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ABSTRACT 
The essence of component-based software engineering is 
embodied in component models. Component models specify the 
properties of components and the mechanism of component 
compositions. In a rapid growth, a plethora of different 
component models has been developed, using different 
technologies, having different aims, and using different 
principles. This has resulted in a number of models and 
technologies which have some similarities, but also principal 
differences, and in many cases unclear concepts. Component-
based development has not succeeded in providing standard 
principles, as for example object-oriented development. In order 
to increase the understanding of the concepts, and to easier 
differentiate component models, this paper provides a Component 
Model Classification Framework which identifies and quantifies 
basic principles of component models. Further, the paper 
classifies a certain number of component models using this 
framework.  

Categories and Subject Descriptors 

D.2.2 Design Tools and Techniques  

General Terms 
Design, component-based software engineering. 

Keywords 
Component models, taxonomy. 

1. INTRODUCTION 
Component-based software engineering (CBSE) is an established 
area of software engineering. The inspiration for “building 
systems from components” in CBSE comes from other 
engineering disciplines, such as mechanical or electrical 
engineering, and Software Architecture in which a system is seen 
as a structure with clearly identified components and connectors. 
The techniques and technologies that form the basis for 
component models originate mostly from object-oriented 
programming and Architecture Description Languages (ADLs). 
Since software is in its nature different from the physical world, 
the translation of principles from the classical engineering 
disciplines into software is not trivial. For example, the 
understanding of the term “component” has never been a problem 
in the classical engineering disciplines, since a component can be 
intuitively understood and that understanding fits well with 
fundamental theories and technologies. This is not the case with 
software; the notation of a software component is not clear: its 

intuitive perception may be quite different from its model and its 
implementation. From the beginning, CBSE struggled with a 
problem to obtain a common and a sufficiently precise definition 
of a software component. An early and probably the most 
commonly used definition coming from Szyperski [1] (“A 
software component is a unit of composition with contractually 
specified interfaces and explicit context dependencies only. A 
software component can be deployed independently and is subject 
to composition by third party”) focuses on characterization of a 
software component. In spite of its generally it was shown that 
this definition is not valid for a wide range of component-based 
technologies (for example those which do not support 
contractually specified interface, or independent deployment). In 
the definition of Heineman and Councill [2] (“A software 
component is a software element that conforms to a component 
model and can be independently deployed and composed without 
modification according to a composition standard”), the 
component definition is more general – actually a component is 
specified through the specification of the component model butthe 
component model itself is not specified. This definition of a 
component can be even more pushed further in the generalization, 
but on the contrary the definition of a component model can be 
expressed more precisely [3]: 

Definition I: A Software Component is a software building block 
that conforms to a component model.  

Definition II: A Component Model defines standards for (i) 
properties that individual components must satisfy and (ii) 
methods, and possibly mechanisms, for composing components. 

This generic definition allows the existence of a wide spectrum of 
component models, which is also happening in reality; there exist 
many component models with many different characteristics on 
the market and in different research communities. This diversity 
makes it more difficult to properly understand the Component-
Based (CB) principles, and to properly select a component model 
of interest, or to compare models. In particular, this is true since 
CB principles are not clearly explained and formally defined. In 
their diversities component models are similar to ADLs; there are 
similar mechanisms and principles but very different 
implementations. For this reason there is a need for providing a 
framework which can provide a classification and comparison 
between different component models in a similar manner as it was 
done for ADLs [4,5].  

In this paper, we thus propose a classification and comparison 
framework for component models. Since component models and 
their implementations in component technologies cover a large 
range of different aspects of the development process, we group 
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these aspects in several dimensions of the framework - for certain 
component models we will say that they are similar in one 
dimension, but different in another.  Several different taxonomies 
of component models already exist, an example is [6] in which 
taxonomy is described in respect to component life cycles in 
particular composition is presented, another example is [7] in 
which domains, business perspectives are shown as well as a 
focus on CBSE concepts such as reuse. Our comparison 
framework has the goal to provide a multidimensional framework, 
that counts different, yet equality important aspects of component 
models. 

The remainder of this paper is as follows. Section two motivates, 
explains and defines the different dimensions of the classification 
framework. Section three gives a very brief overview of selected 
component models, and section four provides a short description 
of component model characteristics in the comparison framework, 
for each dimension. 

2. The Classification Framework 
The main concern of a component model is to (i) provide the rules 
for the specification of component properties and (ii) provide the 
rules and mechanisms for the component composition, including 
the composition rules of component properties. These main 
principles hide many complex mechanisms and models, and have 
significant differences in approaches, concerns and 
implementations. For this reason we cannot simply list all 
possible characteristics to compare the component models; rather 
we want to group particular characteristics that have similar 
concerns i.e. that describe the same or related aspects of 
component models. The fundamental principles can be divided 
into the following categories: 

1. Lifecycle. The lifecycle dimension identifies the support 
provided (explicitly or implicitly) by the component model, in 
certain points of a lifecycle of components or component-
based systems. Component-Based Development (CBD) is 
characterized by the separation of the development processes 
of individual components from the process of system 
development. There are some synchronization points in 
which a component is integrated into a system, i.e. in which 
the component is being bound. Beyond that point, the notion 
of components in the system may disappear, or components 
can still be recognized as parts of the system. 

