

MRTC report ISSN 1404-3041 ISRN MDH-MRTC-217/2007-1-SE
Mälardalen Real-Time Research Centre, Mälardalen University, October 2007 1(10)

Software Component Evaluation:
A Theoretical Study on Component Selection and Certification

Alexandre Alvaro1, Rikard Land2, Ivica Crnkovic2,

1Federal University of Pernambuco and C.E.S.A.R – Recife Center for Advanced Studies and
Systems, Brazil

2Mälardalen University, Department of Computer Science and Electronics, Sweden

alexandre.alvaro@cesar.org.br, {rikard.land, ivica.crnkovic}@mdh.se

Abstract
Software components need to be evaluated at several
points during their life cycle, by different actors and
for different purposes. Besides the quality assurance
performed by component developers, there are two
main activities which include evaluation of
components: component selection (i.e. evaluation
performed by the system developer in order to select
the best fit component to use in a system) and an
envisioned component certification (i.e. evaluation
made by an independent actor in order to increase
the trust in the component). This paper examines the
fundamental similarities and differences between
these two types of component evaluations and
elaborates how these fit in the overall process views
of component-based development for both COTS-
based development and software product line
development.

1. Introduction

Component-based software development has
emerged as a viable and economic alternative to the
traditional software development process [35]. The
ability to build complete system solutions by
interconnecting components through public
interfaces independently created and deployed
components is the driving force behind Component-
Based Software Engineering (CBSE). However,
organizations reusing existing software components
can only achieve the improvements related to
software reuse if the selected software components
have a certain quality degree.

A major problem when building software systems
from components is the unknown quality of the
components and the unknown side-effects of their
integration. In our view, component evaluation has
to be performed at different stages in the component
life cycle, by different actors, for different reasons.
During component development, the component
vendor assures the quality of the components
developed before made publicly available for reuse.
Component certification means that an independent
actor performs an evaluation according to
standardized procedures, so that an issued certificate

is seen as a quality stamp which increases the trust
in the component. During system development,
components are evaluated with respect to system
requirements, and selected in a component selection
process in order to select the components that best
fit the target system.

Apart from the quality assurance performed by
the component vendor (as is done for any product
developed by any vendor), in the scenario outlined
above components are evaluated both in order to
select a component to use in a system and in order to
certify a component (i.e. assuring some properties of
the component). This paper examines the
fundamental similarities and differences between
these two types of component evaluations. The
contributions of this paper are: 1) a review of
previous literature studies of software component
certification and selection, 2) an examination of to
what extent similar or identical methods and
practices can be used in the two processes, 3) a
discussion about the fundamental theoretical limits
of what can be evaluated, and 4) an elaboration of
how the two processes of component selection and
component certification should be designed to
interact with the processes of component
development and system development.

The remainder of this paper is organized as
follows: Section 2 describes the work related to this
study. Section 3 describes the envisioned overall
process view of component-based development, and
Section 4 examines the similarities and differences
between the component evaluation performed during
component selection and component certification.
Section 5 presents the main challenges related
mainly to the establishment of component
certification, and Section 6 presents the concluding
remarks and directions for future work.

2. Current State-of the-Art and Sate-of-
the Practice of Component Evaluation

The focus of this paper is an overall CBSE
process view with focus on component evaluation
during component certification and component
selection, and there are three types of related works:

MRTC report ISSN 1404-3041 ISRN MDH-MRTC-217/2007-1-SE
Mälardalen Real-Time Research Centre, Mälardalen University, October 2007 2(10)

1. Overall CBSE processes, especially if they
combine component certification and selection
(section 2.1).

2. Summaries of research in component selection
and component certification respectively
(section 2.2).

3. Actual works detailing out principles and
methods of component selection and component
certification respectively (section 2.3 and 2.4).

2.1. Overall processes for Component-
based Development

To our knowledge, there are no publications
combining the current knowledge of component
selection and component certification as an
integrated part of component-based software
development (CBD) process. Several works discuss
the lifecycle process divided into (i) component
development, (ii) component selection and (iii)
system development processes [3, 11, 21, 23, 28] in
which component certification is treated implicitly
or not at all. There are some works that relate
component-based development processes to a
certification process. In [36] the cooperation
between component development and component
certification are considered, and in [34] it is
discussed whether a certification process is an
(un)necessary part of component-based
development. However, our claim is the necessity of
recognizing component certification as a separate
process, but integrated into the overall CBD process,
and our aim is to compose these four processes in
order to provide a cooperative process that work
together in order to provide quality aspects around
the component’s and system’s development
activities.

