

MRTC report ISSN 1404-3041 ISRN MDH-MRTC-218/2007-1-SE
Mälardalen Real-Time Research Centre, Mälardalen University, November 2007 1(10)

Classifying and Consolidating Software Component Selection Methods

Rikard Land
Mälardalen University

Department of Computer Science and
Electronics

PO Box 883, SE-721 23 Västerås,
Sweden

rikard.land@mdh.se

Laurens Blankers
LogicaCMG
Public Sector
Postbus 3190

2280 GD Rijswijk
Netherlands

laurens.blankers@logicacmg.com

Abstract
Virtually all software systems built today include

pre-existing components developed by others (OTS,
Off-the-Shelf or COTS, Commercial ditto). This trend
has been accompanied by research into, among others,
methods for evaluating and selecting components to
use in a system. This paper presents a literature survey
of the software component selection methods published
to date. Based on this survey, a meta-model is
presented, which allows for easy comparison of the
methods. For each part of the meta-model, we present
the best practices collected from all the existing
models, thus presenting the collected experience of
many research efforts in a checklist-like way. The
model and practices presented are useful when
choosing a method for a particular project.

1. Introduction

As software development organizations build
software using components developed by others, there
is an increasing need for selecting the right
components in each specific project in a systematic,
repeatable, objective, cost-efficient way. We have
therefore seen a rich flora of various processes and
methods for component assessment and evaluation,
many of which are funded by – and applied in – large
well-reputed organizations building large complex
systems, such as Hughes, Lockheed Martin, NASA,
Siemens, the United States Department of Energy, and
UK Ministry of Defence. Many methods are created
and evaluated in cooperation with well-renowned
research institutes such as the Software Engineering
Institute (SEI) in the US and Fraunhofer Institute for
Experimental Software Engineering (IESE) in
Germany. It is therefore assumed that these published

processes and methods build on a rich and hard-earned
body of experience.

Many of these methods display striking
similarities and embed many best practices based on
the hard-earned experiences from above mentioned
organizations. We feel that the field is mature enough
to consolidate the collected experiences, which we do
in the present paper by presenting:

1) a meta-model by which it is possible to describe
the existing processes in a uniform manner,
compare them, and choosing the one(s) best
suited for the project at hand.

2) the collected best practices embodied in the
publications.

It is possible to discern an evolution from earlier to
later publications, and this paper summarizes the
collected best practices rather than grade or rank the
methods.

1.1. Related Work and Scope Limitation

In 1997 a workshop on COTS-based systems [1]
was organized by the SEI (Software Engineering
Institute) together with the industry where a number of
issues were raised which seem to have found their way
into the surveyed component assessment methods.
There exist few previous surveys or summaries of
component selection methods. The ones that do exist
are more limited than the survey presented here in
various ways: one brief overview of component
assessment methods was conducted four years ago [2];
however without any substantial comparison (and we
include the more recent methods). In another study,
three of the methods were compared with eight
principles of agile software development [3]. There is
also a brief survey of three earlier methods in the
presentation of the method CRE [4], but the survey is

MRTC report ISSN 1404-3041 ISRN MDH-MRTC-218/2007-1-SE
Mälardalen Real-Time Research Centre, Mälardalen University, November 2007 2(10)

short and focused on requirements. The relation
between the selection process and surrounding
processes has been described briefly in e.g. [5].

This survey includes literature which presents
itself as a complete method or process for component
selection. Each element of these methods, such as
evaluation, ranking, metrics etc. (as they will be
presented later in our meta-model), could in itself be
the starting point of a major literature survey.

1.2. Paper Outline

The outline of the paper is as follows: Section 2
describes the research method used. A historical
overview of the methods is given in section 3, followed
by the presentation of a meta-model which enables
comparison of the methods in a structured way in
section 4. The activities of the existing methods are
categorized in the context of the meta-model in section
5, and section 6 collects the best practices of the
methods organized per element of the meta-model. In
section 7 we discuss various other observations, and
finally section 8 concludes the paper.

2. Research Method

The term “systematic literature review” has
previously been used to denote a study to find answers
to a more specific research question [6]; the survey this
paper is based on intends to be systematic, but is an
explorative survey of existing publications where the
goal was to identify similarities and differences along a
number of dimensions, unknown at the outset of the
study. We have used certain keywords to search major
publication databases (IEEE, ACM, Citeseer, Springer,
Google scholar, and a university system which
searches several databases simultaneously). We have
also included publications already known to us, as well
as followed (recursively) all promising references.
Throughout our search, we have listed preliminary
dimensions of comparison, and defined, populated,
rejected items, and thus grown this list iteratively. This
was later refined in a more detailed meta-model which
enables discussing similarities and differences in a
uniform way. For pedagogical reasons, this paper
presents these two stages in the opposite order, i.e. the
meta-model is presented first, after which the existing
methods are presented in terms of the meta-model in a
large table inspired by surveys in other fields [7].