2. Constructs. The constructs dimension identifies (i) the 
component interface used for the interaction with other 
components and external environment, and (ii) the means of 
component binding and communication. Interface 
specification is the characteristic “sine qua non” of a 
component model. In some component models, the interface 
comprises the specification of all component properties, but 
in most cases, it only includes a specification of properties 
through which the communication with the environment 
should be realized. Directly correlated to the interface are the 
components’ interoperability mechanisms. All these concepts 
are parts of the “construction” dimension of CBD. 

3. Extra-Functional Properties. The extra-functional 
properties dimension identifies specifications and support 
that includes the provision of property values and means for 
their composition. In certain domains (for example real-time 

embedded systems), the ability to model and verify 
particular properties is equally important but more 
challenging than the implementation of functional properties 
themselves. 

4. Domains. This dimension shows in which application and 
business domains component models are used. It indicates 
the specialisation, or the generality of component models.  

In these four dimensions, we comprise the main characteristics of 
component models but, of course, there are other characteristics 
that can differentiate them. For example, since in many cases 
component models are built on a particular implementation 
technology, many characteristics come directly from this 
supporting implementation technology and that are not visible in 
component models themselves. 

2.1   Lifecycle 
In the software development lifecycle, a number of methods and 
technologies specifying and supporting particular phases of the 
cycle exist. While CBSE aims at covering the entire lifecycle of 
component-based systems, component models provide only 
partial lifecycle support and are usually related to design, 
implementation and integration phases.  

The overall component-based lifecycle is separated into several 
processes; building components, building systems from 
components, and assessing components [6]. Some component 
technologies provide certain support in these processes (for 
example maintaining component repositories, exposing interface, 
and similar).  

The component-based paradigm (i.e. composability and 
reusability) has extended the integration activities in the run-time 
phase; certain component technologies provide extended support 
for dynamic and independent deployment of components into the 
systems. This support reflects the design of many component 
models. Accordingly, some of the components are only available 
at development stage and at run-time the system is monolithic. 
However not all component models consider the integration 
phase. We can clearly distinguish different component models 
that are related to a particular phase and such phase can be 
different for different component models. Some component 
technologies start in the design stage (e.g. Koala which has an 
explicit and dedicated design notation). Many other component 
technologies focus on the implementation phase (e.g. COM, EJB). 
For this reason one important dimension of the component model 
classification is the lifecycle support dimension. In such 
classification, we must consider both component lifecycle and 
component-based system lifecycle, which are somewhat different 
[3, 9] and are not necessary temporally related – they are ongoing 
in parallel and have some synchronization points. Here we 
identify characteristic “points” of both lifecycles that are concerns 
in component models: 

(i) Modelling stage. The component models provide support for 
the modelling and the design of component-based systems and 
components. Models are used either for the architectural 
description of the systems and components (e.g. ADLs), or for the 
specification and the verification of particular system and 
component properties (e.g. statecharts). 

(ii) Implementation stage. The component model provides support 
for generating and maintaining code. The implementation can 



stop with the provision of the source code, or can continue up to 
the generation of a binary (executable) code. The existence of 
executable code is an assumption for the dynamic deployment of 
the components (i.e. the deployment of the components in the 
system run-time). 

(iii) Packaging stage. Since components can be developed 
separately from systems, and the primary idea of the component-
based approach is to reuse existing components, there is a need 
for their storage and packaging – either in a repository or for  
distribution. A component package is a set of metadata and 
compiled code modules that contain implementations of a 
component interface. Accordingly, the result of this stage can be a 
file, archive, or a repository where the packaged components are 
residing prior to decisions about how they will be run in the target 
environment. For example, in Koala, components are packed into 
a file system-based repository, in which a directory exists for each 
component. The directory contains a Component Description 
Language (CDL) file and a set of C and header files. 
Additionally, it can also contain interface definition files and/or 
data definition files. Another example of packaging is achieved in 
the EJB component model. There, packaging is done through jar 
archives, called ejb-jar. Each archive contains XML deployment 
descriptor, component description, component implementation 
and interfaces. 

(iv) Deployment stage. At a certain point of time, a component is 
integrated into a system i.e. bound to the execution platform. This 
activity happens at different points of development or 
maintenance phase. However, each of the component 
technologies that exist today solves the deployment issues in their 
own particular way. In general, the components can be deployed 
at compilation time (static binding) as part of the system, making 
it no longer possible to change how the components interact with 
each other, or at run time as separate units by using means such as 
registers (COM) or containers (CCM, EJB). For instance, Koala 
components are deployed at compilation time and they use static 
binding by following naming conventions and generated 
renaming macros. In opposition, CORBA components are 
deployed at run time in a container by using the information of 
the deployment descriptor packed with the component 
implementation. 