2.2. Reviews/Surveys of Component
Selection and Component Certification

There was a workshop in 1997 organized by the
SEI, where many of the principles of component
selection were first put in print [30]. We have made
a survey of published methods for component
selection [20], contributing with a meta-model
covering all the essential parts of the existing
methods (this survey is further related in section 2.3)
Apart from our own survey of component selection
methods, there are only a few publications including
some very limited surveys [3, 27, 32] (limited in the
number of methods surveyed, and in the dimensions
compared).

In addition, we also have provided a survey about
component certification [1] that covers the most
relevant work in this area. Although there are no
other component certification surveys, there is some
work related to component certification process [7,
36] where the main idea is to provide a well-defined
component certification process. Besides, these

works are in their beginning and there is a need for
more comprehensive evaluation (in both academia
and industry). Also, the certification process was not
developed within the component development
and/or system development contexts, which means
they may be difficult to apply in a real process
scenario.

2.3. Component Selection

Since many software systems are built using
components, evidently components are in practice
evaluated and selected. This section summarizes the
main findings from our previous survey of published
systematic methods for component selection [20].

The first method to be published (in 1995) is
OTSO (Off-The-Shelf Option) [18], which
introduced the fundamental idea of progressive
filtering, evaluated not only functional and non-
functional properties of the component, but also
strategic considerations and architecture
compatibility, and suggested AHP (Analytical
Hierarchy Process) for comparison of candidates. In
PORE (Procurement-Oriented Requirements
Engineering, 1998) [23, 28], components are
evaluated while the system requirements are
developed, which is also true for RCPEP
(Requirements-driven COTS Product Evaluation
Process, 2001) [21], CRE (COTS-Based
Requirements Engineering, 2002) [3], and CARE [5]
(COTS-Aware Requirements Engineering, 2004).
STACE (Socio-Technical Approach to COTS
Evaluation, 1999) [19] stressed the importance of
non-technical factors to evaluate.

CSCC (Combined Selection of COTS
Components, 2002) [32] considers the total cost for
a system rather than specifying in advance the
individual costs for different components. CCCS
(Compatible COTS Component Selection, 2005) [4]
consider sets of complementary component as
candidates, focusing on how well components will
fit together.

i-MATE [22] focuses on middleware selection,
and the main contribution is the description of
reusable requirements for that domain.

PECA (Plan, Establish, Collect, Analyze, from
the SEI) [7] can be noted for its flexible structure of
activities, and RDR (Requirements and Design
Reviews, developed and used at NASA Goddard)
[25] describes well the relation between acquired
components and system parts being built in-house.

Typically, the suggested processes can be
described as a progressive filtering [30], where all
found components are first evaluated at a high level,
using easily accessible information about
components, for example from vendors’ marketing
material. For convenience, we label this phase high-
level evaluation. Also, other criteria such as costs in
the short and long term, vendor stability are
evaluated. After this phase, some components are

MRTC report ISSN 1404-3041 ISRN MDH-MRTC-217/2007-1-SE
Mälardalen Real-Time Research Centre, Mälardalen University, October 2007 3(10)

discarded and the remaining are evaluated more
thoroughly by experimenting and prototyping using
the real components (prototyping evaluation), after
which one or a few components are recommended or
selected. This is true although some methods
describe this in terms of fixed phases, others as
progressively more detailed iterations or as a flexible
or opportunistic structure of activities.

The main distinction between high-level
evaluation and prototyping evaluation is whether the
component needs to be available during the
evaluation or not, which have a big impact on the
cost and time (and skills) required for the evaluation
and consequently impacts the number of
components that can practically be evaluated. In
prototyping evaluation, the acquisition of a
component may come with a (high) cost and can
introduce (long) delays in the evaluation process,
and the evaluation itself requires learning the
component and systematically setting up, executing,
and documenting many tests thoroughly.

The published methods differ in how the actual
selection of a component is performed. There are
different opinions: some processes are based on a
formal method for comparison and ranking, such as
AHP (Analytical Hierarchy Process) or weighted
scores [3, 18, 19, 21, 23, 28]. Others suggest that a
formal comparison runs the risk of not catching the
intent of the comparison, and emphasize discussions
and reasoning [7, 23, 28]. Gap analysis is a tool
which helps focusing on the total cost, time, and risk
of each alternative [20, 29].

2.4. Component Certification

Component certification is a method to ensure
that software components conform to well-defined
standards; based on this certification, trusted
assemblies of components can be constructed [8].
However, this task seems to be very difficult
because the software engineering community has
expressed many and often divergent properties to
evaluate software components [33].

In addition, existing literature is not that rich in
reports related to practical software component
certification experience, but some relevant research
explores the theory of component certification in
academic scenarios. The component certification
history can be “divided” into two periods [1]: from
1993 to 2001, where the focus was mainly on
mathematical and test-based models and, after 2001,
where the focus was on techniques and models
based in predicting quality requirements.