Additionally we have studied four different
companies by interviewing one architect in each
company. In two of the companies, which are building
dependable embedded systems, the interviewees
represent concrete cases of component selection, while
the other two interviewees work as independent

consultants with experiences from a number of
component selection projects. We use this data to make
our own independent validation of the best practices
suggested in the literature; more details on this part of
the study can be found in [8,9].

3. Historical Overview

This section introduces the surveyed methods in
chronological order of their first publication, and we
limit the descriptions to the main novelties introduced.
In case the methods have not been given an explicit
name by their authors, we have indicated this in italics
and provided an acronym based on the title of the
publication or main activities of the method.
1995: The OTSO [10] method (Off-The-Shelf Option)
was the first method to be published, and used in
Hughes corporation when developing a system for
NASA. In many ways OTSO set the scene for
component selection methods to come, by introducing
the basic idea of progressive filtering, dividing
evaluation criteria into not only functional and non-
functional properties of the component, but also
strategic considerations and architecture compatibility,
and by suggesting a particular method for comparison
of candidates (AHP, Analytical Hierarchy Process).
1998: As the name indicates, PORE [11,12]
(Procurement-Oriented Requirements Engineering,
developed and used in a project with the UK Ministry
of Defence), introduced a somewhat different
viewpoint, namely that selection of components and
the definition of system requirements should be closely
intertwined. In later publications the method was used
for the banking domain and named BANKSEC [13] by
its creators.
1999: STACE [14] (Socio-Technical Approach to
COTS Evaluation) contributed by stressing the
importance of non-technical factors to evaluate.
2000: COTS Score [15] intends to be a decision
support tool by formalizing evaluation criteria.
2001: RCPEP (Requirements-driven COTS Product
Evaluation Process) [16] stresses evaluation
objectivity.
2002: In 2002, a number of methods were published.
CAP [17] (created at Fraunhofer Institute for
Experimental Software Engineering (IESE) together
with Siemens) introduced some hundred quality
metrics to evaluate, although they seem to never have
been published in detail. The i-MATE [18] method
(studied in 5 cases) focuses on middleware selection,
and the main contribution is the description of reusable
requirements for that domain. PECA [19] (Plan,
Establish, Collect, Analyze, from the SEI) can be noted
for its flexible structure of activities, and RDR [20]
(Requirements and Design Reviews, developed and

MRTC report ISSN 1404-3041 ISRN MDH-MRTC-218/2007-1-SE
Mälardalen Real-Time Research Centre, Mälardalen University, November 2007 3(10)

used at NASA Goddard) describes well the relation
between acquired components and system parts being
built in-house. In CRE [4] (COTS-Based Requirements
Engineering) the requirements engineering process
drives the selection, and the fairly established NFR
framework is used to discuss non-functional attributes.
CSCC [21] (Combined Selection of COTS
Components), intends to consider the total cost for a
system rather than specifying in advance the individual
costs for different components.
2003: In this year, CEP [22] (Comparative Evaluation
Process) was published.
2004: CARE [23] (COTS-Aware Requirements
Engineering) also intertwines system requirements
engineering with component evaluation and selection;
later named CARE/SA [24] when giving software
architecture a stronger focus.
2005: CCCS [25] (Compatible COTS Component
Selection) consider sets of complementary component
as candidates, focusing on how well components will
fit together; it also emphasizes prototyping as a means
to collect reliable information. In CPF [26]
(Commitment, Pre-filtering, Final filtering) a strong
focus is continuous improvement of the selection
process itself.
2006: CSSP [27] (COTS Software Selection Process)
was published, developed by Lockheed Martin for the
US Department of Energy.

The main changes discernible over time, as new
methods have been proposed are:

1) that the suggested attributes to evaluate has
grown and matured,

2) that the issues of architectural compatibility have
become a fundamental part through the
evaluation of several complementary components
simultaneously as single candidates, and

3) that different viewpoints have been introduced
concerning whether component requirements are
assumed to exist or if they are developed and
negotiated during the selection process.

4. Meta-model

The published methods can be described in terms
of four processes (at the top of Figure 1): there is a
preparation process, an evaluation process, a selection
process and supporting process(es):
• In the preparation process, potential component

candidates are identified, evaluation criteria are

defined (which are related to system requirements
and defined with evaluation attributes to use as
metrics), as well as a comparison method which
determines how to do the required multi-criteria
selection. A candidate could be either a single
component or a set of complementary
components that together form a candidate.

