
A Classification Framework for Component Models
Ivica Crnkovic

Mälardalen University,
Department of Computer
Science and Electronics

Box 883, SE-721 23
Västerås, Sweden

ivica.crnkovic@mdh.se

Michel Chaudron
Technical University
Eindhoven, Dept. of

Mathematics and Computing
Science,

P.O. Box 513, 5600 MB
Eindhoven, The Netherlands

m.r.v.chaudron@TUE.nl

Séverine Sentilles
Mälardalen University,

Department of Computer
Science and Electronics

Box 883, SE-721 23
Västerås, Sweden

severine.sentilles@mdh.se

Aneta Vulgarakis
Mälardalen University,

Department of Computer
Science and Electronics

Box 883, SE-721 23
Västerås, Sweden

aneta.vulgarakis@mdh.se

ABSTRACT
The essence of component-based software engineering is
embodied in component models. Component models specify the
properties of components and the mechanism of component
compositions. In a rapid growth, a plethora of different
component models has been developed, using different
technologies, having different aims, and using different
principles. This has resulted in a number of models and
technologies which have some similarities, but also principal
differences, and in many cases unclear concepts. Component-
based development has not succeeded in providing standard
principles, as for example object-oriented development. In order
to increase the understanding of the concepts, and to easier
differentiate component models, this paper provides a Component
Model Classification Framework which identifies and quantifies
basic principles of component models. Further, the paper
classifies a certain number of component models using this
framework.

Categories and Subject Descriptors

D.2.2 Design Tools and Techniques

General Terms
Design, component-based software engineering.

Keywords
Component models, taxonomy.

1. INTRODUCTION
Component-based software engineering (CBSE) is an established
area of software engineering. The inspiration for “building
systems from components” in CBSE comes from other
engineering disciplines, such as mechanical or electrical
engineering, and Software Architecture in which a system is seen
as a structure with clearly identified components and connectors.
The techniques and technologies that form the basis for
component models originate mostly from object-oriented
programming and Architecture Description Languages (ADLs).
Since software is in its nature different from the physical world,
the translation of principles from the classical engineering
disciplines into software is not trivial. For example, the
understanding of the term “component” has never been a problem
in the classical engineering disciplines, since a component can be
intuitively understood and that understanding fits well with
fundamental theories and technologies. This is not the case with
software; the notation of a software component is not clear: its

intuitive perception may be quite different from its model and its
implementation. From the beginning, CBSE struggled with a
problem to obtain a common and a sufficiently precise definition
of a software component. An early and probably the most
commonly used definition coming from Szyperski [1] (“A
software component is a unit of composition with contractually
specified interfaces and explicit context dependencies only. A
software component can be deployed independently and is subject
to composition by third party”) focuses on characterization of a
software component. In spite of its generally it was shown that
this definition is not valid for a wide range of component-based
technologies (for example those which do not support
contractually specified interface, or independent deployment). In
the definition of Heineman and Councill [2] (“A software
component is a software element that conforms to a component
model and can be independently deployed and composed without
modification according to a composition standard”), the
component definition is more general – actually a component is
specified through the specification of the component model butthe
component model itself is not specified. This definition of a
component can be even more pushed further in the generalization,
but on the contrary the definition of a component model can be
expressed more precisely [3]:

Definition I: A Software Component is a software building block
that conforms to a component model.

Definition II: A Component Model defines standards for (i)
properties that individual components must satisfy and (ii)
methods, and possibly mechanisms, for composing components.

This generic definition allows the existence of a wide spectrum of
component models, which is also happening in reality; there exist
many component models with many different characteristics on
the market and in different research communities. This diversity
makes it more difficult to properly understand the Component-
Based (CB) principles, and to properly select a component model
of interest, or to compare models. In particular, this is true since
CB principles are not clearly explained and formally defined. In
their diversities component models are similar to ADLs; there are
similar mechanisms and principles but very different
implementations. For this reason there is a need for providing a
framework which can provide a classification and comparison
between different component models in a similar manner as it was
done for ADLs [4,5].

In this paper, we thus propose a classification and comparison
framework for component models. Since component models and
their implementations in component technologies cover a large
range of different aspects of the development process, we group

mailto:ivica.crnkovic@mdh.se

these aspects in several dimensions of the framework - for certain
component models we will say that they are similar in one
dimension, but different in another. Several different taxonomies
of component models already exist, an example is [6] in which
taxonomy is described in respect to component life cycles in
particular composition is presented, another example is [7] in
which domains, business perspectives are shown as well as a
focus on CBSE concepts such as reuse. Our comparison
framework has the goal to provide a multidimensional framework,
that counts different, yet equality important aspects of component
models.

The remainder of this paper is as follows. Section two motivates,
explains and defines the different dimensions of the classification
framework. Section three gives a very brief overview of selected
component models, and section four provides a short description
of component model characteristics in the comparison framework,
for each dimension.

2. The Classification Framework
The main concern of a component model is to (i) provide the rules
for the specification of component properties and (ii) provide the
rules and mechanisms for the component composition, including
the composition rules of component properties. These main
principles hide many complex mechanisms and models, and have
significant differences in approaches, concerns and
implementations. For this reason we cannot simply list all
possible characteristics to compare the component models; rather
we want to group particular characteristics that have similar
concerns i.e. that describe the same or related aspects of
component models. The fundamental principles can be divided
into the following categories:

1. Lifecycle. The lifecycle dimension identifies the support
provided (explicitly or implicitly) by the component model, in
certain points of a lifecycle of components or component-
based systems. Component-Based Development (CBD) is
characterized by the separation of the development processes
of individual components from the process of system
development. There are some synchronization points in
which a component is integrated into a system, i.e. in which
the component is being bound. Beyond that point, the notion
of components in the system may disappear, or components
can still be recognized as parts of the system.