2.2 Constructs 
As mentioned in [30], the verb “construct” means “to form 
something by putting different things together”, so in applying 
this definition to the CBSE domain, we define under this 
“Constructs” dimension, the way components are connected 
together within a component model in order to provide 
communication means. But although this communication aspect is 
of primordial importance, it is not often expressed explicitly. 
Instead, it is reflected implicitly by some underlying mechanisms. 
This is at contrary to functional – and sometimes extra-functional 
– properties of a component which are clearly stated in 
component interfaces. Consequently, a component interface has a 
double role: it first specifies the component properties (functional 
and possibly extra-functional), and second, it defines the actions 
through which components may be interconnected. Some of the 
component models distinguish also the “provides”-part (i.e. the 
specification of the functions that the component offer) from 
“requires”-part (i.e. the specification of the functions the 
component require) of an interface.  

Besides coming along with the massive emergence of component 
models, several languages exist nowadays for specifying an 
interface: modelling languages (such as UML or different ADLs), 
particular specification languages (Interface Definition 
Languages), programming languages (such as interfaces in Java) 
or some additions built directly in a programming language. 
Similarly, the interaction can also be of different types: port-based 
where ports are the channels for communication of different data 
types and events; functions in programming languages defining 
input and output parameters; interfaces or classes in Object 
Oriented programming languages.  

However, an interface remains most of time a very succinct 
description of the services a component proposes or needs. So in 
order to ensure that a component will behave as expected 
according to its specification and operational mode, the notion of 
contract has been adjoined to interfaces. According to [10], 
contracts can be classified hierarchically in four levels which, if 
taken together, may form a global contract. We only adopt the 
three first levels in our classification since the last level 
“contractualizes” only the extra-functional properties and this is 
not in direct relation with interoperability 

– Syntactic level: describes the syntactic aspect, also called 
signature, of an interface. This level ensures the correct 
utilisation of a component. That is to say that the “client-
component” must refer to the proper types, fields, methods, 
signals, ports and handles the exceptions raised by the 
“server-component”. This is the most common and most easy 
agreement to certify as it relies mainly on an, either static or 
dynamic, type checking technique. 

– Semantic level: reinforces the previous level of contracts in 
certifying that the values of the parameters as well as the 
persistent state variables are within proper ranges. This can be 
asserted by pre-conditions, post-conditions and invariants. A 
generalization of this level can be assumed as semantics.  

– Behaviour level: dynamic behaviour of services. It expresses 
either the composition constraints (e.g., constraints on their 
temporal ordering) or the internal behaviour (e.g. dynamics of 
internal states). 

Finally, the constructs dimension refers to the notions of 
reusability and evolvability, which are important principles of 
CBSE. Indeed, many component models are endowed with 
diverse features for supporting them but one typical solution is 
directly related to the existence of interfaces and therefore to our 
constructs dimension. This solution offers the ability to add new 
interfaces to a component which makes possible to embody 
several versions or variants of functions in the component.  

Besides, compositions in constructs are implemented as 
connections of interaction channels and the process of connecting 
is called binding. As mentioned before, the binding mechanismis 
related to the component lifecycle; it can occur at compilation 
time (when a compiler provides a direct connection between 
components using programming language mechanisms), or at run-
time, in which the connection mechanisms are utilised either by 
the services of the underlying operation system, or are 
implemented in the component middleware or the component 
framework. A so-called “docking interface” method is utilized 
when the binding is provided at the run-time. This interface does 



not offer any application functionality, but serves instead for 
interaction between a component and the underlying system. 

Another type of binding is also realised through connectors. 
Connectors, introduced as distinct elements in ADLs, are not 
common among the first class citizens in most component models. 
Connectors are mediators in the connections between components 
and have a double purpose: (i) enabling indirect composition (so-
called exogenous composition, in regards to direct or endogenous 
composition), (ii) introducing additional functionality. Exogenous 
composition enables more seamless evolution since it allows 
independent changes of components. In addition, in several 
component technologies, connectors act as specialised 
components, such as adaptors or proxies, either to provide 
additional functional or extra-functional properties, or to extend 
the means of intercommunication.  

The interface specification implicitly defines the type of 
interaction between components to comply with particular 
architectural styles. In most cases, particular component models 
provide a single basic interaction mechanism, but others, such as 
Fractal for example, allow the construction of different 
architectural styles. 

For the constructs dimension of this classification framework, we 
distinguish consequently the following points. 