• In the evaluation process, data is collected (data
collection) which are used to perform a
comparison of the components. The types of data
collected can be very diverse and include not
only direct measurements and tests of the
component itself, but also qualitative statements
such as other customers’ opinion about the
vendor; this is further discussed in section 6.3.

• In the selection process, a decision is made based
on this comparison. Both data collection and
comparison have a confidence, which may range
from confidence in the statistical sense (for
quantifiable metrics) to the “gut feeling” when
collecting very qualitative data (e.g. concerning
vendor claims and when evaluating the future
prospects for the vendor).

• Other activities found in the literature can be
classified as supporting process(es) with
activities such as the forming of teams,
documentation, planning and following up the
selection process, and reflecting on the selection
process as such and documenting experiences for
future improvement.

Note that in the meta-model, we do not assume or
recommend any particular order of the activities, since
the existing methods differ significantly in this matter.
(This is the reason we chose the term “process” instead
of “activity” or “phase”.) There is nevertheless an
implicit order of some activities in the processes
determined by the data flow from definitions (e.g.
evaluation attribute) to executions (e.g. data
collection). It can be noted that the meta-model focuses
on activities and their attributes, and does include
artifacts (such as evaluation results). Given this
limitation, we claim that the meta-model can be
instantiated to describe all existing COTS-selection
methods to date; this is not to say that there may not
appear other, fundamentally different methods in the
future. In fact, the meta-model itself may stimulate
totally new ideas and the invention of new methods.

MRTC report ISSN 1404-3041 ISRN MDH-MRTC-218/2007-1-SE
Mälardalen Real-Time Research Centre, Mälardalen University, November 2007 4(10)

Figure 1: Meta-model of Software Component Selection Methods

5. Activities in Existing Methods

The surveyed methods differ significantly in the
description given by the respective authors, not least in
how the activities are ordered, e.g. sequentially,
iteratively, or not pre-defined but rather flexible or
opportunistic. Nevertheless, there are a number of
similarities between most methods. Typically, the
overall method is described as a filtering process
which starts out with many candidates with some
easily measured but clearly discriminating criteria, and
continues by gradually discarding candidates while
increasing the level of evaluation detail and confidence
in the results at the expense of more time and effort
invested into the selection. Some methods describe this
as a fixed sequence of phases, others by a less pre-
defined structure in terms of iterations or an even more
flexible or opportunistic structure of activities;

however the concept of increasing detail for a
decreasing number of components is universal. The
majority of the methods assume there exist component
requirements (including non-technical objectives and
constraints, such as cost) to which the component
features can be related, while some build on a more
iterative model where system requirements are
developed and elaborated while surveying available
components.

Table 1 maps the activities of the methods into the
processes of the metamodel, thus highlighting the
similarities while also indicating how and where they
differ. (Some of the methods listed earlier in section 3
are omitted from the table below because of their
clearly limited scope or limited contribution – e.g.
COTS Score is an evaluation technique not suggesting
any particular set of activities.)

MRTC report ISSN 1404-3041 ISRN MDH-MRTC-218/2007-1-SE
Mälardalen Real-Time Research Centre, Mälardalen University, November 2007 5(10)

Table 1: The activities of the phases, mapped to the processes of the meta-model
Method*
Main flow

Preparation Evaluation Selection Supporting
Process(es)

OTSO [10]
Five concurrent processes

1. Define the
evaluation criteria

2. Search
3. Screening
4. Evaluation
5. Analysis of results

6. Deployment

7. Assessment

PORE [11,12]/BANKSEC [13]
Situation-driven

1. Requirements
acquisition
(in close iterations
with evaluation)

2. Supplier selection
3. Software package
selection
4. Contract production
5. Package acceptance

- 6. Management of
system procurement

STACE [14]
Iterative

1. Select underlying
technology
2. Define social-
technical criteria
3. Search and screen
4. Revise requirements

5. Evaluate… 5. … and select -

RCPEP [16]
Sequential

1. Trade study 2. Evaluation based on
vendor and user input
3. Narrowing the field
4. Hands-on evaluation

5. Final analysis -

CAP [17]
Three concurrent processes

Initialisation (CAP-IC)
Execution (CAP-EC):
Exploration,
Screening,

Execution (CAP-EC):
Ranking

Execution (CAP-EC):
Decision

Reuse (CAP-RC)

CSCC [21]
Four phases, a “global level”
and “local level”

2. Configuration of
scenarios to be
evaluated

(Evaluation of local
scenarios)
3. Evaluation of global
scenarios

4. Final selection 1. Initial planning

i-MATE [18]
Sequential

1. Elaborate customer
requirements
2. Augment with
generic requirements
3. Rank overall
requirements
4. Identify candidate
products