2. Constructs. The constructs dimension identifies (i) the
component interface used for the interaction with other
components and external environment, and (ii) the means of
component binding and communication. Interface
specification is the characteristic “sine qua non” of a
component model. In some component models, the interface
comprises the specification of all component properties, but
in most cases, it only includes a specification of properties
through which the communication with the environment
should be realized. Directly correlated to the interface are the
components’ interoperability mechanisms. All these concepts
are parts of the “construction” dimension of CBD.

3. Extra-Functional Properties. The extra-functional
properties dimension identifies specifications and support
that includes the provision of property values and means for
their composition. In certain domains (for example real-time

embedded systems), the ability to model and verify
particular properties is equally important but more
challenging than the implementation of functional properties
themselves.

4. Domains. This dimension shows in which application and
business domains component models are used. It indicates
the specialisation, or the generality of component models.

In these four dimensions, we comprise the main characteristics of
component models but, of course, there are other characteristics
that can differentiate them. For example, since in many cases
component models are built on a particular implementation
technology, many characteristics come directly from this
supporting implementation technology and that are not visible in
component models themselves.

2.1 Lifecycle
In the software development lifecycle, a number of methods and
technologies specifying and supporting particular phases of the
cycle exist. While CBSE aims at covering the entire lifecycle of
component-based systems, component models provide only
partial lifecycle support and are usually related to design,
implementation and integration phases.

The overall component-based lifecycle is separated into several
processes; building components, building systems from
components, and assessing components [6]. Some component
technologies provide certain support in these processes (for
example maintaining component repositories, exposing interface,
and similar).

The component-based paradigm (i.e. composability and
reusability) has extended the integration activities in the run-time
phase; certain component technologies provide extended support
for dynamic and independent deployment of components into the
systems. This support reflects the design of many component
models. Accordingly, some of the components are only available
at development stage and at run-time the system is monolithic.
However not all component models consider the integration
phase. We can clearly distinguish different component models
that are related to a particular phase and such phase can be
different for different component models. Some component
technologies start in the design stage (e.g. Koala which has an
explicit and dedicated design notation). Many other component
technologies focus on the implementation phase (e.g. COM, EJB).
For this reason one important dimension of the component model
classification is the lifecycle support dimension. In such
classification, we must consider both component lifecycle and
component-based system lifecycle, which are somewhat different
[3, 9] and are not necessary temporally related – they are ongoing
in parallel and have some synchronization points. Here we
identify characteristic “points” of both lifecycles that are concerns
in component models:

(i) Modelling stage. The component models provide support for
the modelling and the design of component-based systems and
components. Models are used either for the architectural
description of the systems and components (e.g. ADLs), or for the
specification and the verification of particular system and
component properties (e.g. statecharts).

(ii) Implementation stage. The component model provides support
for generating and maintaining code. The implementation can

stop with the provision of the source code, or can continue up to
the generation of a binary (executable) code. The existence of
executable code is an assumption for the dynamic deployment of
the components (i.e. the deployment of the components in the
system run-time).

(iii) Packaging stage. Since components can be developed
separately from systems, and the primary idea of the component-
based approach is to reuse existing components, there is a need
for their storage and packaging – either in a repository or for
distribution. A component package is a set of metadata and
compiled code modules that contain implementations of a
component interface. Accordingly, the result of this stage can be a
file, archive, or a repository where the packaged components are
residing prior to decisions about how they will be run in the target
environment. For example, in Koala, components are packed into
a file system-based repository, in which a directory exists for each
component. The directory contains a Component Description
Language (CDL) file and a set of C and header files.
Additionally, it can also contain interface definition files and/or
data definition files. Another example of packaging is achieved in
the EJB component model. There, packaging is done through jar
archives, called ejb-jar. Each archive contains XML deployment
descriptor, component description, component implementation
and interfaces.

(iv) Deployment stage. At a certain point of time, a component is
integrated into a system i.e. bound to the execution platform. This
activity happens at different points of development or
maintenance phase. However, each of the component
technologies that exist today solves the deployment issues in their
own particular way. In general, the components can be deployed
at compilation time (static binding) as part of the system, making
it no longer possible to change how the components interact with
each other, or at run time as separate units by using means such as
registers (COM) or containers (CCM, EJB). For instance, Koala
components are deployed at compilation time and they use static
binding by following naming conventions and generated
renaming macros. In opposition, CORBA components are
deployed at run time in a container by using the information of
the deployment descriptor packed with the component
implementation.

2.2 Constructs
As mentioned in [30], the verb “construct” means “to form
something by putting different things together”, so in applying
this definition to the CBSE domain, we define under this
“Constructs” dimension, the way components are connected
together within a component model in order to provide
communication means. But although this communication aspect is
of primordial importance, it is not often expressed explicitly.
Instead, it is reflected implicitly by some underlying mechanisms.
This is at contrary to functional – and sometimes extra-functional
– properties of a component which are clearly stated in
component interfaces. Consequently, a component interface has a
double role: it first specifies the component properties (functional
and possibly extra-functional), and second, it defines the actions
through which components may be interconnected. Some of the
component models distinguish also the “provides”-part (i.e. the
specification of the functions that the component offer) from
“requires”-part (i.e. the specification of the functions the
component require) of an interface.

