define test cases

Step 7: Present analysis results

Inputs
• Results from phase 1, i.e. identified

and prioritized requirements on the
software architecture

Outputs
• Identified software design related to

evolvability perspectives
• Identified re-factoring candidates that need

enhancement or adaptation
• Feasible re-factoring solutions

Activities

• Identify and extract software design
(integrity)
• Identify re-factoring candidates
(changeability, extensibility, portability related)
• Identify re-factoring solutions
• Assess re-factoring solutions (changeability)
• Identify and define test cases (testability)

Activities
• Identify and extract software design
(integrity)
• Identify re-factoring candidates
(changeability, extensibility, portability related)
• Identify re-factoring solutions
• Assess re-factoring solutions (changeability)
• Identify and define test cases (testability)

Figure 2 Software Improvement Process (Phase 2)

To summarize, the outputs of software evolvability evaluation

include (i) Identified and prioritized requirements on the software

architecture (ii) Established base for common understanding of

these requirements from stakeholders within organizations (iii)

Identified re-factoring candidates that need enhancement or

adaptation (iv) Feasible re-factoring solutions.

3.2 Other Methods
There exist many architecture evaluation methods today. Some of

them may be adapted to analyze software evolvability. Following

is a brief description of these methods.

ATAM The Architecture Tradeoff Analysis Method (ATAM) [8]

is a method for evaluating software architectures in terms of

quality attribute requirements. It is used to expose the risks, non-

risks, sensitivity points and trade-off points in the software

architecture, therefore to achieve better architecture. It aims at

different quality attributes and supports evaluation of new types of

quality attributes.

SAAM The Scenario-based Architecture Analysis Method

(SAAM) was originally created for evaluating modifiability of

software architecture. The main outputs from a SAAM evaluation

include a mapping between the architecture and the scenarios that

represent possible future changes to the system, which provides

indications of potential future complexity parts in the software

and estimated amount of work related to the changes.

ALMA The Architecture Level Modifiability Analysis [1] is a

method for analyzing modifiability based on scenarios. The

outputs from an ALMA evaluation include maintenance

prediction to estimate required effort for system modification to

accommodate future changes, risk assessment to identify the types

of changes that the system shows inability to adapt to, and

software architecture comparison for optimal candidate

architecture.

EBAE Empirically-Based Architecture Evaluation [16] defines a

process for defining and using a number of architectural metrics to

evaluate and compare different versions of architectures in terms

of maintainability.

ABAS Attribute-Based Architectural Styles [4] build on

architectural styles by explicitly associating with reasoning

frameworks, which are based on quality attribute-specific models.

3.3 Correlations among Evaluation Methods
Among the related evaluation methods, ALMA and SAAM focus

more on modifiability (changeability), EBAE on maintainability

using metrics such as coupling, size and complexity, and ATAM

supports multiple attributes. Since software evolvability is a

multifaceted attribute, incorporating changeability among other

sub-characteristics, ALMA, SAAM and EBAE will not be

sufficient enough to evaluate software evolvability. Regarding

ATAM, although it can support multiple quality attributes, it has

one liability in dealing with future changes due to the limitation of

the scenario generation process, since some evolvability scenarios

may be missed which may result in wrong judgments about the

current architecture [7].

The software evolvability model that we have outlined is

appropriate for evolvability analysis because it pinpoints the

dimensions that software architects and analysts need to consider

in carrying out software evolution activities during the software

evolution process. As illustrated in Figure 1, we see also the

benefit of using ATAM as a basis for architecture analysis in

combination with the evolvability model for evolvability

evaluation.

4. CASE STUDY
The application of the proposed software evolvability model and

the evaluation method was carried out on a large industrial

automation system at ABB. During the long history of product

development, several generations of automation controllers have

been developed as well as a family of software products, ranging

from programming tools to varieties of application software that

support every stage of the software system life cycle. The case

study was focused on the latest generation of automation system.

4.1 Evaluated System
The software system in the automation controller today has a

tremendous huge code base, consisting of several million lines of

code with support for a variety of different applications and

devices. All the source code is compiled into a monolithic binary

software package, which has grown in size and complexity as new

features and solutions are added to enhance functionality and to

support new hardware, such as devices, I/O boards and production

equipment. Besides, the software package also consists of various

software applications, aiming for specific tasks that enable the

automation controller to handle various applications in painting,

arc welding, spot welding, gluing, machine tending or palletizing,

etc.