(i) Interface specification, in which different characteristics 
allowing the specification of interfaces are identified: 
(1) The distinction between the notions of interface and port. 
Although a port is generally seen as a part of an interface, in 
some component models a port is actually the only mean of 
communication. In these cases, the binding is done in a 
wiring manner such as in the pipe and filter architectural 
style. On the contrary, interfaces may involve many different 
ways of binding..  
(2) The distinction between the provides-part and requires-
part of an interface.  
(3) The existence of some distinctive features appearing only 
in this component model. And, 
(4) The language used to specify those interfaces. 

(ii) Interface levels which describe the levels of 
contractualisation of the interfaces, namely syntactic, 
semantic and/or behaviour level 

(iii) Standard Architectural Style which aims at identifying the 
recurrent patterns of interaction among components. Some of 
them are for example pipe&filter, client/server or Event-

driven.  
(iv) Communication type which details mainly if the 

communication used is synchronous and/or asynchronous. 
An extension of this could be to consider also the number of 
receivers (unicast, multicast or broadcast).  

(v) Binding type describes the way components may be linked 
together through the interfaces.  
(1) The exogenous sub-category depicts if the component 
model allows using some connectors. And,  
(2) The vertical sub-category expressing the possibility of 
having a hierarchical composition of components 
We assume here that the “endogenous” composition and the 
“horizontal” binding are the default mechanism of any 
component model, i.e. a “direct” connection between two 
components. 

2.3 Extra-Functional Properties 
Properties (also designated as attributes) are used in the most 
general sense as defined by standard dictionaries, e.g.: “a 
construct whereby objects and individuals can be distinguished” 
[11]. There is no unique taxonomy of properties, and 
consequently there can exist many property classification 
frameworks. One commonly used classification is to distinguish 
functional from extra-functional properties. While functional 
properties describe functions or services of an object (individual 
or thing), extra-functional properties (EFP) specify the quality (in 
a broader sense) of objects. In CBSE, there is a distinction 
between component properties and system properties. The system 
properties can be the result of the composition of the same 
properties of components, but also of a composition of different 
properties [12]. Important concerns of CBSE are how to provide 
relevant parameters from components which will be used in a 
provision of the system properties.  

The two main dimensions in which component models differ in 
the way they manage EFP are the following: 

– A property is managed by the system (exogenous EFP 
management) or managed by components (endogenous EFP 
management). This corresponds to wonder which actor 
manages a property; 

– A property is managed on a system-wide scale or the 
property is managed on a per-collaboration basis (i.e. what is 
the scope of management of a property). 

The different types of approaches are characterized by the 
reference architectures shown in Figure 1 

Figure 1. Management of extra-functional properties 
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Many component models provide no specific facilities for 
managing extra-functional properties. The way a property is 
handled is left to the designers of the system, and as a result a 
property may not be managed at all (approach A). This approach 
makes it possible to include EFP management policies that are 
optimized towards a specific system, and also can cater for 
adopting multiple policies in one system. This heterogeneity may 
be particularly useful when COTS components need to be 
integrated. On the other hand, the fact that such policies are not 
standardized may be a source of architectural mismatch between 
components.  

The compatibility of components can be improved if the 
component model provides standardized facilities for managing 
EFP (approach B in Figure 1). In this approach, there is a 
mechanism in the component execution platform that contains 
policies for managing EFP for individual components as well as 
for EFP involving multiple components. The ability to negotiate 
the manner in which EFP are handled requires that the 
components themselves have some knowledge about how the EFP 
affects their functioning. This is a form of reflection. 

A third approach is that the components should be designed such 
that they address only functional aspects and not EFP. 
Consequently, in the execution environment, these components 
are surrounded by a container. This container contains the 
knowledge on how to manage EFP. Containers can either be 
connected to containers of other components (approach C) or 
containers can interact with a mechanism in the component 
execution platform that manages EFP on a system wide scale (D).  

The container approach is a way of realizing separation of 
concerns in which components concentrate on functional aspects 
and containers concentrate on extra-functional aspects. In this 
way, components become more generic because no modification 
is required to integrate them into systems that may employ 
different policies for EFP. Since these components do not address 
EFP, another advantage is that they are simpler and smaller and 
hence they are cheaper to implement. 

For the EFP we provide a classification in respect to the following 
questions: 
(i) Extra-functional properties support: does the component 

model provide general principles, means and/or support for 
specification and reasoning about extra-functional 
properties? 

(ii) Extra-functional properties specification: Does the 
component model contain means for specification and 
reasoning of specific extra-functional properties. If yes, 
which types and/or which properties? 

(iii) Composability of extra-functional properties: Does the 
component model provide means, methods and/or techniques 
for composition of certain extra-functional properties. If yes, 
which properties and/or what type of composition? 

2.4 Domains 
Some component models are aimed at specific application 
domains as for instance consumer electronics or automotive. In 
such cases, requirements from the application domain penetrate 
into the component model. As a result, the component model 
provides a natural fit for systems in that particular domain. The 
benefits of a domain-specific component models are that the 

component technology facilitates achieving certain requirements. 
Such component models are, as a consequence, limited in 
generality and will not be so easily usable in domains that are 
subject to different requirements.  