Besides coming along with the massive emergence of component
models, several languages exist nowadays for specifying an
interface: modelling languages (such as UML or different ADLs),
particular specification languages (Interface Definition
Languages), programming languages (such as interfaces in Java)
or some additions built directly in a programming language.
Similarly, the interaction can also be of different types: port-based
where ports are the channels for communication of different data
types and events; functions in programming languages defining
input and output parameters; interfaces or classes in Object
Oriented programming languages.

However, an interface remains most of time a very succinct
description of the services a component proposes or needs. So in
order to ensure that a component will behave as expected
according to its specification and operational mode, the notion of
contract has been adjoined to interfaces. According to [10],
contracts can be classified hierarchically in four levels which, if
taken together, may form a global contract. We only adopt the
three first levels in our classification since the last level
“contractualizes” only the extra-functional properties and this is
not in direct relation with interoperability

– Syntactic level: describes the syntactic aspect, also called
signature, of an interface. This level ensures the correct
utilisation of a component. That is to say that the “client-
component” must refer to the proper types, fields, methods,
signals, ports and handles the exceptions raised by the
“server-component”. This is the most common and most easy
agreement to certify as it relies mainly on an, either static or
dynamic, type checking technique.

– Semantic level: reinforces the previous level of contracts in
certifying that the values of the parameters as well as the
persistent state variables are within proper ranges. This can be
asserted by pre-conditions, post-conditions and invariants. A
generalization of this level can be assumed as semantics.

– Behaviour level: dynamic behaviour of services. It expresses
either the composition constraints (e.g., constraints on their
temporal ordering) or the internal behaviour (e.g. dynamics of
internal states).

Finally, the constructs dimension refers to the notions of
reusability and evolvability, which are important principles of
CBSE. Indeed, many component models are endowed with
diverse features for supporting them but one typical solution is
directly related to the existence of interfaces and therefore to our
constructs dimension. This solution offers the ability to add new
interfaces to a component which makes possible to embody
several versions or variants of functions in the component.

Besides, compositions in constructs are implemented as
connections of interaction channels and the process of connecting
is called binding. As mentioned before, the binding mechanismis
related to the component lifecycle; it can occur at compilation
time (when a compiler provides a direct connection between
components using programming language mechanisms), or at run-
time, in which the connection mechanisms are utilised either by
the services of the underlying operation system, or are
implemented in the component middleware or the component
framework. A so-called “docking interface” method is utilized
when the binding is provided at the run-time. This interface does

not offer any application functionality, but serves instead for
interaction between a component and the underlying system.

Another type of binding is also realised through connectors.
Connectors, introduced as distinct elements in ADLs, are not
common among the first class citizens in most component models.
Connectors are mediators in the connections between components
and have a double purpose: (i) enabling indirect composition (so-
called exogenous composition, in regards to direct or endogenous
composition), (ii) introducing additional functionality. Exogenous
composition enables more seamless evolution since it allows
independent changes of components. In addition, in several
component technologies, connectors act as specialised
components, such as adaptors or proxies, either to provide
additional functional or extra-functional properties, or to extend
the means of intercommunication.

The interface specification implicitly defines the type of
interaction between components to comply with particular
architectural styles. In most cases, particular component models
provide a single basic interaction mechanism, but others, such as
Fractal for example, allow the construction of different
architectural styles.

For the constructs dimension of this classification framework, we
distinguish consequently the following points.

(i) Interface specification, in which different characteristics
allowing the specification of interfaces are identified:
(1) The distinction between the notions of interface and port.
Although a port is generally seen as a part of an interface, in
some component models a port is actually the only mean of
communication. In these cases, the binding is done in a
wiring manner such as in the pipe and filter architectural
style. On the contrary, interfaces may involve many different
ways of binding..
(2) The distinction between the provides-part and requires-
part of an interface.
(3) The existence of some distinctive features appearing only
in this component model. And,
(4) The language used to specify those interfaces.

(ii) Interface levels which describe the levels of
contractualisation of the interfaces, namely syntactic,
semantic and/or behaviour level

(iii) Standard Architectural Style which aims at identifying the
recurrent patterns of interaction among components. Some of
them are for example pipe&filter, client/server or Event-

driven.
(iv) Communication type which details mainly if the

communication used is synchronous and/or asynchronous.
An extension of this could be to consider also the number of
receivers (unicast, multicast or broadcast).

(v) Binding type describes the way components may be linked
together through the interfaces.
(1) The exogenous sub-category depicts if the component
model allows using some connectors. And,
(2) The vertical sub-category expressing the possibility of
having a hierarchical composition of components
We assume here that the “endogenous” composition and the
“horizontal” binding are the default mechanism of any
component model, i.e. a “direct” connection between two
components.

2.3 Extra-Functional Properties
Properties (also designated as attributes) are used in the most
general sense as defined by standard dictionaries, e.g.: “a
construct whereby objects and individuals can be distinguished”
[11]. There is no unique taxonomy of properties, and
consequently there can exist many property classification
frameworks. One commonly used classification is to distinguish
functional from extra-functional properties. While functional
properties describe functions or services of an object (individual
or thing), extra-functional properties (EFP) specify the quality (in
a broader sense) of objects. In CBSE, there is a distinction
between component properties and system properties. The system
properties can be the result of the composition of the same
properties of components, but also of a composition of different
properties [12]. Important concerns of CBSE are how to provide
relevant parameters from components which will be used in a
provision of the system properties.