The first period was focused on methods of
component certification using modeling techniques,
making possible not only to certify components but
to certify the system containing the components as
well [40, 41].

Another technique was presented by Voas [37],
where he defined a certification methodology using

automated technologies, such as black-box testing
and fault injection to determine whether the
component fits into a specific scenario.

The state of the art, up to around 1999, was that
components were being evaluated only with the
results of the tests performed to the components.
However, such testing had no well-defined way to
measure the efficiency of the results. In 2000, Voas
& Payne [38] defined some dependability metrics in
order to measure the reliability of the components,
and proposed a methodology for systematically
increasing dependability scores by performing
additional test activities.

In 2001, Morris et al. [26] proposed an entirely
different model for software component
certification. The model was based on the tests that
developers supply in a standard portable form. So,
the purchasers can determine the quality and
suitability of purchased software.

Besides these contributions, the main advance
achieved in this period was the fact that component
certification began to attract attention and started to
be discussed in the main CBSE workshops [9, 10].

After a long time considering only tests to assure
component reliability levels, around 2000, the
research started to change focus and other issues
began to be considered in component certification,
such as reuse level degree, reliability degree,
component predictability properties, among other
aspects.

In 2001, Stafford & Wallnau [34] developed a
model for the component marketplaces that supports
prediction of system properties prior to component
selection. Other two works extended this one: (i) in
2003, Hissam et al. [15] introduced Prediction-
Enabled Component Technology (PECT) as a means
of packaging predictable assembly as a deployable
product. PECT is meant to be the integration of a
given component technology with one or more
analysis technologies that support the prediction of
assembly properties and the identification required
component properties and their possible certifiable
descriptions; and (ii) during 2003, a CMU/SEI’s
report [39] extended Hissam et al. work [15],
describing how component technology can be
extended in order to achieve Predictable Assembly
from Certifiable Components (PACC). This
initiative is developing technology that will predict
the runtime behavior of assemblies of software
components.

In 2003, Meyer [24] highlighted the main
concepts behind a trusted component along two
complementary directions: a “low road”, leading to
certification of existing components (e.g. defining a
component quality model), and a “high road”, aimed
at the production of components with fully proved
correctness properties. However, these two
directions are still ongoing research.

MRTC report ISSN 1404-3041 ISRN MDH-MRTC-217/2007-1-SE
Mälardalen Real-Time Research Centre, Mälardalen University, October 2007 4(10)

As we can note, the efforts to develop a
component certification standard is only in its
beginning. In our currently proposal (Figure 1 and
Figure 2) for component certification we have three
steps: (i) Data Collection; (ii) Define, Design and
Plan; and (iii) Evaluation. Generally, for component
quality assurance, typically, it is needed a set of
information about the software component and the
environment (i.e. a Data Collection step) in order to
evaluate its quality using a set of techniques and
methods. After that, the definition, design and plan
of the evaluation should be done in order to provide
information as complete as the evaluation team can
about the certification activity (i.e. Define, Design
and Plan step). Finally, with the certification plan in
hand, the evaluation activity is executed, data are
collected and recommendations are given (i.e.
Evaluation step). We considered that these three
steps are essential in an efficient component
certification activity.

3. The Overall Component Based
Processes

As said earlier, there are four processes with
different purposes: component development,
component certification, system development and
component selection. These processes differ
significantly in different organizational and business
settings. We distinguish different types of
component-based development [11]:
• COTS-based development, where components

are developed by some organizations to be
marketed as such, and systems are built by other
organizations using components available on
the marketplace, with no direct influence on the
component providers

• Product-line development, where a single
organization develops components for internal
reuse in several products, and

• Architecture-driven component develop-
ment, where components are developed as the
result of a top-down system design process and
not for reuse, but where the component-based
paradigm is adopted e.g. to enforce a well-
modularized the system and to be able to use the
benefits of standard service of a component
technology.

The need for both component certification and a
systematic selection process is largest for COTS-
based development and product-line development,
and smallest for architecture-driven development.
For this reason we will therefore outline the process
for COTS-based development and then describe how
the picture changes for product-line development.

3.1 Commercial-Off-The-Self (COTS)-
Based Development

The COTS-based development is based on the
idea that the COTS provider develops components
and makes them available on the market, while
product developers search for them and use them.
Here we have a clear distinction between component
providers and component users. The component
development process is separated from the system
development process, and they are connected by
component certification and component selection
processes.