5. Product evaluations

6. Product selection -

PECA [19]
Flexible (iterative)

1. Planning
2. Establish criteria
(In opportunistic
iterations with 3 & 4)

3. Collect Data
4a. Analyze data
(In opportunistic
iterations with 1 & 2)

4b. Analyze data: Making
recommendations

-

RDR [20]
Sequential

1. Requirements
Analysis
2. System
Requirements Review

3a. Package
Identification/
Evaluation/ Selection

3b. Non-COTS
development
4. Identify Glueware and
Integration Requirements
5. System Design Review
6. Write Glueware and
Interfaces
7. Integration and Test
8. … (later life cycle
phases)

Project Management

CRE [4]
Four iterative (and somewhat
parallel) phases

A. Identification
B. Description

C. Evaluation

D. Acceptance -

CEP [22]
Sequential

1. Scope Evaluation
Effort
2. Search and Screen
Candidate Components
3. Define Evaluation
Criteria

4. Evaluate Component
Alternatives

5. Analyze Evaluation
Results

6. Preserve
Evaluation Data

* Acronyms in italics are for methods not named by their authors but inferred by us from the methods’ publication titles.

MRTC report ISSN 1404-3041 ISRN MDH-MRTC-218/2007-1-SE
Mälardalen Real-Time Research Centre, Mälardalen University, November 2007 6(10)

Method*
Main flow

Preparation Evaluation Selection Supporting
Process(es)

CARE [23]
Sequential

A11. Define System
Agents

A12. Define System
Goals (with COTS)
including define COTS
goals
A13, A14, A15. Define
System & Software
Requirements, Define
architecture (with
COTS)

- -

CCCS [25]
(Compatible COTS
Component Selection)
Sequential with branches and
feedback loops

0. Entry conditions:
OC&P
1. Identify
2. Classify

3. Evaluate
4. Buy information
5. Filter out
6. Evaluate
combinations
7. Prototype

9. Decision making
10. Re-negotiate OC&P
11. Develop custom
component

8. Preserve options

CPF [26]
Three interrelated processes

A1-1: Derive goals
A1-2: Compute
preferences

A2-1: Functional
Suitable Measurement
A2-2: Functional
Suitability Analysis
A3-1: Architectual
Adapatibility
Measument
A3-2: Architectual
Adapatibility Analysis

- -

CSSP [27]
Sequential (possible to step
back)

3. Identify COTS
criteria

4. Apply level I filter
5. Apply level II filter
6. Analyze data…

6. … and document results 1. Form an
evaluation team
2. Apply Team non-
sw Process

As Table 1 shows, the methods focus on different
processes in the metamodel. Of particular interest is
the supporting process(es), which is only mentioned in
some of the methods. Combining the suggested
activities, this would include setting up a team,
planning and management of the evaluation and
acquisition process, and reflecting and documenting
the process itself for future improvements (including
e.g. evaluation attributes used and how costly and
useful they were during the data collection). Also,
after the system has been deployed more insight into
the selection process may be collected which was not
obvious during the process itself.

6. Best Practices

This section discusses several best practices found
in multiple methods. The section is organized based on
the meta-model.

6.1. System Requirements and Evaluation
Criteria

The methods differ in how they consider the
relation between requirements engineering and
component selection. A few selection methods
describe themselves as driven by the requirements
engineering process (CRE, CARE). In other methods
the requirements are developed simultaneously with
the component selection process (PORE, i-MATE).

However, the majority of the methods assume system
requirements exist (OTSO, STACE, COTS Score,
RCPEP, CAP, CSCC, PECA, RDR, CEP, CCCS, CPF,
CSSP), but it is typically mentioned that the
requirements can be renegotiated based on the
component evaluation (most explicit in STACE, CAP,
CCCS). PECA stresses that system requirements have
to be translated into component evaluation
requirements, which are not identical for all
components under evaluation. CEP points out that
evaluation criteria should be broad so as not to limit
the search by too many constraints.

Essentially all methods agree that the evaluation
criteria should include functional and non-functional
attributes. Many also name architectural compatibility
as an important factor (OTSO, CAP, PECA, RDR,
CRE, CARE, CCCS, CPF, CSSP; note that this is
partly addressed by the method to evaluate component
sets as candidates, see section 6.4). Business
considerations are also listed, such as evaluation of the
vendors (RCPEP, PECA, RDR, CARE, CCCS, CSSP),
estimated cost and risk in both the short and long term
(RCPEP, CAP, RDR, CRE, CARE, CCCS,), and
organization infrastructure (e.g. skills; RDR, CRE).

