On Optimal Hierarchical Resource Sharing in Open Environments*

Insik Shin, Moris Behnam, Thomas Nolte, Mikael Nolin
Malardalen Real-Time Research Centre (MRTC)
Malardalen University, 721 23 Vasteras, Sweden

Abstract

This paper presents a new perspective in the context of stipgpdogical resource sharing under hierarchi-
cal scheduling. Our work is motivated from a tradeoff betwesducing resource holding times and reducing
system load (i.e., the collective processor requirementgiirantee the schedulability of hierarchical scheduling
frameworks). We formulate an optimization problem thaedeines the resource holding times of each individ-
ual tasks (and therefore those of subsystems) with the daalmimizing the system load subject to the system’s
schedulability. We present efficient algorithms to find atino@l solution to the problem, and we prove their
correctness.

1 Introduction

This paper deals with hierarchical schedulingopkn real-time systemwhere subsystems are allowed to be
developed and validated independently of each other in ovieoement, and later integrated in another environ-
ment.

Motivation. Tasks often require exclusive accesses to shared resoivteEn a task holds an exclusive access
to a shared resource, it inherently blocks other tasks that i@ access the same resource. Several synchronization
protocols [2, 17, 19] provide rules on how tasks gain exehiaiccesses, primarily, focusing on how to bound their
blocking times. These protocols mainly achieve it throughraing of resource holding times. For example, the
Stack Resource Policy (SRP) [2] allows a task within a @itgection to be preempted by another taslonly if
there is no potential to increase the blocking time of anl teish higher priority than that of;. These protocols
share the objective of bounding blocking times of higheoiy tasks.

Subject to schedulability, Fishet al. [10] recently proposed to minimize resource holding tinadewing for
preemption within critical sections. They presented aortigm to decrease the resource holding times of tasks
under the semantics of SRP, however, at the expense of éegethe blocking times of higher-priority tasks.
Their basic idea is to increase the ceiling of resources ahras possible (in order to minimize resource holding
times) without violating schedulability. Having shortexsource holding times is very useful in the context of
HSFs, since this could allow for lower allocation of res@a&to subsystems.

However, when resources are shared between subsystems; agld@s to employ some synchronization pro-
tocol (e.g., HSRP [6], SIRAP [3]). Such protocols considesudsystem’s resource holding time as an extra
requirement in terms of CPU resources needed to achieveldaldity. Therefore, definingystem loadas a
guantitative measure to represent the collective CPU remints of all subsystems, one could expect that min-
imizing resource holding times would be effective for reidgcthe system load. However, when using these

*The work in this paper is supported by the Swedish FoundétioBtrategic Research (SSF), via the research program&IRESS.

protocols, minimizing a subsystem’s resource holding simmay in fact increase the system load. That is, there
exists a tradeoff between reducing a subsystem’s resootdad time and the resulting system load. Given such
a tradeoff, we introduce thgystem load minimization probleas the problem of determining the resource holding
times of subsystems such that the system load can be mimimize

Approach. By assigning each subsystem with an abstract represantatits CPU requirements and resource
holding times, one may consider a divide-and-conquer ambraeo the system load minimization problem. We
denote these abstract representationstagfaces and for each subsystem its interface is independentlyilzeiéd.
In a system, once subsystems are integrated, their inésrfae used to determine the system load. However, an
independent approach is not feasible for the minimizatimblem; for a single subsystem we cannot determine
which resource holding times that would yield the minimursteyn load. This is because the CPU requirement
of a subsystem depends on its blocking time, and its blocting subsequently depends on the resource holding
times of other subsystems.

Hence, we employ a two-step approach to find an optimal solub the system load minimization problem.
In the first step, for each subsystem independently, we @leriset of interface candidates (i.e., a set of resource
holding time candidates). In the second step, during systeegration, we collect the interface candidates of all
subsystems and selects one candidate for each subsystemeratg the minimum system load.

Contribution. The contribution of this paper is four-fold. First, motigdtby the tradeoff between reducing
resource holding times and reducing system load, we int®dwnew tradeoff problem to bound resource holding
times in the context of hierarchical scheduling. Seconujrag at minimizing the system load, we formulate an
optimization problem to determine the resource holdingmf each subsystem. Third, we present two algorithms
that together find an optimal solution to the problem. The fitgorithm efficiently generates a bounded number
of interface candidates for each subsystem, and we protv¢hihanterface used to generating an optimal solution
is contained within this set of interfaces. The second #lgor efficiently finds an optimal solution using the
interface candidates of all subsystems, and we prove itecoess. Fourth, we also extend the schedulability
analysis of HSFs with HSRP [6] to be suitable for open envirents.

Section 2 presents related work, followed by the system treottkbackground in Section 3. Section 4 presents
how resources are shared in our HSF. Section 5 addressessthatdp of our approach to the system load min-
imization problem; efficiently generating interface catades, and Section 6 resolves the second step effectively
finding an optimal solution out of the candidates. Finallgctn 7 concludes.