Due to long life of products and due to continuous improvements

of the products and development of new variants and new

products evolvability of these systems and their components the

evolvability is one of the most important properties.

4.2 Goals
The aim of the case study was to analyze software architecture of

the automation system with respect to its evolvability through

applying the software evolvability model. The motivations to this

case study came from the emerging critical issues in terms of

software evolution, which are:

- How to improve software system quality?

- How to improve the ability to enhance functionality in

existing software system?

- How to build new products for dedicated market within

short time?

- How to enable the ease and flexibility of distributed

development of products?

Of all these questions, the root challenge is how to evaluate

software evolvability and analyze whether the software system has

the capability to quickly accommodate to changes. This is the

necessary step towards improving software evolvability and

preparing the software system for potential evolution.

4.3 Applying the Evolvability Evaluation

Method
How to evolve the current monolithic automation controller

software? Is it possible to evolve the controller software to meet

the business objectives? We applied the software evolvability

evaluation method and checked against the evolvability model to

address theses issues.

Step 1: Identify requirements on the software architecture

Any change stimuli result in a collection of requirements that the

software architecture needs to adapt to. The aim of this step is to

extract requirements that are essential for enhancing and preparing

the software architecture to cost-effectively accommodate change

stimuli. Workshops and scenario-based architecture analysis

methods can be used for this purpose. In our case study, several

workshops were conducted for requirement identification.

The change stimuli in this case study came from the changes in

business objectives, i.e. time to market, quality improvement and

enabling distributed development process. The main idea to

accommodate to the change stimuli was to cope with the

monolithic-related issues through developing base software for

domain-specific applications to build on. The base software

consists of a software kernel which is the mandatory building

block for all applications, as well as common extensions which

are commonly used by all the applications. The base software can

be packaged into software development kit, which provides

necessary tools and documentation for application development.

The domain-specific application parts will be separated from the

base software and any application-specific extensions can be built

on top of the base without the need of access to source code. This

implies that the base software and domain-specific applications

can be developed independently and have separate release cycles.

Application developers can work more freely than before without

being constrained by the release cycles of the base software. To

achieve this, corresponding requirements are identified to enable

the migration of monolithic architecture to modular one.

Step 2: Prioritize requirements on the software architecture

All the requirements identified from the first step need to be

prioritized. In the case study, the requirements were ranked into

three steps: (i) enable build of existing types of extensions, i.e. to

fix all interfaces that prevent from building existing extensions

after building the kernel (ii) enable new extensions and simplify

interfaces that are difficult to understand and may have negative

effects when implementing new extensions (iii) scale kernel.

Step 3: Extract architectural constructs related to the respective

identified issue

In this step, we mainly focus on architectural constructs that are

related to the previously identified issue. Take portability issue for

example, the evaluated system is the latest generation of

automation controller software, which is an evolutionary step

based on earlier generations. One of the main initial design goals

was to make the software portable across different target operating

system (OS) platforms, as well as to run it in form of a “Virtual

Controller” hosted on a general purpose computer, such as a

UNIX workstation or a PC. The architecture style for the current

generation automation control software is layered architecture,

and within the layers object-oriented architecture. The main

enabler for portability is the portability layer in the architecture.

The portability layer provides interfaces for application software

in the controller, including OS abstraction, POSIX file API,

device driver interfaces, basic services and reusable class library.

To summarize, this step is necessary to help us understand the

system related to the problem issue and to discover any

architectural defects around it.

Step 4: Identify re-factoring components for each identified issue

In this step, we identify the components that need re-factoring in

order to fulfill the prioritized requirements. For example, in the

case study, to achieve the build- and development-independency

between kernel and extensions, the low-level basic services were

identified as one of the re-factoring components.

Step 5: Identify and assess potential re-factoring solutions from

technical and business perspectives

Technical assessment takes into consideration of change

propagation and the effect of re-factoring on quality

characteristics such as complexity and maintainability of the

software. Business assessment estimates the cost and effort on

applying re-factoring. In some cases, the solution to a certain re-

factoring component is straight forward and we know how to re-

factor with local impact. Otherwise, when the implementation is

uncertain and may affect several sub-systems or modules, we need

to make prototype and investigate the feasibility of potential

solutions as well as the estimation of implementation workload.