It is difficult to say something about the relative
importance of these types of requirements, but it
appears that not fulfilling any one of them satisfactory
could act as an inhibitor for selecting a particular
component. Clearly, functionality and quality are
important, but one study reports that “architecture is

MRTC report ISSN 1404-3041 ISRN MDH-MRTC-218/2007-1-SE
Mälardalen Real-Time Research Centre, Mälardalen University, November 2007 7(10)

more important than requirements for product
selection” [28].

Another study claims that “familiarity [with the
COTS product] is often the only attribute
considered” [28].

There are some specific guidelines to be found in
the published methods. CRE [4] builds on a fairly
established framework of non-functional attributes
(NFR framework [29]), CAP uses a list of a hundred
metrics (which has not been published in detail
however), and i-MATE provide generic, reusable
requirements for a particular domain (middleware).

6.2. Comparison Method, Comparison, and
Decision

The comparison and ranking of components is
naturally based on many criteria. Evaluating the
criteria could either be made subjectively, or could be
based on or supported by a systematic comparison
method. The most commonly proposed comparison
method is AHP, Analytical Hierarchy Process (OTSO,
PORE, STACE, COTS Score, CRE). Other methods
mentioned include WSM (Weighted Scoring Method)
and Weighted Average (RCPEP, CRE, CEP), and
using COCOTS [30,31] for effort estimation (CRE,
CSSP). PECA also suggests a sensitivity analysis to be
performed, i.e. a statistical analysis of how sensitive
the resulting component ranking is with regard to
individual criteria and evaluations. i-MATE [18]
mentions a spreadsheet tool, but does not inform how
it is constructed. COTS Score also mention Multi-
attribute Utility Theory, Multiple Criteria Decision-
Making, Pareto Optimality.

A formal comparison runs the risk of not catching
the intent of the comparison. In CARE, the
comparison is rather described as a discussion around
the expected impacts of using a particular component
(including both technical and non-technical concerns),
PECA talks about “sound and careful reasoning”, and
PORE proposes argumentation techniques. Perhaps it
is more fruitful to compare components by estimating
the cost and risks of using them (both in the long and
short term), which is probably what ultimately matters
from a business perspective. We refer to [32] for a
very thorough discussion, where it is argued that all of
these evaluation methods (“decision-making
techniques”) have their drawbacks when applied to
component selection. The techniques may require
disproportionate effort, requiring stakeholders to
provide preferences and weights for many criteria and
specify how to aggregate the criteria into a one-
dimensional scale (i.e. ranking) in the absence of
concrete products, which is difficult and inefficient. It
is proposed that gap analysis is more appropriate,

meaning that for each component, the gap between
requirements and provided capabilities are analyzed,
followed by estimating the costs of bridging the gap.

6.3. Evaluation attribute, Data collection, and
Confidence

Concerning what attributes to be evaluated and
how to perform the actual data collection one can
discern two phases in most methods. Sometimes these
are described as explicit phases, sometimes they are
the consequence of iteration and refinement. We label
these two phases high-level evaluation and prototyping
evaluation.
• In the first type of evaluation, high-level

evaluation, typically many components are
briefly evaluated based on information about
components and vendors, gathered e.g. from in-
house sources, literature reviews and interviews
with other customers, from the vendors in the
form of marketing material, by request to the
vendor, vendor appraisals, or by publicly
available information about the financial stability
of the vendor. Not only the technical
characteristics are evaluated but also business
considerations such as the available support for
the component, the vendor’s reputation and
financial stability. There are several things to
bear in mind when planning this high-level
evaluation: to increase confidence in the results
several sources of information should be used
(triangulation). One should focus efforts on
gathering information that can discriminate
between components. Criteria should be selected
for which data are easy to find; in one of our
cases some ninety components were evaluated
for five minutes each by searching the vendors’
web pages (leaving some twenty-five
components for further, still high-level
evaluation).

• A limited number of candidates are then selected
for the second type of evaluation, prototyping
evaluation, where the actual components are
used for prototypes, systematic tests and/or
experiments. Experiments and prototypes are
created to assess certain properties in the context
of the envisioned system with a high degree of
confidence, and also to learn and understand the
component. Prototyping is explicit and important
in some methods (PORE, RCPEP, i-MATE,
PECA, CCCS).

The main distinction between the two evaluation
phases is whether the component needs to be available
during the evaluation or not, which have a big impact
on the cost and time (and skills) required for the

MRTC report ISSN 1404-3041 ISRN MDH-MRTC-218/2007-1-SE
Mälardalen Real-Time Research Centre, Mälardalen University, November 2007 8(10)

evaluation and consequently limits the number of
components that can practically be evaluated. In
prototyping, the acquisition of a component may come
with a (high) cost and can introduce (substantial) effort
in the evaluation process, and the evaluation itself
requires learning the component and systematically
setting up, executing, and documenting many tests
thoroughly.