Some component models are of general-purpose. They provide 
basic mechanisms for the production and the composition of 
components, but on the other hand, provide no guidance, nor 
support for any specific architecture.  A general solution that 
enables component models to be both generally applicable but 
also cater for specific domains is through the use of optional 
frameworks. A framework is an extension of a component model 
that may be used, but is not mandatory in general. 

There is a third type of component models - namely generative; 
they are used for instantiation of particular component models. 
They provide common principles, and some common parts of 
technologies (for example modelling), while other parts are 
specific (for example different implementations). 

3. SURVEY OF COMPONENT MODELS 
Nowadays there are numerous component models which can vary 
widely in many possible aspects: In usage, in support provided, in 
concerns, in complexity, in formal definitions and similar. In our 
classification of component models, the first question is whether a 
model (or technology, method, or similar) is a component model 
or not. Similar to biology in which viruses cover the border 
between life and non-life, there is a wide range of models, from 
those having many elements of component models but are still not 
assumed as component models, via those that lack many elements 
of component models, but are still called component models, 
through to those which are assumed as being component models. 
Therefore, we identify the minimum criteria required to classify a 
model, or a notation as a component model. This minimum is 
defined by  Definition I and Definition II: A model that explicitly 
or implicitly identifies components and defines rules for 
specification of component properties and means of their 
composition can be classified as a component model. 

In the next section, we provide a very brief overview of some 
component models and their main characteristics. The list is not 
complete, and can be increased by time. It should be understood 
as a provision of some characteristic examples, or examples of 
widely used component models in Software Engineering. 

The AUTomotive Open System Architecture (AUTOSAR) 
[14], is the result of the partnership between several 
manufacturers and suppliers from the automotive field. It 
envisions the conception of an open standardized architecture 
aiming at improving the exchangeability of diverse elements 
between vehicle platforms, manufacturer’s applications and 
supplier’s solutions. Those objectives rely upon the utilisation of 
both a component-based approach for the application and 
standardized layered architecture. This allows separating the 
component-based application from the underlying platform. 
AUTOSAR support both the client-server and Sender-Receiver 
communication paradigms and each AUTOSAR Software 
Component instance from a vehicle platform is only assigned to 
one Electronic Control Unit (ECU). The AUTOSAR Software 
Components, as well as all the modules in an ECU, are 
implemented in C.  



BIP [14] framework designed at Verimag for modelling 
heterogeneous real-time components. This heterogeneity is 
considered for components having different synchronization 
mechanisms (broadcast/rendez-vous), timed components or non-
timed components. Moreover, BIP focuses more on component 
behaviours than others component models thanks to a three-layer 
structure of the components (Behaviour, Interaction, Priority); a 
component can be seen as a point in this three-dimensional space 
constituted by each layer. This also sets up the basis for a clear 
separation between behaviour and structure. In this model, 
compound components, i.e components created from already 
existing ones, and systems are obtained by a sequence of formal 
transformations in each of the dimension. BIP comes up with its 
own programming language but targets C/C++ execution. Some 
connections to the analysis tools of the IF-toolset [16] and the 
PROMETHEUS tools [17] are also provided.  

CORBA Component Model (CCM) [18] evolved from Corba 
object model and it was introduced as a basic model of the 
OMG’s component specification i.e CORBA 3 in 2002. The CCM 
specification defines an abstract model, a programming model, a 
packaging model, a deployment model, an execution model and a 
metamodel. The metamodel defines the concepts and the 
relationships of the other models. Component is a new CORBA 
metatype. CORBA components communicate with outside world 
through ports. CCM uses a separate language for the component 
specification: Interface Definition Language (IDL). CCM 
provides a Component Implementation Framework (CIF) which 
relies on Component Implementation Definition Language 
(CIDL) and describes how functional and non-functional part of a 
component should interact with each other. In addition, CCM uses 
XML descriptors for specifying information about packaging and 
deployment. Furthermore, CCM has an assembly descriptor 
which contains metadata about how two or more components can 
be composed together.  

The Entreprise JavaBeans (EJB) [19], developed by Sun 
MicroSystems envisions the construction of object-oriented and 
distributed business applications in trying to hide to developers 
the underlying complexity, such as transactions, persistence, 
concurrency, interoperability. It also aims at the improvement of 
component reusability in providing different utilities, such as 
means, so called EJB-jars to package components, called beans. 
Three different types of components coexist to match the specific 
needs of different applications (The EntityBeans the SessionBean 
and the MessageDrivenBeans). Each of these beans is deployed in 
an EJB Container which is in charge of their management at 
runtime (start, stop, passivation or activation). In order to achieve 
this, EJB technology use the Java programming language.  