The entire process is shown on Figure 1 by using
the simplest sequential model. Of course any type of
development process (sequential or evolutionary)
can be used in development of both systems and
components. The component development process
(1) starts from requirements elicitation of the
software components, passing from its design and
implementation using some architectural standards,
and considering some environment constrains, until
the verification & validation of this component for
further deployment. The process continues with the
certification process (2): After fully tested internally
the component is delivered to a certification
organization. Based on the component information
(i.e. documents, source code, tutorials, examples,
and so on) and on the target domain, the certification
organization performs a set of activities to verify the
component properties and to issue the certificate.
The techniques, methods and tools are selected to
evaluate the component according the certification
plan defined during the certification process.

The components are stored in the organization’s
private repository (3). Then, the component
development organization can also make some
products public (4). It may decide to publish a
combination of earlier, certified versions of a
component as well as newer, not yet certified
versions. With “make public” we mean not
necessary making itself immediately available, but
in many cases make public the information about the
component.

Once made public, customers – i.e. system
developers – can find these components for
evaluation during its component selection process
(5). This selection (i.e. Find step) is made by the
system developer using search mechanism available
in those system repositories (the search can be
executed through keywords and queries).

The system developers need to evaluate which
component best fit the system requirements in order
to be integrated into it (6). During high-level
evaluation, the main goal is to evaluate a set of
documentations, the component constraints and the
component reputation based on its owner. The idea
is to refine a pool of selected components to be input
to the next activity; and during prototyping
evaluation, where the system developers create

MRTC report ISSN 1404-3041 ISRN MDH-MRTC-217/2007-1-SE
Mälardalen Real-Time Research Centre, Mälardalen University, October 2007 5(10)

prototypes with the components selected previously
and selects the superior component to compose the
system, based on the system requirements.

When a component is selected and integrated into
the system, the system development organization
enters a mode of maintaining and evolving the
system which may include integrating newer
versions of the component in the future (7). After
that, the assets generated by the system development
process (including acquired components) are stored
in the repository system of this organization to allow
future reuse in other projects.

In addition to this basic flow between activities,
there are several other loose interconnections (not
shown in the figure). The component requirements
are affected by system requirements, either through
a close business relationship with some system
developer(s), or by following trends in the domain of
the component. And conversely, system
requirements may be influenced by requirements (or
capabilities) of existing components. It could be
noted that for software components, many of these
requirements are closely related to design and
system integration (e.g. what platform and
component technology the component is designed
for).

Figure 1. COTS-Based Development.

3.2 Software Product Line (SPL)-Based
Development

According to Clements & Northrop [6], a
Software Product Line (SPL) is a set of software-
intensive systems sharing a common, managed set of
features that satisfy the specific needs of a particular
market segment or mission and that are developed
from a common set of core assets in a prescribed
way. Similar to COTS components, components
developed in a SPL development organization are
intended to be reusable in several (possibly
unknown) systems. The difference from COTS
components is that SPL components are developed
in-house to address the needs of the product

development, and are not aimed to be marketed
publicly. Also, since all processes take place within
the same organization they can be better planned and
performed more efficiently.

In a SPL organization (Figure 2) we have the
following activities: (1) the system development can
impact component development much more directly
(i.e. during the development of new versions or
branches in a product line, the system requirements
can be forwarded directly to the component
development). The same thing happens with the
component selection process (2) because by having
access to a repository system, a component can be
selected during its development. Also, new
component requirements derived from the system
requirements can be added to the existing
component requirements before the component
release; in this way the system process interferes in
the component development.

The certification process (3) and goals may be
different for SPL development compared to COTS-
based development because of the following
reasons:

(i) The certification organization (which performs
the certification) is not necessary external.
There are several reasons for this: a) to keep
organization’s business/technical goals secret;
b) to acquire knowledge from the
development organization; and c) to have the
same overall goals as the development
organization. At the same time, keeping
certification within the development
organization may compromise objectivity.
This could possibly be solved by outsourcing
or subcontracting an external certification
organization.

(ii) While in COTS-based development the goal
of certification is to certify the component in
general (e.g. some standard measures of
performance), in a SPL-based organization
some particular properties or usage contexts
might be of special interest (e.g. throughput
and latency for a certain common input and
number of users, etc.).

(iii) The certification methods can include tools
and methods used in the development process
(i.e. another type of reuse which increases
overall development efficiency).

(iv) A SPL organization has only one repository
to store, search and use the components (5).
Thus, finding software assets from previous
developments is easier and faster.

We can conclude that organizations to COTS-
based certification and SPL-based certification may
be more efficient and more accurate, but less
independent; a certification of a component may be
seen as a standard verification of the component.