6.4. Components and Candidates

Most methods consider evaluation and
comparison of single components of the same kind
(e.g. selecting a database or selecting a graphics
package). However, when an envisioned system will
be built using several COTS components (say, a
database and a graphics package and a web server and
a communication server…) it makes sense to treat
combinations of the available components together as
a single candidate (e.g. the Apache web server and the
MySQL database go well together would be treated
together as one candidate).

At the previously mentioned SEI workshop [1], a
division into three types of COTS evaluation were
characterized: progressive filtering, puzzle assembly,
and keystone identification. As seen in the surveyed
methods, these are not mutually excluding each other,
but it is possible to trace elements of all three in the
surveyed methods:
Progressive filtering is, as have been described, part
of all of the surveyed COTS assessment processes.
Puzzle assembly means to simultaneously select
several components needed in the system that fit
together (to minimize architectural mismatch [33]).
This idea has been implemented explicitly in CSCC
(by comparing the estimated total system cost using
various component alternatives) and CCCS (by
explicitly considering a “candidate” to be a set of
components which are architecturally compatible).
Also PORE acknowledges that “the scope of the
product under evaluation is difficult to define” [11].
Keystone identification means the selection of a
central component, technology, or strategy that will
have a great impact the selection of other components
(e.g. “we will build on .NET”, “we will use backbone
from a certain vendor and then choose related
products”). None of the surveyed method implements
this strategy explicitly; i-MATE is probably closest, as
it focuses solely on selection of middleware (which
can be seen as a keystone for a particular class of
systems). Treating component sets together as
described above could be a starting point for keystone
identification (“let us choose Apache and MySQL and
then find other smaller components for e.g. graphics
that are designed to work in this environment”).

It may seem surprising that of these three
approaches identified ten years ago by a major
research institute together with industry, only one has
had a great impact on the methods published after that
(at least when simply counting the number of methods
implementing each strategy).

7. Discussion

7.1. Option to Build

Many of the surveyed methods are designed
exclusively to select a pre-existing component.
However, in case no suitable component is found there
should be the option to build a component (at least in
principle, depending on the type of component the
associated costs and risks may be far too large). This is
included explicitly only in a few of the methods (CAP,
RDR, CCCS, the build option is also mentioned by e.g.
CRE). The “gap analysis” mentioned in section 6.2
could be a simple way to treat the build alternative in
the same way as existing components: one would
estimate effort, cost (both in the long and short term),
risk etc. of each candidate as usual, and also include
the candidate “new component” (where missing
features are built rather than adapted). How to estimate
the cost of the “build” alternative is another issue not
discussed further here.

7.2. Customizability of Existing Processes

Many methods state that they are customizable,
but there are typically no guidelines on how to
customize them. Often, the methods are not
customizable in any other sense than that they require
that many details are filled when applied to a particular
project. There is nothing to be found e.g. how to
remove or add activities, or different ways of carrying
out activities depending on the size of the project, the
number of components expected or found, etc. PORE
and PECA seem to be designed to meet this need, by
allowing for opportunistic rearrangement of activities
depending on what is most reasonable at any point in
time during a project. i-MATE is the only method that
explicitly intends to be less general, by providing
substantial guidelines on a particular domain
(middleware selection).

7.3. Domains

For safety-critical systems, there seems to be
consensus that the suitable development model is a
specification-first, plan-driven, waterfall-like process,
and that iterative, evolutionary and agile processes are
more feasible for e-business, web development, and

MRTC report ISSN 1404-3041 ISRN MDH-MRTC-218/2007-1-SE
Mälardalen Real-Time Research Centre, Mälardalen University, November 2007 9(10)

entertainment systems [34]. There seems to be a
tendency that organizations and domains used to
waterfall-like development also suggest a plan-driven
component selection method (RCPEP, RDR, CSSP),
however we see no inherent reason for this. On the
contrary, our complementary interviews show that
component assessment and selection can also for
safety-critical and mission-critical systems be iterative
and flexible. The reason for this is that component
selection process can (with advantage) be seen as part
of the requirements and design phases, which may be
part of a very formalized and plan-driven process.

8. Summary and Conclusion

In this paper we have surveyed the published
software component selection methods. We have
provided a meta-model that captures the different parts
of these methods, hence providing a common
terminology and comparison framework for selection
methods. We then continued by describing the
collected best practices, thus leveraging the hard-
earned efforts of many researchers and practitioners in
the field over the years.