Step 6: Define test cases

The test cases or scenarios can be defined based on the prioritized

requirements on the software architecture. Meanwhile, the

software system still needs to fulfill some of the original

requirements besides the new required changes. To do this, we

need to identify the original test cases as well as the emerging new

test cases that cover the affected component, modules or

subsystems during the software evolution process. For example, in

the case study, we identified test scenarios that enable separation

between kernel and extension which are new test cases, and test

scenarios for validating if existing domain-specific applications

can still work as before without being affected after building the

kernel.

Step 7: Present analysis results

The analysis results are transferred to the implementation team for

further execution. In fact, the communication between analysis

team and implementation team started already during the

evaluation process in order to achieve mutual understanding about

the re-factoring decisions.

4.4 Analysis
In this case study, we applied the evolvability model to an

industrial automation controller and analyzed the software

system’s evolvability from a collection of dimensions. As stated in

[12], software architecture that is capable of accommodating

change must be specifically designed for change. Therefore, the

application of the evolvability model is a necessary step in

analyzing software evolvability and preparing the software system

for future changes. The results of the analysis are achieved

through applying the evaluation method and are presented as

follows.

4.4.1 Analyzability
The knowledge of analyzability is achieved through the first two

steps in the evaluation method. In this perspective, we analyze the

capability of the software system to enable the identification of

influenced parts due to change stimuli. The following lists the

most essential activities that were required in the case study for

identification of influenced parts due to change stimuli.

(1) Investigate public interfaces This improves both quality and

understandability of the current system. It is error-prone to have

interfaces defined as public when they should in fact be internal,

e.g. application-specific software should not expose public

interfaces. All public interfaces should be clearly defined and

documented; including the context they can be used. In this way,

there will be less and well-defined interfaces, thus to increase

software quality and simplify the process of product testing.

(2) Investigate kernel and extensions This provides input to the

explicit definition of the scope for kernel, common extensions and

application-specific extensions.

(3) Investigate build dependencies The separation between

kernel and extensions determines that domain-specific

applications will always be built last. The build order should start

from kernel, common extensions towards application extensions.

(4) Investigate impact on development process The restructuring

of the automation controller software will affect the product

development processes in the sense that roles, reponsibilities and

working procedures, such as product interaction, verification and

testing, need to respond to the change stimuli in a corresponding

way.

4.4.2 Integrity
The knowledge of integrity is achieved through the third step in

the evaluation method. We gained good understanding of the

software architecture, although we also discovered minor

violations that have taken place on the code level before the actual

re-factoring work. This intensified the need of good

documentation of architectural constructs and especially rationale

behind each design decision.

4.4.3 Changeability
The knowledge of changeability is achieved through step 4 and 5

in the evaluation method. In this perspective, we analyze the

capability of the software product to enable a specified

modification to be implemented. The underlying assumptions

throughout the re-factoring process in this case study were that the

applied re-factoring preserves behavior and that the consistency

between re-factored artifacts and other software artifacts in the

system can be guaranteed, in the sense that requirement

specification, architectural design documentation, software code

and test specification, etc. should match with each other.

Based on the identified re-factoring components, the respective

solution and roadmap for implementation were identified and

implementation workload was estimated as well. It became

apparent that some modifications were easy to be implemented,

while some re-factoring components may lead to considerable

change propagation. It is still ongoing work to make

comprehensive analysis and judgment of potential alternative

solutions. Although this was the case, we found it helpful with the

evaluation method to guide us through the evolvability

improvement process in a structured way.

4.4.4 Extensibility
In this perspective, we analyze the capability of the software

system to enhance the system with new functions and features. In

the case study, it was desired that domain-specific application

developers can create their own application extensions on top of

the kernel software in order to respond quickly to market

requirements and get rid of the tight constraints from the release

cycles of the automation controller software. Therefore, the

system is being prepared through executing step 4 and 5.

Meanwhile, it became clear that training is necessary so that the

domain-specific application developers can easily create their own

applications.

4.4.5 Portability
In this perspective, we analyze the capability of the software

system to be transferred in case of environment change. The

portability issues in this case study include portability analysis

across various target operating system platforms and portability

analysis across hardware platform, thus to prepare the software

system for potential environment change. It is still an on-going

project around this issue, but so far, we have discovered some

aspects that need to be addressed, e.g. training for software

developers in writing code that enables portability, documentation

of guidelines/rules and code examples, proper use of conditional

compilation in case of environment switches, etc.