MRTC report ISSN 1404-3041 ISRN MDH-MRTC-217/2007-1-SE
Mälardalen Real-Time Research Centre, Mälardalen University, October 2007 6(10)

Different from COTS-Based Organization, if it is
necessary more precise evaluation of some
properties during the component selection
(prototyping evaluation), the component
certification is called to do this task (4). This
happens when more than one component is a good
solution to be integrated into the system, and the
component certification process is thus used to
evaluate the particular properties of interest for the
target system and aid the software engineer in
his/her decision. Since in a SPL organization the
selection and certification processes occur inside the
same organization it is possible to integrate the
processes and efficiently exchange information.

Public
Repositories

Component
Development

System
Development

Maintenance

Release

Verification
& Validation

Integration

Implementation

Design

Requirements Component
Assessment

Prototyping
Evaluation

Component Certification

Data
Collection Evaluation

Define,
Design

and Plan

High Level
Evaluation

Find

SPL-Based Development

Maintenance

Release

Verification
& Validation

Integration

Implementation

Design

Requirements

Selection &
Acquirement

(1)

(2) (2)

(3)

(4)
(5)

Figure 2. SPL-Based Development.

4. Component Selection vs. Component
Certification

This section outlines the main characteristics of
the component evaluation made during component
selection and component certification. In many
cases, the actual methods employed to evaluate a
component could be identical (e.g. a stress test under
some simulated circumstances, or a test of functional
correctness using a very large input set), but at the
same time there are some fundamental differences
that greatly affects how the evaluation can be carried
out.

During component selection, the decision how
many components to evaluate, how thoroughly to
test them, what properties of the components to
evaluate, etc. is dependent on the goals and
objectives of the system development organization
concerning the envisioned system itself and the
characteristics of the development process, such as
acceptable cost and risk. The goal is to select a
component that best meets the requirements and
constraints among many candidates. The process can
be characterized as a gradual filtering, from many
potential components to fewer which – with some
confidence – are believed to suit the system
requirements best. As described earlier, the
evaluation can be divided into a high-level
evaluation (high-level evaluation) which only

evaluates information about components (gathered
e.g. from the Internet or from the vendors
themselves) and an evaluation where the actual
component is a tested and prototyped (prototyping
evaluation).

During component certification, it is the
component vendor who orders a certification of the
component. Typically, the certification concerns the
technical characteristics of the component itself and
the outcome is information about the component.
The input is one single component (not many). The
properties of interest are those which the component
vendor believes will pay back in larger incomes of
their component, by charging a higher price and/or
selling more components since the certification is a
quality stamp (it could also be noted that there may
be standards and regulations mandating certain
evaluations).

Figure 3 visualizes the evaluations made during
the two different processes.

Figure 3. The inputs and outputs of the Component
Selection and Component Certification activities.

While there is a main similarly between
certification and evaluation is in the fact that in both
cases a component is evaluated against some set of
properties of interest, there a number specific
differences:
• As already said, the properties to be evaluated

come from different sources (in the case of
component selection properties are derived from
system requirements, while properties to be
certified are demanded by the component
vendor and/or standards and regulations);

• As already said, during component selection,
evaluation is performed in order to select the
best fit component (among several) for a
system, while component certification is
performed in order to make assertions about
certain properties for a specific component;

• During component selection, evaluation only
needs to last until the evaluator has enough
confidence to make a selection (i.e. less critical
requirements and/or a lower accepted degree of

MRTC report ISSN 1404-3041 ISRN MDH-MRTC-217/2007-1-SE
Mälardalen Real-Time Research Centre, Mälardalen University, October 2007 7(10)

confidence and/or a larger differences between
components’ capabilities would allow a less
rigorous evaluation);

• During component selection, some evaluation
can be done with only information about a
component (including information about the
vendor, etc), while certification always means
evaluation of an actual component
(documentation, examples of use, source-code
in many cases, etc); and

• During component certification, the
documentation of the evaluation is the most
important outcome (perhaps in the very
condensed form of a “certificate”), while during
component selection the most important result is
the decision to use a certain component or not.

From this list it follows that the actual methods to
evaluate a certain property of interest could be
identical (i.e. the same benchmark performance test).
However, from a process point of view the methods
would be carried out differently. Perhaps the most
important difference is, when the goal is to select the
component that fits best for a specific system; the
evaluation can be very flexible and opportunistic,
which is noticeable in e.g. the available evaluation
methods PECA [7] and PORE [23, 28] (i.e. at each
point in time one may ask whether enough
information is gathered to be able to make the
decision to select a component with enough
confidence, or if not what is the most important
property to evaluate next and how).

Component selection is an established process in
many organizations, but for component certification
there is neither any well-defined standard adopted by
the software industry [26, 38], nor is there an
established component quality model which is a
required foundation for component certification with
objective and widely understood results. This fact
may be due also to the relatively novelty of this area
[14]. For this reason further research is needed in
order to develop processes, methods, techniques, and
tools aiming to obtain well-defined standards for
component certification [2].