Fractal [20] is a component model developed by France Telecom 
R&D and INRIA. It intends to cover the whole development 
lifecycle (design, implementation, deployment and 
maintenance/management) of complex software systems. It comes 
up with several features, such as nesting, sharing of components 
and reflexivity in that sense that a component may respectively be 
created from other components, be shared between components 
and describes its own behaviour. The main purpose of Fractal is to 
provide an extensible, open and general component model that 
can be tuned to fit a large variety of applications and domains. 
Consequently, nothing is fixed in Fractal; On the contrary, it even 
provides means to facilitate adaptation in notably having different 

implementations to fit the specific needs of a domain as for 
example its C-implementation called Think, which targets 
especially the embedded systems. A reference implementation, 
called Julia and written in Java, is also provided. Fractal can also 
be seen as a generic component model which intends to 
encompass other component models. 

Koala [21] is a component model developed by Philips for 
building consumer electronics. Koala components are units of 
design, development and reuse. Semantically, components in 
Koala are defined in a ADL-like language. Koala IDL is used to 
specify Koala component interfaces, its Component Definition 
Language (CDL) is used to define Koala components, and Koala 
Data Definition Language (DDL) is used to specify local data of 
components. Koala components communicate with their 
environment or other components only through explicit interfaces 
statically connected at design time. Koala targets C as 
implementation language and uses source code components with 
simple interaction model.  

Microsoft Component Object Model (COM) [22] is one of the 
most commonly used software component models for desktop and 
server side applications. A key principle of COM is that interfaces 
are specified separately from both the components that implement 
them and those that use them. COM defines a dialect of the 
Interface Definition Language (IDL) that is used to specify 
object-oriented interfaces. Interfaces are object-oriented in the 
sense that their operations are to be implemented by a class and 
passed a reference to a particular instance of that class when 
invoked. A concept known as interface navigation makes it 
possible for the user to obtain a pointer to every interface 
supported by the object. This is based on VTable. Although COM 
is primarily used as a general-purpose component model it has 
been ported for embedded software development. 

The Open Services Gateway Initiative (OSGi) [23] is a 
consortium of numerous industrial partners working together to 
define a service-oriented framework with an “open specifications 
for the delivery of multiple services over wide area networks to 
local networks and devices”. Contrary to most component 
definitions, OSGI emphasis the distinction between a unit a 
composition and a unit of deployment in calling a component 
respectively service or bundle. It offers also, contrary to most 
component models, a flexible architecture of systems that can 
dynamically evolve during execution time. This implies that in 
the system, any components can be added, removed or modified 
at run-time. Thus, there is no guaranty that a service provided at a 
certain time will be still provided later. Being built on Java, OSGI 
is platform independent. 

Pecos [24] is a joint project between ABB Corporate Research 
and academia. Their goal is to provide environment that supports 
specification, composition, configuration checking and 
deployment for reactive embedded systems built from software 
components. Component specification and component 
composition are done in an ADL-like language called CoCo. 
There are two types of components, leaf components and 
composite components. The inputs and outputs of a component 
are represented as ports. At design phase composite components 
are made by linking their ports with connectors. Pecos targets 
C++ or Java as implementation language, so the run-time 
environment in the deployment phase is the one for Java or C++. 
Pecos enables specification of EFP properties such as timing and 



memory usage in order to investigate in prediction of the 
behaviour of embedded systems. 

Pin [25] component model is based on an earlier component 
technology developed by Carnegie Mellon Software Engineering 
Institute (SEI), for use in prediction-enabled component 
technologies (PECTs). It is aimed for building embedded software 
applications. By using principles from PECT it aims at achieving 
predictability by construction. Components are defined in an 
ADL-like language, in the “component and connector style”, so 
called Construction and Composition Language (CCL). 
Furthermore, Pin components are fully encapsulated, so the only 
communication channels from a component to its environment 
and back are its pins.  

Robocop [26] is a component model developed by the consortium 
of the Robocop ITEA project, inspired by COM, CORBA and 
Koala component models. It aims at covering all the aspects of 
the component-based development process for the high-volume 
consumer device domain. A Robocop component is a set of 
possibly related models and each model provides particular type 
of information about the component. The functional model 
describes the functionality of the component, whereas the extra-
functional models include modelling of timeliness, reliability, 
safety, security, memory consumption, etc. Robocop components 
offer functionality through a set of ‘services’ and each service 
may define several interfaces. Interface definitions are specified 
in a Robocop Interface Definition Language (RIDL). The 
components can be composed of several models, and a 
composition of components is called an application. The Robocop 
component model is a major source for ISO standard ISO/IEC 
23004 for multimedia middleware. 

Rubus [27] component was developed as a joint project between 
Arcticus Systems AB and the Department of Computer 
Engineering at Mälardalen University. The Rubus component 
model runs on top of the Rubus real-time operating system. It 
focuses on the real-time properties and is intended for small 
resource constrained embedded systems. Components are 
implemented as C functions performed as tasks. A component 
specifies a set of input and output ports, behaviour and a 
persistent state, timing requirements such as release-time, 
deadline. Components can be combined to form a larger 

component which is a logical composition of one or more 
components.  