The two main dimensions in which component models differ in
the way they manage EFP are the following:

– A property is managed by the system (exogenous EFP
management) or managed by components (endogenous EFP
management). This corresponds to wonder which actor
manages a property;

– A property is managed on a system-wide scale or the
property is managed on a per-collaboration basis (i.e. what is
the scope of management of a property).

The different types of approaches are characterized by the
reference architectures shown in Figure 1

Figure 1. Management of extra-functional properties

Component Execution Platform

component component

EFP Management EFP Management

Component Execution Platform

EFP Management

component component

Component Execution Platform

component

EFP Management

EFP Management EFP Management

component

Component Execution Platform

component

EFP Management EFP Management

component

EFP Managed systemwideEFP Managed per collaboration

Exogenous EFP
management

Endogenous EFP
management

A B

C D

Component Execution Platform

component component

EFP Management EFP Management

Component Execution Platform

EFP ManagementEFP Management

component component

Component Execution Platform

component

EFP ManagementEFP Management

EFP ManagementEFP Management EFP ManagementEFP Management

component

Component Execution Platform

component

EFP ManagementEFP Management EFP ManagementEFP Management

component

EFP Managed systemwideEFP Managed per collaboration

Exogenous EFP
management

Endogenous EFP
management

A B

C D

Many component models provide no specific facilities for
managing extra-functional properties. The way a property is
handled is left to the designers of the system, and as a result a
property may not be managed at all (approach A). This approach
makes it possible to include EFP management policies that are
optimized towards a specific system, and also can cater for
adopting multiple policies in one system. This heterogeneity may
be particularly useful when COTS components need to be
integrated. On the other hand, the fact that such policies are not
standardized may be a source of architectural mismatch between
components.

The compatibility of components can be improved if the
component model provides standardized facilities for managing
EFP (approach B in Figure 1). In this approach, there is a
mechanism in the component execution platform that contains
policies for managing EFP for individual components as well as
for EFP involving multiple components. The ability to negotiate
the manner in which EFP are handled requires that the
components themselves have some knowledge about how the EFP
affects their functioning. This is a form of reflection.

A third approach is that the components should be designed such
that they address only functional aspects and not EFP.
Consequently, in the execution environment, these components
are surrounded by a container. This container contains the
knowledge on how to manage EFP. Containers can either be
connected to containers of other components (approach C) or
containers can interact with a mechanism in the component
execution platform that manages EFP on a system wide scale (D).

The container approach is a way of realizing separation of
concerns in which components concentrate on functional aspects
and containers concentrate on extra-functional aspects. In this
way, components become more generic because no modification
is required to integrate them into systems that may employ
different policies for EFP. Since these components do not address
EFP, another advantage is that they are simpler and smaller and
hence they are cheaper to implement.

For the EFP we provide a classification in respect to the following
questions:
(i) Extra-functional properties support: does the component

model provide general principles, means and/or support for
specification and reasoning about extra-functional
properties?

(ii) Extra-functional properties specification: Does the
component model contain means for specification and
reasoning of specific extra-functional properties. If yes,
which types and/or which properties?

(iii) Composability of extra-functional properties: Does the
component model provide means, methods and/or techniques
for composition of certain extra-functional properties. If yes,
which properties and/or what type of composition?

2.4 Domains
Some component models are aimed at specific application
domains as for instance consumer electronics or automotive. In
such cases, requirements from the application domain penetrate
into the component model. As a result, the component model
provides a natural fit for systems in that particular domain. The
benefits of a domain-specific component models are that the

component technology facilitates achieving certain requirements.
Such component models are, as a consequence, limited in
generality and will not be so easily usable in domains that are
subject to different requirements.

Some component models are of general-purpose. They provide
basic mechanisms for the production and the composition of
components, but on the other hand, provide no guidance, nor
support for any specific architecture. A general solution that
enables component models to be both generally applicable but
also cater for specific domains is through the use of optional
frameworks. A framework is an extension of a component model
that may be used, but is not mandatory in general.

There is a third type of component models - namely generative;
they are used for instantiation of particular component models.
They provide common principles, and some common parts of
technologies (for example modelling), while other parts are
specific (for example different implementations).

3. SURVEY OF COMPONENT MODELS
Nowadays there are numerous component models which can vary
widely in many possible aspects: In usage, in support provided, in
concerns, in complexity, in formal definitions and similar. In our
classification of component models, the first question is whether a
model (or technology, method, or similar) is a component model
or not. Similar to biology in which viruses cover the border
between life and non-life, there is a wide range of models, from
those having many elements of component models but are still not
assumed as component models, via those that lack many elements
of component models, but are still called component models,
through to those which are assumed as being component models.
Therefore, we identify the minimum criteria required to classify a
model, or a notation as a component model. This minimum is
defined by Definition I and Definition II: A model that explicitly
or implicitly identifies components and defines rules for
specification of component properties and means of their
composition can be classified as a component model.

In the next section, we provide a very brief overview of some
component models and their main characteristics. The list is not
complete, and can be increased by time. It should be understood
as a provision of some characteristic examples, or examples of
widely used component models in Software Engineering.