To illustrate the difference of evaluation context
between selection and certification processes we are
outlining three quality properties I namely accuracy,
performance and safety.

An important difference between the evaluations
performed is that the evaluation is done with a
system context during component selection and
without a system context during component
certification. Thus, the component properties can be
evaluated through different perspectives. In this
way, the properties described next are based on two
standards: the SQuaRE project [16] and IEC 61508
[17]. The SQuaRE project [16] has been created
specifically to make two standards converge, trying
to eliminate the gaps, conflicts, and ambiguities that

they present. These two standards are the (i)
ISO/IEC 9126, which defines a quality model for
software product, and (ii) ISO/IEC 14598, which
defines a software product evaluation process, based
on the ISO/IEC 9126. Thus, the quality model
contains 6 characteristics and 27 sub-characteristics,
it is necessary to discuss each one with or without
context. The IEC 61508 [17] outline the only the
safety property and its related characteristics.

Next we present these three properties and the
difference between evaluation contexts:
• Accuracy and suitability. Although accuracy,

defined as a sub-characteristic functional
characteristic can be verified (according to some
standardized means, and provided that there are
exact descriptions of a component’s semantics
in a standardized format), suitability sub-
characteristic, also a sub-characteristic of
functional characteristic) cannot be evaluated
without a system context [13];

• Performance (“efficiency” in SQuaRE project)
characteristics varies with the platform chosen
(slight differences in e.g. schedulers, memory
managers, or in general computer architecture
may result in very different runtime
characteristics) but it may be possible to
package assertions or test results either with
information about the test environment attached
(in a standardized format, or even better a
standardized environment is used) or by
parameterize the results (see our previous work
where an analysis method for component worst-
case execution time supports partial evaluation
without system context which is packaged
parameterized on input ranges which – if
standardized and widely used – would be one
possible solution [13]); and

• Safety is a system property which depends on
the external environment context [17, 39, 42]
and it is not possible to certify the “safety of a
software component”. It is however possible to
verify and certify different properties that may
have impact on safety.

The examples above show some limitations of
component certification and the necessity of
evaluating certified components also in the selection
process. However the existence of certified
components would enable an efficient filtering of
component candidates during the selection process.

5. Challenges

Component selection happens already today in a
large scale (evidently, since there is a component
marketplace and many systems are built using
components). However, component certification is
neither completely understood nor established in
industrial praxis. The examination of the

MRTC report ISSN 1404-3041 ISRN MDH-MRTC-217/2007-1-SE
Mälardalen Real-Time Research Centre, Mälardalen University, October 2007 8(10)

fundamental differences between component
selection and component certification unveil some
important challenges to be addressed for software
component certification to be established:
• Standardization: standards are needed so that

test and analysis results as well as issued
certificates are universally recognized and have
an agreed-upon meaning. To this end, and also
useful for component selection, analysis and test
methods need to be designed enabling a
meaningful division and packaging of tests and
analyses between component vendors, certifiers,
certification institutes, system developers and
software organizations;

• Costs: It must be considered who will pay for
the cost of component certification, and if it is
worth the cost. For component selection the cost
is intrinsic to the software project and must be
included in the project plan;

• Liability & Warranties: Which kind of
warranties does the customer have from a
component certified in case the component fails
during operation? Presumably, if the evaluation
context is specified in enough detail it becomes
possible to limit the risks for the certifier.

In summary, certification promises to be useful
only if it already is established in a large scale. It
will require very large efforts and hence incentives
to create the necessary standards and establish
certification organizations, and to pay for each
component certification. These incentives exist
within certain large SPL organization [11], but we
can well ask whether these incentives exist for the
COTS marketplace?

Another open question is the relation between
component certification and certification of
professionals and of organizations (which exist
today, for example, ISSO 9000, CMMI, MS, Cisco
and Java certification). If certified professionals in a
certified organization develop software according to
accredited procedures, what would be the extra
value of certifying the actual software?

6. Concluding Remarks and Future
Directions
 This paper presented two main processes to
assure the quality of the software components
developed: selection process and certification
process. We carefully collected a set of relevant
works in order to present a brief review of these
areas. After that, we discussed the application of the
two processes in two kinds of software
organizations: product line and COTS-based
development organizations. The main differences
and commonalities of these two processes were also
presented.
 As future work we intend to perform a case study
in order to validate the ideas provided here. Some

specific elements have been studied [42] but it
remains to validate the overall processes. The
current theoretical results presented in the present
paper contribute in understanding these processes
and can be used as a basis for further empirical
studies.

Acknowledgements
This work is partly funded by the Swedish
Foundation for Strategic Research (SSF). The
authors would like to thank our colleagues at
Mälardalen University (Department of Computer
Science and Electronics), for their reviews and
suggestions during this work.