This paper and the meta-model would be the
starting point for someone designing a selection
process within a particular organization or
development project. Based on the comparisons made
in this paper, it is possible to select a single method
which seems suitable for the context at hand, e.g.
intertwined with requirements engineering (such as
PORE, CRE, CARE). Either a method can be chosen
where the layout of activities is described as sequential
(RCPEP, CSCC, i-MATE, RDR, CEP, CARE, CSSP),
iterative (STACE, CRE, CCCS), or a more
opportunistic or parallel ordering of activities or
interrelated process (OTSO, PORE, CAP, PECA,
CPF). Even if the rest of the development process is
designed to be waterfall-like (which is typical and
usually advisable for critical systems), it should not be
taken for granted that the selection process also needs
to be sequential.

It is also perfectly possible to use one of the
selection methods as a basis, and modify it to also take
into account good practices from the other methods. In
the future, we expect to carry out case studies which
will provide more detailed advice how to carry out this
customization. The meta-model can also be a starting
point for the creation of novel methods, which may
even differ so much from our classification so as to
challenge the meta-model itself. We are currently
studying the extent to which the principles of agile
development support component-based development
processes.

8.1. Acknowledgements

This work is partly funded by the Swedish
Foundation for Strategic Research. The authors would
like to thank the interviewees for openly sharing their
experiences, unfortunately, we can not name all
interviewees out of consideration for the companies
they work for. We would like to thank Eoin Woods
and Tim Trew.

9. References

[1] Patricia Oberndorf, Lisa Brownsword, Ed Morris, and Carol
Sledge, “Workshop on COTS-Based Systems”, Special report
CMU/SEI-97-SR-019, Software Engineering Institute, 1997

[2] Günther Ruhe, “Intelligent Support for Selection of COTS
Products”, Web, Web-Services, and Database Systems: NODe 2002,
Web- and Database-Related Workshops, Erfurt, Germany, 2002.
Revised Papers, Lecture Notes In Computer Science 2593, Springer
2003

[3] Fredy Navarrete, Pere Botella, and Xavier Franch, “How Agile
COTS Selection Methods are (and can be)?” Proceedings of the 31st
EUROMICRO Conference on Software Engineering and Advanced
Applications, pp. 160-167, IEEE, 2005

[4] Carina Alves and Jaelson Castro, “CRE: a systematic method for
COTS components Selection”, Proceedings of the XV Brazilian
Symposium on Software Engineering (SBES) Rio de Janeiro, 2001

[5] Ivica Crnkovic, Michel Chaudron, and Stig Larsson,
“Component-based Development Process and Component
Lifecycle”, Journal of Computing and Information Technology,
Volume 13, Issue 4, pp. 321-327, 2005

[6] Barbara Kitchenham, “Procedures for Performing Systematic
Reviews”, TR/SE0401, Keele University, 2004

[7] Nenad Medvidovic and Richard N. Taylor, “A Classification and
Comparison Framework for Software Architecture Description
Languages”, IEEE Transactions on Software Engineering, Volume
26, Issue 1, January 2000

[8] Laurens Blankers, “Techniques and Processes for Assessing
Compatibility of Third-Party Software Components”, M.Sc. Thesis,
Eindhoven University of Technology and Mälardalen University,
2006

[9] Rikard Land, Stig Larsson, and Ivica Crnkovic, “Interviews on
Software Integration”, MRTC report ISSN 1404-3041 ISRN MDH-
MRTC-177/2005-1-SE, Mälardalen Real-Time Research Centre,
Mälardalen University, 2005

[10] Jyrki Kontio, “OTSO: A Systematic Process for Reusable
Software Component Selection”, University of Maryland report CS-
TR-3478, UMIACS-TR-95-63, December 1995

[11] Neil A. Maiden and Cornelius Ncube, “Acquiring COTS
Software Selection Requirements”, IEEE Software, Volume 15,
Issue 2, pp. 46-56, March 1998

MRTC report ISSN 1404-3041 ISRN MDH-MRTC-218/2007-1-SE
Mälardalen Real-Time Research Centre, Mälardalen University, November 2007 10(10)

[12] Cornelius Ncube and Neil A. Maiden, “PORE: Procurement-
Oriented Requirements Engineering Method for the Component-
Based Systems Engineering Development Paradigm”, Second
International Workshop on Component-Based Software
Engineering, Los Angeles, CA, USA, 1999.