The AUTomotive Open System Architecture (AUTOSAR)
[14], is the result of the partnership between several
manufacturers and suppliers from the automotive field. It
envisions the conception of an open standardized architecture
aiming at improving the exchangeability of diverse elements
between vehicle platforms, manufacturer’s applications and
supplier’s solutions. Those objectives rely upon the utilisation of
both a component-based approach for the application and
standardized layered architecture. This allows separating the
component-based application from the underlying platform.
AUTOSAR support both the client-server and Sender-Receiver
communication paradigms and each AUTOSAR Software
Component instance from a vehicle platform is only assigned to
one Electronic Control Unit (ECU). The AUTOSAR Software
Components, as well as all the modules in an ECU, are
implemented in C.

BIP [14] framework designed at Verimag for modelling
heterogeneous real-time components. This heterogeneity is
considered for components having different synchronization
mechanisms (broadcast/rendez-vous), timed components or non-
timed components. Moreover, BIP focuses more on component
behaviours than others component models thanks to a three-layer
structure of the components (Behaviour, Interaction, Priority); a
component can be seen as a point in this three-dimensional space
constituted by each layer. This also sets up the basis for a clear
separation between behaviour and structure. In this model,
compound components, i.e components created from already
existing ones, and systems are obtained by a sequence of formal
transformations in each of the dimension. BIP comes up with its
own programming language but targets C/C++ execution. Some
connections to the analysis tools of the IF-toolset [16] and the
PROMETHEUS tools [17] are also provided.

CORBA Component Model (CCM) [18] evolved from Corba
object model and it was introduced as a basic model of the
OMG’s component specification i.e CORBA 3 in 2002. The CCM
specification defines an abstract model, a programming model, a
packaging model, a deployment model, an execution model and a
metamodel. The metamodel defines the concepts and the
relationships of the other models. Component is a new CORBA
metatype. CORBA components communicate with outside world
through ports. CCM uses a separate language for the component
specification: Interface Definition Language (IDL). CCM
provides a Component Implementation Framework (CIF) which
relies on Component Implementation Definition Language
(CIDL) and describes how functional and non-functional part of a
component should interact with each other. In addition, CCM uses
XML descriptors for specifying information about packaging and
deployment. Furthermore, CCM has an assembly descriptor
which contains metadata about how two or more components can
be composed together.

The Entreprise JavaBeans (EJB) [19], developed by Sun
MicroSystems envisions the construction of object-oriented and
distributed business applications in trying to hide to developers
the underlying complexity, such as transactions, persistence,
concurrency, interoperability. It also aims at the improvement of
component reusability in providing different utilities, such as
means, so called EJB-jars to package components, called beans.
Three different types of components coexist to match the specific
needs of different applications (The EntityBeans the SessionBean
and the MessageDrivenBeans). Each of these beans is deployed in
an EJB Container which is in charge of their management at
runtime (start, stop, passivation or activation). In order to achieve
this, EJB technology use the Java programming language.

Fractal [20] is a component model developed by France Telecom
R&D and INRIA. It intends to cover the whole development
lifecycle (design, implementation, deployment and
maintenance/management) of complex software systems. It comes
up with several features, such as nesting, sharing of components
and reflexivity in that sense that a component may respectively be
created from other components, be shared between components
and describes its own behaviour. The main purpose of Fractal is to
provide an extensible, open and general component model that
can be tuned to fit a large variety of applications and domains.
Consequently, nothing is fixed in Fractal; On the contrary, it even
provides means to facilitate adaptation in notably having different

implementations to fit the specific needs of a domain as for
example its C-implementation called Think, which targets
especially the embedded systems. A reference implementation,
called Julia and written in Java, is also provided. Fractal can also
be seen as a generic component model which intends to
encompass other component models.

Koala [21] is a component model developed by Philips for
building consumer electronics. Koala components are units of
design, development and reuse. Semantically, components in
Koala are defined in a ADL-like language. Koala IDL is used to
specify Koala component interfaces, its Component Definition
Language (CDL) is used to define Koala components, and Koala
Data Definition Language (DDL) is used to specify local data of
components. Koala components communicate with their
environment or other components only through explicit interfaces
statically connected at design time. Koala targets C as
implementation language and uses source code components with
simple interaction model.

Microsoft Component Object Model (COM) [22] is one of the
most commonly used software component models for desktop and
server side applications. A key principle of COM is that interfaces
are specified separately from both the components that implement
them and those that use them. COM defines a dialect of the
Interface Definition Language (IDL) that is used to specify
object-oriented interfaces. Interfaces are object-oriented in the
sense that their operations are to be implemented by a class and
passed a reference to a particular instance of that class when
invoked. A concept known as interface navigation makes it
possible for the user to obtain a pointer to every interface
supported by the object. This is based on VTable. Although COM
is primarily used as a general-purpose component model it has
been ported for embedded software development.

The Open Services Gateway Initiative (OSGi) [23] is a
consortium of numerous industrial partners working together to
define a service-oriented framework with an “open specifications
for the delivery of multiple services over wide area networks to
local networks and devices”. Contrary to most component
definitions, OSGI emphasis the distinction between a unit a
composition and a unit of deployment in calling a component
respectively service or bundle. It offers also, contrary to most
component models, a flexible architecture of systems that can
dynamically evolve during execution time. This implies that in
the system, any components can be added, removed or modified
at run-time. Thus, there is no guaranty that a service provided at a
certain time will be still provided later. Being built on Java, OSGI
is platform independent.