SaveCCM [28], developed within the SAVE project and several 
Swedish Universities, is a component model specifically designed 
for embedded control applications in the automotive domain with 
the main objective of providing predictable vehicular systems. 
SaveCCM is a simple model that constrains the flexibility of the 
system in order to improve the analysability of the dependability 
and of the real-time properties. The model takes into 
consideration the resource usage, and provides a lightweight run-
time framework. For component and system specification 
SaveCCM uses “SaveCCM language” which is based on a textual 
XML-syntax and on a subset of UML2.0 component diagrams.  

The SOFA (Software Appliances) [29] is component model 
developed at Charles University in Prague. A SOFA component is 
specified by its frame and architecture. The frame can be viewed 
as a black box and it defines the provided and required interfaces 
and its properties. However a framework can also be an assembly 
of components, i.e a composite component. The architecture is 
defined as a grey-box view of a component, as it describes the 
structure of a component until the first level of nesting in the 
component hierarchy. SOFA components and systems are 
specified by an ADL-like language. Component Description 
Language (CDL). The resulting CDL is compiled by a SOFA 
CDL compiler to their implementation in a programming 
language C++ or JAVA. SOFA components can be composed by 
method calls through connectors. The SOFA 2.0 component 
model is an extension of the SOFA component model with several 
new services: dynamic reconfiguration, control interfaces and 
multiple communication styles between the components. 

4. COMPONENT MODEL 
CLASSIFICATION 
In order to illustrate the utilisation of our classification 
framework, we categorize here the component models listed 
above with respect to the corresponding dimensions. The 
reference documentation of each component models has generally 
been used to fill those tables. However, some of the information 
presented here are not mentioned explicitly in the reference 
documentation and are subject to the reader’s point of view.  

Table 1: Lifecycle Dimension 
Component 

Models Modelling Implementation Packaging Deployment 

AUTOSAR N/A C N/A At compilation 

BIP 
A 3-layered representation: statemachine 

diagram, priority and interaction expression 
or a statemachine with ports 

BIP language N/A At compilation 

CCM Abtstract model:OMG-IDL, 
Programming model: CIDL Language independent. Deployment Unit archive 

(JARs,DLLs) At run-time 

Fractal 

FractalGui,  
ADL-like language  

(Fractal ADL, Fractal IDL),  
Annotations (Fractlet) 

Julia, Aokell(Java) 
Think(C/C++) 
FracNet(.Net) 

… 

File system based repository At run-time 

KOALA ADL-like language (IDL,CDL and DDL) C File system based repository At compilation 

EJB N/A Java,  
Java binary code EJB-Jar files At run-time 



Component 
Models Modelling Implementation Packaging Deployment 

MS COM Microsoft IDL Different languages,  
Binary standard DLL At run-time 

OSGi N/A Java Jar-files (bundles) At run-time 

PIN ADL-like language (CCL) C DLL At compilation 

PECOS ADL-like language (CoCo) C++, 
 Java Jar packages At compilation 

ROBOCOP IDL for the interface model.  
Several different models 

C, 
C++ zip files At compilation 

At run-time 

RUBUS N/A C File system based repository At compilation 

SaveCCM ADL C N/A At compilation 

SOFA 2.0 Meta-model based definition Java Repository At run-time 

Table 2: Constructs 
Interface Specification Binding Type 

Component 
Models Interfaces/ 

Ports/Both 

Distinction 
Provides / 
Requires 

Distinctive feature Interface  
Language 

Interface 
Levels 

Standard 
Architecture 

Styles 

Communication 
Type Exogenous Vertical 

AUTOSAR Both Yes 

Classified within  
3 types: 

– AUTOSAR Interface,
– Standardized 

AUTOSAR Interface, 
– Standardized Interface

C header files
Syntactic 

No semantic 
No behaviour

Client/Server 
Data-centered 

Synchronous 
Asynchronous 

No Delegation

BIP Port No 
Existence of: 

Complete interfaces, 
Incomplete interfaces 

BIP 
Language 

No syntactic 
Semantic 
Behaviour 

Event-driven 

Synchronous 
Asynchronous 
(Rendez-vous, 

Broadcast) 

No Delegation

CCM Both Yes 

Classified within  
2 types: 

– Facets and receptacles
– Event sinks and event 
sources 

CORBA IDL
Syntactic 

No semantic 
No behaviour

Blackboard 
Synchronous 

Asynchronous 
No No 

EJB 3.0 Interface No N/A 

Java 
Programming 
Language + 
Annotations 

Syntactic 
No semantic 
No behaviour

Client/Server 
(JDBC) 

Blackboard 
(JMS) 

Synchronous 
Asynchronous 

No No 

Fractal Interface Yes 
Existence of: 