[13] Neil A. Maiden, H. Kim, and Cornelius Ncube, “Rethinking
Process Guidance for Selecting Software Components”, Proceedings
of the First International Conference on COTS-Based Software
Systems, Lecture Notes In Computer Science, Vol. 2255, pp. 151-
164, Springer-Verlag, 2002

[14] Douglas Kunda and Laurence Brooks, “Applying Social-
Technical Approach For Cots Selection”, Proceedings of the 4th
UKAIS Conference, University of York, McGraw Hill, 1999

[15] A.T. Morris, “COTS Score: an acceptance methodology for
COTS software”, Proceedings of the 19th Digital Avionics Systems
Conferences (DASC), Vol. 1, pp. 4B2/1-4B2/8, 2000

[16] Patricia K. Lawlis, Kathryn E. Mark, Deborah A. Thomas, and
Terry Courtheyn, “A Formal Process for Evaluating COTS Software
Products”, IEEE Computer, Volume 34, Issue 5, 2001

[17] M. Ochs, D. Pfahl, G. Chrobok-Diening, and B. Nothhelfer-
Kolb, “A COTS Acquisition Process: Definition and Application
Experience”, ISERN report 00-02, Fraunhofer Institute for
Experimental Software Engineering (IESE), 2002

[18] Anna Liu and Ian Gorton, “Accelerating COTS Middleware
Acquisition: The i-Mate Process”, IEEE Software, Volume 20, Issue
2, pp. 72-79, March 2003

[19] Santiago Comella-Dorda, John Dean, Edwin Morris, and
Patricia Oberndorf, “A Process for COTS Software Product
Evaluation”, Proceedings of the 1st International Conference on
COTS-Based Software System, Orlando, Florida, Vol. 2255, pp. 86-
96, Springer, 2002

[20] M. Morizio, C. B. Seaman, V. R. Basili, A. T. Parra, S. E.
Kraft, and S. E. Condon, “COTS-based software development:
Processes and open issues”, Journal of Systems and Software, 61,
pp. 189-199, Elsevier, 2002

[21] X. Burgués, C. Estay, X. Franch, J. A. Pastor, C. Quer,
“Combined Selection of COTS Components”, Proceedings of the
First International Conference on COTS-Based Software Systems,
Lecture Notes In Computer Science, Vol. 2255, pp. 54-64, Springer,
2002.

[22] Barbara Cavanaugh Phillips and Susan M. Polen, “Add
Decision Analysis to Your COTS Selection Process”Software
Technology Support Center Crosstalk, April 2002

[23] L. Chung and K. Cooper, “Defining Goals in a COTS-Aware
Requirements Engineering Approach”, Systems Engineering
Volume 7, Issue 1, pp. 61-83, Wiley, 2004

[24] Lawrence Chung and Kendra Cooper, “COTS-Aware
Requirements Engineering and Software Architecting”, Proceedings
of the 4th International Workshop on System/Software Architectures
(IWSSA), 2004

[25] Jesal Bhuta and Barry Boehm, “A Method for Compatible
COTS Component Selection”, Proceedings of the 4th International
Conference on COTS-Based Software Systems, Spain, LNCS, Vol.
3412, Springer, 2005

[26] Alejandra Cechich and Mario Piattini, “Filtering COTS
Components Through an Improvement-Based Process”, Proceedings
of the 4th International Conference on COTS-Based Software
Systems, Spain, LNCS, Vol. 3412, Springer, 2005

[27] Han Lin, Anh Lai, Rebecca Ullrich, Michal Kuca, Jessica
Shaffer-Gant, Sandra Pacheco, Karen Dalton, Kelly McClelland,
William Watkins, and Soheil Khajenoori, “COTS Software
Selection Process”, SANDIA REPORT SAND2006-0478, Sandia
National Laboratories, May 2006

[28] Marco Torchiano and Maurizio Morisio, “Overlooked aspects
of COTS-Based Development”, IEEE Software, Volume 21, Issue 2,
IEEE, March/April 2004

[29] L. Chung, B. Nixon, E. Yu, and J. Mylopoulos, Non-Functional
Requirements in Software Engineering, Kluwer Academic Publisher,
2000

[30] Chris Abts, “Extending the COCOMO II Software Cost Model
to Estimate Effort and Schedule for Software Systems Using
Commercial-Off-The-Shelf (COTS) Software Components: the
COCOTS Model”, Ph.D. Dissertation, University of Southern
California, October 2001

[31] Chris Abts, Barry W. Boehm, and Elizabeth Bailey Clark,
“COCOTS: A COTS Software Integration Lifecycle Cost Model
Model Overview and Preliminary Data Collection Findings”, 2000

[32] Cornelius Ncube and John C. Dean, “The Limitations of
Current Decision-Making Techniques in the Procurement of COTS
Software Components”, Proceedings of the First International
Conference on COTS-Based Software Systems, LNCS, Vol. 2255,
pp. 176-187, Springer-Verlag, 2002

[33] David Garlan, Robert Allen, and John Ockerbloom,
“Architectural Mismatch: Why Reuse is so Hard”, IEEE Software,
Volume 12, Issue 6, 1995

[34] Barry Boehm and Richard Turner, Balancing Agility and
Discipline: A Guide for the Perplexed, ISBN 0321186125, Addison-
Wesley Professional, 2003