References

1. A. Alvaro, E.S. Almeida and S.R.L. Meira, “Software

Component Certification: A Survey”, In: The 31st
IEEE EUROMICRO Conference on Software
Engineering and Advanced Applications (SEAA),
Component-Based Software Engineering (CBSE)
Track, Porto, Portugal, 2005.

2. A. Alvaro, E.S. Almeida and S.R.L. Meira,
“Component Quality Assurance: Towards a Software
Component Certification Process”, In the IEEE
International Conference on Information Reuse and
Integration (IRI), Las Vegas, USA. 2007.

3. C. Alves, J. Castro, "CRE: a systematic method for
COTS components Selection", XV Brazilian
Symposium on Software Engineering (SBES), Rio de
Janeiro, 2001.

4. J. Bhuta, B. Boehm, “A Method for Compatible
COTS Component Selection”, 4th International
Conference on COTS-Based Software Systems,
Spain, Springer, LNCS 3412, 2005.

5. L. Chung and K. Cooper, “Defining Goals in a
COTS-Aware Requirements Engineering Approach”,
Systems Engineering, Vol 7, No. 01, pp. 61-83, 2004.

6. P. Clements and L. Northrop, “Software Product
Line: Practices and Patterns”, SEI Series in Software
Engineering, Addison Wesley, USA, 2001.

7. S. Comella-Dorda, J. Dean, E. Morris, and P.
Oberndorf, “A Process for COTS Software Product
Evaluation”, Proceedings of the 1st International
Conference on COTS-Based Software System
(ICCBSS), Orlando, Lecture Notes in Computer
Science (LNCS), pp. 4-6, 2002.

8. B. Councill, “Third-Party Certification and Its
Required Elements”, The 4th Workshop on
Component-Based Software Engineering (CBSE),
Lecture Notes in Computer Science (LNCS),
Springer-Verlag, Canada, May, 2001.

9. I. Crnkovic, H. Schmidt, J. Stafford and K. C.
Wallnau, Proceedings of the 5th Workshop on
Component-Based Software Engineering(CBSE):
Benchmarks for Predictable Assembly, In: The
Software Engineering Notes, Vol. 27, No. 05, 2002.

MRTC report ISSN 1404-3041 ISRN MDH-MRTC-217/2007-1-SE
Mälardalen Real-Time Research Centre, Mälardalen University, October 2007 9(10)

10. I. Crnkovic, H. Schmidt, J. Stafford and K. C.
Wallnau, Proceedings of the 4th Workshop on
Component-Based Software Engineering(CBSE):
Component Certification and System Prediction, In:
The Software Engineering Notes, Vol 26, No. 06,
2001.

11. I. Crnkovic, M. Chaudron and S. Larsson,
“Component-Based Development Process and
Component Lifecycle”, In International Conference
on Software Engineering Advances (ICSEA), 2006.

12. I. Crnkovic and M. Larsson (eds), Building Reliable
Component-Based Software Systems, Artech, 2002.

13. J. Fredriksson, R. Land, “Reusable Component
Analysis for Component-Based Embedded Real-
Time Systems”, 29th International Conference on
Information Technology Interfaces (ITI), Cavtat,
Croatia, IEEE, 2007

14. M. Goulao and F. Brito e Abreu, “The Quest for
Software Components Quality”, The 26th IEEE
Annual International Computer Software and
Applications Conference (COMPSAC), England, pp.
313-318, 2002.

15. S. A. Hissam, G. A. Moreno, J. Stafford and K.C.
Wallnau, “Enabling Predictable Assembly”, Journal
of Systems and Software, Vol. 65, No. 03, pp. 185-
198, 2003.

16. ISO/IEC 25000, Software engineering – Software
product quality requirements and evaluation
(SQuaRE), Guide to SQuaRE, International Standard
Organization, July, 2005.

17. IEEE 61508, International Electrotechnical
Commission (IEC), IEC 61508, Functional safety of
E/E/PE safety-related systems, 1998.

18. J. Kontio, “OTSO: A Systematic Process for
Reusable Software Component Selection”, University
of Maryland, CS-TR-3478, UMIACS-TR-95-63,
December 1995.

19. D. Kunda, L. Brooks, “Applying Social-Technical
Approach For Cots Selection”, Proceedings of 4th
UKAIS Conference, University of York, McGraw
Hill. April 1999.

20. R. Land, L. Blankers, “Classifying and Consolidating
Software Component Selection Methods”, MRTC
report ISSN 1404-3041 ISRN MDH-MRTC-
218/2007-1-SE, 2007.