Control  
Interface 

Any 
programming 

language, 
IDL, Fractal 

ADL 

Syntactic 
No semantic 
Behaviour 

Multiple 
architectural 

styles 

Multiple 
communication 

styles 
Yes Aggregation

KOALA Interface Yes 
Existence of: 

– Diversity Interface, 
– Optional Interface 

IDL 
Syntactic 

No semantic 
No behaviour

Pipe&filter Synchronous Yes Aggregation

MS COM Interface No All interfaces derived 
from a IUnknown 

Microsoft 
IDL 

Syntactic 
No semantic 
No behaviour

Multiple 
architectural 

styles 
Synchronous No 

Delegation 
Aggregation

OSGi Interface Yes Existence of: 
Dynamic Interfaces 

Java 
programming 

language 

Syntactic 
No semantic
No behaviour

Event-driven Synchronous No No 

PECOS Port Yes N/A 
Coco 

composition 
language 

Syntactic 
Semantic 
Behaviour 

Pipe&filter (with 
blackboard) 
Event-driven 

Synchronous No Delegation

Pin Port Yes N/A 
Component 
Composition 

Language 

Syntactic 
No semantic 
No behaviour

Pipe&filter 
Event-driven 

Synchronous 
Asynchronous 

Yes No 



Rubus Port Yes 

Classified within  
2 types: 

– data 
– triggered 

C header file
Syntactic 

No semantic 
No behaviour

Pipe&filter Synchronous No Delegation

Robocop Port Yes N/A Robocop IDL
(RIDL) 

Syntactic 
Semantic 

(Behaviour) 
Client/Server 

Synchronous 
Asynchronous 

No No 

SaveCCM Port Yes 

Classified within  
3 types: 

– data 
– triggered 
– data& triggered 

SaveComp 
(XML-based)

Syntactic 
No semantic 
Behaviour 

Pipe&filter Synchronous No Delegation

SOFA 2.0 Interface Yes 

Existence of: 
 Utility Interface,  

Possibility to annotate 
interface and to control 

evolution 

Java 
programming 

language 

Syntactic 
No semantic 
Behaviour 

Multiple 
architectural 

styles 

Multiple 
communication 

styles 
Yes Delegation

Table 3: Extra-Functional Properties 
Component 

Models General support for properties Properties specification Composition support 

AUTOSAR N/A   

BIP Behaviour compositions, 
endogenous EFP management times properties  

CCM 
Support for mechanism to influence 

of some EFP, exogenous  EFP 
management 

N/A Run time support for some 
EFP 

Fractal 

Interceptor and controller in Julia,  
extension possibilities for different 

EFP,  
endogenous EFP management 

Extension with a new 
controller  

KOALA Extensions in interface 
specification and the compiler 

Resource usage but no 
timing and memory 

consumption 
Compile time checks 

EJB 
Support for mechanism to influence 
of some EFP, container maintaining 
EFP, exogenous  EFP management 

N/A Run time support for some 
EFP 

MS COM Endogenous EFP management N/A N/A 
OSGi endogenous EFP management N/A N/A 

PIN Analytic interface for EFP, 
endogenous EFP management Timing properties Different EFP composition 

theories 

PECOS endogenous EFP management 
Timing properties (WCET, 

periods), memory 
consumption 

N/A 

ROBOCOP 
CEP provides manager for resource 

budgets, exogenous  EFP 
management 

Memory consumption, 
WCET, cycle time, 
priority, reliability 

Some EFP checked at 
deployment and monitored 

during execution. 

RUBUS Exogenous  EFP management Timing, resource usage, 
QoS Design time 

SaveCCM Interface extension endogenous 
EFP management Real-time attributes Composition of RT  EFP 

SOFA 2.0 Behaviour EFP specification, 
endogenous EFP management Behavioural (protocols) Composition at design 

Table 4: Domains 
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Generative    x       x   x 

General   x x  x x x x     x 

Specialised x x   x   x  x x x x  



5. CONCLUSION 
In this short survey we have presented a framework for 
classification of component models. Such classification is not 
simple, since it does not cover all aspects of component models. It 
however identifies the minimal criteria for assuming a model to 
be a component model and it groups the basic characteristics of 
the models. From the results we can recognize some recurrent 
patterns such as – general-purpose component models utilize 
client-server style, while in the specialized domains (mostly 
embedded systems) pipe & filter is the predominate style. We can 
also observe that support for composition of extra-functional 
properties is rather scarce. There are many reasons for that: in 
practice explicit reasoning and predictability of EFP is still not 
widespread, there is an unlimited number of different EFP, and 
finally the compositions of many EFP are not only the results of 
component properties. Their compositions are considerably 
complex and (also) a matter of system architectures .[12]  This 
taxonomy can be further analyzed and refined, which is our 
intention: on one side enlarge the list with the new component 
models, on other side refine the taxonomy by introducing some 
comparative values and by introducing subtypes of the points in 
the framework dimension. 
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