Pecos [24] is a joint project between ABB Corporate Research
and academia. Their goal is to provide environment that supports
specification, composition, configuration checking and
deployment for reactive embedded systems built from software
components. Component specification and component
composition are done in an ADL-like language called CoCo.
There are two types of components, leaf components and
composite components. The inputs and outputs of a component
are represented as ports. At design phase composite components
are made by linking their ports with connectors. Pecos targets
C++ or Java as implementation language, so the run-time
environment in the deployment phase is the one for Java or C++.
Pecos enables specification of EFP properties such as timing and

memory usage in order to investigate in prediction of the
behaviour of embedded systems.

Pin [25] component model is based on an earlier component
technology developed by Carnegie Mellon Software Engineering
Institute (SEI), for use in prediction-enabled component
technologies (PECTs). It is aimed for building embedded software
applications. By using principles from PECT it aims at achieving
predictability by construction. Components are defined in an
ADL-like language, in the “component and connector style”, so
called Construction and Composition Language (CCL).
Furthermore, Pin components are fully encapsulated, so the only
communication channels from a component to its environment
and back are its pins.

Robocop [26] is a component model developed by the consortium
of the Robocop ITEA project, inspired by COM, CORBA and
Koala component models. It aims at covering all the aspects of
the component-based development process for the high-volume
consumer device domain. A Robocop component is a set of
possibly related models and each model provides particular type
of information about the component. The functional model
describes the functionality of the component, whereas the extra-
functional models include modelling of timeliness, reliability,
safety, security, memory consumption, etc. Robocop components
offer functionality through a set of ‘services’ and each service
may define several interfaces. Interface definitions are specified
in a Robocop Interface Definition Language (RIDL). The
components can be composed of several models, and a
composition of components is called an application. The Robocop
component model is a major source for ISO standard ISO/IEC
23004 for multimedia middleware.

Rubus [27] component was developed as a joint project between
Arcticus Systems AB and the Department of Computer
Engineering at Mälardalen University. The Rubus component
model runs on top of the Rubus real-time operating system. It
focuses on the real-time properties and is intended for small
resource constrained embedded systems. Components are
implemented as C functions performed as tasks. A component
specifies a set of input and output ports, behaviour and a
persistent state, timing requirements such as release-time,
deadline. Components can be combined to form a larger

component which is a logical composition of one or more
components.

SaveCCM [28], developed within the SAVE project and several
Swedish Universities, is a component model specifically designed
for embedded control applications in the automotive domain with
the main objective of providing predictable vehicular systems.
SaveCCM is a simple model that constrains the flexibility of the
system in order to improve the analysability of the dependability
and of the real-time properties. The model takes into
consideration the resource usage, and provides a lightweight run-
time framework. For component and system specification
SaveCCM uses “SaveCCM language” which is based on a textual
XML-syntax and on a subset of UML2.0 component diagrams.

The SOFA (Software Appliances) [29] is component model
developed at Charles University in Prague. A SOFA component is
specified by its frame and architecture. The frame can be viewed
as a black box and it defines the provided and required interfaces
and its properties. However a framework can also be an assembly
of components, i.e a composite component. The architecture is
defined as a grey-box view of a component, as it describes the
structure of a component until the first level of nesting in the
component hierarchy. SOFA components and systems are
specified by an ADL-like language. Component Description
Language (CDL). The resulting CDL is compiled by a SOFA
CDL compiler to their implementation in a programming
language C++ or JAVA. SOFA components can be composed by
method calls through connectors. The SOFA 2.0 component
model is an extension of the SOFA component model with several
new services: dynamic reconfiguration, control interfaces and
multiple communication styles between the components.

4. COMPONENT MODEL
CLASSIFICATION
In order to illustrate the utilisation of our classification
framework, we categorize here the component models listed
above with respect to the corresponding dimensions. The
reference documentation of each component models has generally
been used to fill those tables. However, some of the information
presented here are not mentioned explicitly in the reference
documentation and are subject to the reader’s point of view.

Table 1: Lifecycle Dimension
Component

Models Modelling Implementation Packaging Deployment

AUTOSAR N/A C N/A At compilation

BIP
A 3-layered representation: statemachine

diagram, priority and interaction expression
or a statemachine with ports

BIP language N/A At compilation

CCM Abtstract model:OMG-IDL,
Programming model: CIDL Language independent. Deployment Unit archive

(JARs,DLLs) At run-time

Fractal

FractalGui,
ADL-like language

(Fractal ADL, Fractal IDL),
Annotations (Fractlet)

Julia, Aokell(Java)
Think(C/C++)
FracNet(.Net)

…

File system based repository At run-time

KOALA ADL-like language (IDL,CDL and DDL) C File system based repository At compilation

EJB N/A Java,
Java binary code EJB-Jar files At run-time

Component
Models Modelling Implementation Packaging Deployment

MS COM Microsoft IDL Different languages,
Binary standard DLL At run-time

OSGi N/A Java Jar-files (bundles) At run-time

PIN ADL-like language (CCL) C DLL At compilation

PECOS ADL-like language (CoCo) C++,
 Java Jar packages At compilation

ROBOCOP IDL for the interface model.
Several different models

C,
C++ zip files At compilation

At run-time

RUBUS N/A C File system based repository At compilation

SaveCCM ADL C N/A At compilation

SOFA 2.0 Meta-model based definition Java Repository At run-time

Table 2: Constructs
Interface Specification Binding Type

Component
Models Interfaces/

Ports/Both

Distinction
Provides /
Requires

Distinctive feature Interface
Language

Interface
Levels

Standard
Architecture

Styles

Communication
Type Exogenous Vertical

AUTOSAR Both Yes

Classified within
3 types:

– AUTOSAR Interface,
– Standardized

AUTOSAR Interface,
– Standardized Interface

C header files
Syntactic

No semantic
No behaviour

Client/Server
Data-centered

Synchronous
Asynchronous

No Delegation

BIP Port No
Existence of:

Complete interfaces,
Incomplete interfaces

BIP
Language

No syntactic
Semantic
Behaviour

Event-driven

Synchronous
Asynchronous
(Rendez-vous,

Broadcast)

No Delegation

CCM Both Yes

Classified within
2 types:

– Facets and receptacles
– Event sinks and event
sources

CORBA IDL
Syntactic

No semantic
No behaviour

Blackboard
Synchronous

Asynchronous
No No

EJB 3.0 Interface No N/A

Java
Programming
Language +
Annotations

Syntactic
No semantic
No behaviour

Client/Server
(JDBC)

Blackboard
(JMS)

Synchronous
Asynchronous

No No

Fractal Interface Yes
Existence of:

Control
Interface

Any
programming

language,
IDL, Fractal

ADL

Syntactic
No semantic
Behaviour

Multiple
architectural

styles

Multiple
communication

styles
Yes Aggregation

KOALA Interface Yes
Existence of:

– Diversity Interface,
– Optional Interface

IDL
Syntactic

No semantic
No behaviour

Pipe&filter Synchronous Yes Aggregation

MS COM Interface No All interfaces derived
from a IUnknown

Microsoft
IDL

Syntactic
No semantic
No behaviour

Multiple
architectural

styles
Synchronous No

Delegation
Aggregation

OSGi Interface Yes Existence of:
Dynamic Interfaces

Java
programming

language

Syntactic
No semantic
No behaviour

Event-driven Synchronous No No

PECOS Port Yes N/A
Coco

composition
language

Syntactic
Semantic
Behaviour

Pipe&filter (with
blackboard)
Event-driven

Synchronous No Delegation

Pin Port Yes N/A
Component
Composition

Language

Syntactic
No semantic
No behaviour

Pipe&filter
Event-driven

Synchronous
Asynchronous

Yes No

Rubus Port Yes

Classified within
2 types:

– data
– triggered

C header file
Syntactic

No semantic
No behaviour

Pipe&filter Synchronous No Delegation

Robocop Port Yes N/A Robocop IDL
(RIDL)

Syntactic
Semantic

(Behaviour)
Client/Server

Synchronous
Asynchronous

No No

SaveCCM Port Yes

Classified within
3 types:

– data
– triggered
– data& triggered

SaveComp
(XML-based)

Syntactic
No semantic
Behaviour

Pipe&filter Synchronous No Delegation

SOFA 2.0 Interface Yes

Existence of:
 Utility Interface,

Possibility to annotate
interface and to control

evolution

Java
programming

language

Syntactic
No semantic
Behaviour

Multiple
architectural

styles

Multiple
communication

styles
Yes Delegation

Table 3: Extra-Functional Properties
Component

Models General support for properties Properties specification Composition support

AUTOSAR N/A

BIP Behaviour compositions,
endogenous EFP management times properties

CCM
Support for mechanism to influence

of some EFP, exogenous EFP
management

N/A Run time support for some
EFP

Fractal

Interceptor and controller in Julia,
extension possibilities for different

EFP,
endogenous EFP management

Extension with a new
controller

KOALA Extensions in interface
specification and the compiler

Resource usage but no
timing and memory

consumption
Compile time checks

EJB
Support for mechanism to influence
of some EFP, container maintaining
EFP, exogenous EFP management

N/A Run time support for some
EFP

MS COM Endogenous EFP management N/A N/A
OSGi endogenous EFP management N/A N/A

PIN Analytic interface for EFP,
endogenous EFP management Timing properties Different EFP composition

theories

PECOS endogenous EFP management
Timing properties (WCET,

periods), memory
consumption

N/A

ROBOCOP
CEP provides manager for resource

budgets, exogenous EFP
management

Memory consumption,
WCET, cycle time,
priority, reliability

Some EFP checked at
deployment and monitored

during execution.

RUBUS Exogenous EFP management Timing, resource usage,
QoS Design time

SaveCCM Interface extension endogenous
EFP management Real-time attributes Composition of RT EFP

SOFA 2.0 Behaviour EFP specification,
endogenous EFP management Behavioural (protocols) Composition at design

Table 4: Domains

D
om

ai
n

A
U

T
O

-
SA

R

B
IP

 C
C

M

Fr
ac

ta
l

K
O

A
L

A

E
JB

M
S

C
O

M

O
SG

i

PI
N

PE
C

O
S

R

O
B

O
C

O
P

R
U

B
U

S

Sa
ve

C
C

M

SO
FA

 2
.0

Generative x x x

General x x x x x x x

Specialised x x x x x x x x

5. CONCLUSION
In this short survey we have presented a framework for
classification of component models. Such classification is not
simple, since it does not cover all aspects of component models. It
however identifies the minimal criteria for assuming a model to
be a component model and it groups the basic characteristics of
the models. From the results we can recognize some recurrent
patterns such as – general-purpose component models utilize
client-server style, while in the specialized domains (mostly
embedded systems) pipe & filter is the predominate style. We can
also observe that support for composition of extra-functional
properties is rather scarce. There are many reasons for that: in
practice explicit reasoning and predictability of EFP is still not
widespread, there is an unlimited number of different EFP, and
finally the compositions of many EFP are not only the results of
component properties. Their compositions are considerably
complex and (also) a matter of system architectures .[12] This
taxonomy can be further analyzed and refined, which is our
intention: on one side enlarge the list with the new component
models, on other side refine the taxonomy by introducing some
comparative values and by introducing subtypes of the points in
the framework dimension.