21. Lawlis et al, “A Formal Process for Evaluating COTS
Software Products”, Computer, vol 34, no 5, 2001.

22. A. Liu, I. Gorton, “Accelerating COTS Middleware
Acquisition: The i-Mate Process”, IEEE Software,
Volume 20, Issue 2, Pages: 72-79, March 2003.

23. N. A. Maiden, C. Ncube, “Acquiring COTS Software
Selection Requirements”, IEEE Software, Vol. 15,
No. 02, pp. 46–56, 1998.

24. B. Meyer, “The Grand Challenge of Trusted
Components”, The 25th IEEE International
Conference on Software Engineering (ICSE), USA,
pp. 660–667, 2003.

25. M. Morizio, C. B. Seaman, V.R. Basili, A.T. Parra, S.
E. Kraft and S.E. Condon, ”COTS-based software
development: Processes and open issues”, Journal of
Systems and Software, Vol. 61, pp. 189-199, 2002.

26. J. Morris, G. Lee, K. Parker, G.A. Bundell and C.P.
Lam, “Software Component Certification”, IEEE
Computer, Vol. 34, No. 09, pp. 30-36, 2001.

27. F. Navarrete, P. Botella and X. Franch, “How Agile
COTS Selection Methods are (and can be)?”,
Proceedings of the 31st IEEE EUROMICRO
Conference on Software Engineering and Advanced
Application (SEAA), CBSE Tack, pp. 160–167, 2005.

28. C. Ncube and N.A.M. Maiden, “PORE: Procurement-
Oriented Requirements Engineering Method for the
Component-Based Systems Engineering
Development Paradigm”, In the 2th International
Workshop on Component-Based Software
Engineering, Los Angeles, USA, 1999.

29. C. Ncube and J.C. Dean , “The Limitations of
Current Decision-Making Techniques in the
Procurement of COTS Software Components”,
Proceedings of the First International Conference on
COTS-Based Software Systems (ICCBSS), Lecture
Notes in Computer Science (LNCS), pp. 176-187,
2002.

30. P. Oberndorf, L. Brownsword, E. Morris, C. Sledge,
“Workshop on COTS-Based Systems”, Special report
CMU/SEI-97-SR-019, Software Engineering
Institute, 1997

31. J. Poore, H. Mills and D. Mutchler, “Planning and
Certifying Software System Reliability”, IEEE
Computer, Vol. 10, No. 01, pp. 88-99, 1993.

32. G. Ruhe, "Intelligent Support for Selection of COTS
Products", Web-Services, and Database Systems:
NODe, Web- and Database-Related Workshops,
Erfurt, Germany, Lecture Notes In Computer Science
(LNCS), 2003.

33. H. Schmidt, “Trustworthy components:
compositionality and prediction”, Journal of Systems
and Software, Vol. 65, No. 03, pp. 215-225, 2003.

34. J. Stafford and K.C. Wallnau, “Is Third Party
Certification Necessary?”, The 4th Workshop on
Component-Based Software Engineering (CBSE),
Lecture Notes in Computer Science (LNCS)
Springer-Verlag, Canada, 2001.

35. C. Szyperski, Component Software: Beyond Object-
Oriented Programming. Addison-Wesley, USA,
2002.

36. M. Tziakouris, A. S. Andreou, “A quality framework
for developing and evaluating original software
components”, Information & Software Technology,
Vol. 49, No. 2, pp. 122-141, 2007.

37. J. M. Voas, “Certifying Off-the-Shelf Software
Components”, IEEE Computer, Vol. 31, No. 06, pp.
53-59, 1998.

38. J. M. Voas and J. Payne, “Dependability Certification
of Software Components”, Journal of Systems and
Software, Vol. 52, No. 2-3 , pp. 165-172, 2000.

MRTC report ISSN 1404-3041 ISRN MDH-MRTC-217/2007-1-SE
Mälardalen Real-Time Research Centre, Mälardalen University, October 2007 10(10)

39. K. C. Wallnau, “Volume III: A Technology for
Predictable Assembly from Certifiable Components”,
Software Engineering Institute (SEI), Technical
Report, Vol. III, April, 2003.

40. C. Wohlin, P. Runeson, M. Höst, C. Ohlsson, B.
Regnell and A. Wesslén, “Experimentation in
Software Engineering: an Introduction”, Kluver
Academic Publishers, Norwell, 2000.

41. C. Wohlin, and B. Regnell, “Reliability Certification
of Software Components”, In The 5th IEEE
International Conference on Software Reuse (ICSR),
Canada, pp. 56-65, 1998.

42. I. Crnkovic, M. Larsson, O. Preiss, Concerning
Predictability in Dependable Component-Based
Systems: Classification of Quality Attributes,
Architecting Dependable Systems III,, p pp. 257 –
278, Springer, LNCS 3549