4.4.6 Testability
In this perspective, we validate if the modified software system

can still fulfill the original requirements as well as the new

required changes. To do this, we identified emerging new test

cases that cover the affected component, modules or subsystems

as well as the original test cases that the software still needs to

fulfill. The possibility of being able to run the program on virtual

controllers simplifies a lot for testing.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we propose a software evolvability model and an

evolvability evaluation method. We contend that the evolvability

of a software system can be analyzed in terms of a collection of

sub-characteristics. This evolvability model is established through

a systematic analysis of several existing well-known quality

models and comparison analysis of distinguishable characteristics

between software evolvability and maintainability. We have

shown how the evolvability evaluation method and evolvability

model can be applied into complex industrial context through a

case study, which revealed the structured way of evaluating

evolvability as well as the feasibility of using the proposed

evolvability model as base and check points when evolving a

software system.

Future work remains to be done to further establish the

evolvability model to a hierarchical one; we need to further derive

the identified sub-characteristics of evolvability to the extent

when we are able to quantify them and/or make appropriate

reasoning of the quality of service that a software system provides

in terms of various sub-characteristic. We need to provide a

catalog of guidelines and checkpoints for each sub-characteristic

that can be applied in conducting evolvability analysis. We also

need to analyze the correlations among the sub-characteristics

with respect to constraints and trade-offs. Further we plan to

establish a process framework which will enable a consistence

analysis when analyzing different sub-characteristics, and when

analyzing the evolvability in different phases of the product

lifecycle.

6. REFERENCES
[1] Bengtsson. P. O. Architecture-Level Modifiability Analysis.

Ph.D Thesis, Blekinge Institute of Technology, 2002.

[2] Bennett, K. Software Evolution: Past, Present and Future.

Information and Software Technology 38 (1996) 673-680.

[3] Bennett, K. and Rajlich, V. Software Maintenance and

Evolution: a Roadmap. 2000.

[4] Boehm, B. W. et al. Characteristics of Software Quality.

Amsterdam, North-Holland, 1978.

[5] Bosch, J. Design and Use of Software Architectures –

Adopting and Evolving a Product-Line Approach. Addison-

Wesley. 2000.

[6] Brooks, F. P. No Silver Bullet. IEEE Computer, Vol. 20, No.

4, 1987.

[7] Ciraci, S. and Broek. P. Evolvability as a Quality Attribute of

Software Architectures. 2003.

[8] Clements, P., Kazman, R. and Klein, M. Evaluating Software

Architectures: Methods and Case Studies. Addison-Wesley.

2002.

[9] Cook, S., Ji, H. and Harrison, R. Dynamic and Static Views

of Software Evolution. Proceedings IEEE International

Conference on Software Maintenance ICSM, 2001.

[10] Dromey, G. Cornering the Chimera. IEEE Software

(January): 33-43, 1996.

[11] Graaf, B. Maintainability through Architecture Development.

EWSA, LNCS 3047, pp. 206-211, 2004.

[12] Isaac, D., McConaughy, G. The Role of Architecture and

Evolutionary Development in Accommodating Change.

Proc. NCOSE’94, 1994.

[13] ISO/IEC 9126-1. International Standard. Software

Engineering – Product Quality – Part 1: Quality Model,

2001.

[14] ISO/IEC 9126-3. International Standard. Software

Engineering – Product Quality – Part 3: Internal Metrics,

2003.

[15] Lehman, M. Laws of Software Evolution Revisited. Software

Process Technology, 5th European Workshop EWSPT, 1996.

[16] McCall, J. A., Richards, P. K. and Walters, G. F. Factors in

Software Quality. National Technical Information Service,

1977.

[17] Ortega, M, et al. Construction of a Systemic Quality Model

for Evaluating a Software Product. Software Quality Journel,

v11, n3, p219-42, Sept 2003.

[18] Pfleeger, S. L. The Nature of System Change. IEEE

Software, 1998.

[19] Weiderman. N. H. et al. Approaches to Legacy Systems

Evolution. Technical Report CMU/SEI-97-TR-014, 1997.

[20] Yang, H. and Ward, M. Successful Evolution of Software

Systems. Artech House Publishers, London, 2003