6. REFERENCES
[1] C. Szyperski, Component Software, Addison-Wesley

Professional; 2002
[2] G. T. Heineman and W. T. Councill, Component-based

Software Engineering: Putting the Pieces Together, Addison-
Wesley, 2001.

[3] M. R. V. Chaudron, Lecture notes on CBSE Technische
Universiteit Eindhoven, 2006

[4] N. Medvidovic, E. M. Dashofy, R. N. Taylor, Moving
architectural description from under the technology
lamppost, Information and Software Technology,vol.49,
Iss.1, 2007

[5] N. Medvidovic and Ri. N. Taylor, A Classification and
Comparison Framework for Software Architecture
Description Languages, IEEE Transactions on Software
Engineering, Vol. 26, No. 1, January, 2000

[6] K.-K. Lau and Z. Wang. A taxonomy of software component
models. In Proc. 31st Euromicro, Conference, pages 88–95.
IEEE Computer Society Press, 2005.

[7] G. Kotonya, I. Sommerville and S. Hall, Towards A
Classification Model for Component-Based Software
Engineering Research, Proc. of the IEEE 29th
EUROMICRO Conference, September 2003

[8] I. Crnkovic, M. Chaudron, S. Larsson Component-based
Development Process and Component Lifecycle, Journal of
Computing and Information Technology, vol 13, nr 4, 2005

[9] I. Crnkovic, M. Larsson, Building Reliable Component-
Based Software Systems Artech House, 2002

[10] A. Beugnard, J.-M. Jézéquel, and N. Plouzeau. Making
components contract aware. IEEE Computer, 32(7):38-45,
1999.

[11] Miller, G. A. (2002). WordNet®. Cognitive Science
Laboratory, Princeton University Available:
http://www.cogsci.princeton.edu/~wn/

[12] I. Crnkovic, M. Larsson, O. Preiss, Concerning
Predictability in Dependable Component-Based Systems:
Classification of Quality Attributes, Architecting Dependable
Systems III,, p pp. 257 – 278, Springer, LNCS 3549, 2005

[13] The Object Management Group, UML Superstructure
Specification v2.1, April 2006.
Available at http://www.omg.org/docs/ptc/06-04-02.pdf

[14] AUTOSAR Development Partnership, AUTOSAR –
Technical Overview v2.0.1, 27/06/2006,
Available at
http://www.autosar.org/download/AUTOSAR_TechnicalOverview.pdf

[15] Ananda Basu, Marius Bozga and Joseph Sifakis, Modeling
Heterogeneous Real-time Components in BIP, 4th IEEE
International Conference on Software Engineering and
Formal Methods (SEFM06), Invited talk, September 11-15,
2006, Pune, pp 3-1

[16] M. Bozga, S. Graf, I. Ober, I. Ober, and J. Sifakis, The IF
toolset, in SFM, 2004.

[17] G. Gößler, PROMETHEUS — a compositional modelling
tool for real-time systems, Proc. Workshop RT-TOOLS
2001, Technical report 2001-014, Uppsala University

[18] OMG CORBA v 4.0, http://www.omg.org/docs/formal/06-
04-01.pdf

[19] EJB 3.0 Expert Group, JSR 220: Enterprise
JavaBeansTM,Version 3.0 EJB Core Contracts and
Requirements Version 3.0, Final Release, May 2, 2006.,

[20] E. Bruneton, T. Coupaye & J.B. Stefani, The Fractal
Component Model, February 5, 2004.
http://fractal.objectweb.org/specification/index.html

[21] R. van Ommering, F. van der Linden, and J. Kramer. “The
koala component model for consumer electronics software”,
In IEEE Computer, pages 78–85. IEEE, March 2000.

[22] D. Box, Essential COM, Addison-Wesley Professional, 1997
[23] OSGi Alliance, 15/02/2007, http://www.osgi.org/
[24] M. Winter, C. Zeidler, C. Stich, “The PECOS Software

Process”, Workshop on Components-based Software
Development Processes, ICSR 7 2002.

[25] S. Hissam, J. Ivers, D. Plakosh, K. Wallnau, Pin Component
Technology (V1.0) and Its C Interface. CMU Technical
Report, CMU/SEI-2005-TN-001

[26] H. Maaskant; “A Robust Component Model for Consumer
Electronic Products”, Philips Research Book Series
Volume3, p167-192

[27] Arcticus Systems, Rubus component model,
http://www.arcticus-systems.com

[28] M. Åkerholm et al., The SAVE approach to component-
based development of vehicular systems, Journal of Systems
and Software, Elsevier, May, 2006

[29] T. Bureš, P. Hnětynkal and F. Plášil, SOFA 2.0: Balancing
Advanced Features in a Hierarchical Component Model, Proc. of
SERA 2006, Seattle, USA, IEEE CS, Aug 2006

[30] Oxford Advanced Learner’s Dictionary,
 http://www.oup.com/oald-bin/web_getald7index1a.pl

	1. INTRODUCTION
	2. The Classification Framework
	2.1 Lifecycle
	2.2 Constructs
	Extra-Functional Properties
	2.4 Domains
	3. SURVEY OF COMPONENT MODELS
	4. COMPONENT MODEL CLASSIFICATION
	5. CONCLUSION
	6. REFERENCES