2 Related work

Hierarchical scheduling. Over the years, there has been a growing attention to HSFs [4, 8, 11, 13, 14,
18, 20, 21] for real-time systems. Since Deng and Liu [7] psmal a two-level HSF for open systems, many
studies have been proposed for its schedulability anabtysitSFs [11, 13, 15]. Various processor models, such as
bounded-delay [16] and periodic [14, 20], have been prapémea multi-level HSFs, and schedulability analysis
techniques have been proposed for the proposed processdedsiil, 5, 8, 14, 18, 20, 21]. However, none of the
above studies consider supporting logical resource giarirlSFs.

Resource sharing. To support logical resource sharing in a mutual exclusivéimeg some synchronization
protocols are proposed. They provide rules about how to geiess to the resource, and specifie which tasks
should be blocked when trying to access the resource. Texaepredictable real-time behaviour, several protocols
have been proposed including the Priority Inheritancedeat(PIP) [19], the Priority Ceiling Protocol (PCP) [17],
and the Stack Resource Policy (SRP) [2]. Fishieal. [4, 10] proposed algorithms to minimize the time duration
that a task locks a resource under fixed priority and EDF sdmegwith SRP.

The issues of supporting resource sharing in HSFs have lmesidered. Deng and Liu [7] proposed the usage
of non-preemptive global resource access, which boundsithémum blocking time that a task might be subject
to. It was shown in [11, 1] that traditional protocols suchS&P can be used to support local resource sharing
within a subsystem. Recently, a few studies (e.g., HSRPSBRAP [3], BROE [9]) have been proposed for
supporting resource sharing between subsystems in HSBammary, compared to the work in this paper, none
of the above approaches have addressed the tradeoff betedaring a subsystem’s resource holding times and
the resulting system load.

3 System model and background

A HSF is introduced to support CPU time sharing among apjtica (subsystems) under different scheduling
services. The system-level global scheduler allocates @Re to subsystems, and the subsystem-level local
schedulers subsequently schedule CPU time to their idteasks. This framework also allows logical resource
sharing between tasks in a mutually exclusive manner. Teekshardocal logical resources within a subsystem
andglobal logical resources across subsystems. In this paper we fotgsobal logical resources while local
logical resources can be easily supported by traditiormatispnization protocols such as SRP [1, 6, 11].

3.1 Virtual processor models

The notion of real-time virtual processor (resource) megs first introduced by Mokt al.[16] to characterize
the CPU allocations that a parent node provides to a chilé mod HSF. TheCPU supplyof a virtual processor
model refers to the amounts of CPU allocations that the alifiocessor model can provide. Téepply bound
functionof a virtual processor model calculates the minimum poss@?U supply for any given time interval of
lengtht.

Shin and Lee [20] proposed the periodic virtual processodehB(P, Q) to characterize periodic processor
allocations, wherd” is a period P > 0) and(is a periodic allocation time)(< @ < P). The capacityUr of a
periodic virtual processor modEl P, Q) is defined as)/ P.

The supply bound functioabf(¢) of the periodic model' (P, Q) was given in [20] to compute the minimum
possible CPU supply for every interval lengths follows:

t—(k+1)(P-Q) ifte[(k+1)P—-2Q,
sbfp(t) = (k+1)P —QJ, (1)
(k—-1)Q otherwise

wherek = max (((t - (P -Q))/P], 1). Here, we first note that an interval of lengtimay not begin syn-
chronously with the beginning of peride; as shown in Figure 1, the interval of lengthan start in the middle of
the period of a periodic modél(P, Q). Figure 1 illustrates the supply bound functisit r(¢).

3.2 Stack Resource Policy (SRP)
To use SRP [2] in a HSF, we extend terms associated with SRlasd:

e Preemption level Each taskr; has a preemption level equal ¢ = Pr;, wherePr; is the priority of ;.
Similarly, each subsysteifi; has a preemption level equal I, = PR, wherePR; is the subsystem’s
priority.

e Resource ceilingEach global shared resourég is associated with two types of resource ceilingsjran
ternal resource ceiling for local scheduling; = max{;|r; accesse®;} and arexternalresource ceiling
for global scheduling? Xy = max{II|Ss accesses;}.

3

4
=Yl
y

BD= : .
L Q R Q Q9

J—— I />
0 1 2 3 4 5 67 8 9 10

Figure 1. The supply bound function of a periodic virtual processor model I'(3,2).

e System and subsystem ceilingdystem and subsystem ceilings are dynamic parametershthage dur-
ing execution. The system (subsystem) ceiling is equaldccthrrently locked highest external (internal)
resource ceiling in the system (subsystem).

According to SRP, a job; generated by task can preempt the currently executing jgpwithin a subsystem
only if J; is a higher-priority job of/, and the preemption level af is greater than the current subsystem ceiling.
The same reasoning can be made for subsystems from a glblealding point of view.

3.3 System model

We consider a deadline-constrained sporadic task modgl, C;, D;, Pr;, {c; ;}), whereT; is the minimum
separation time between its successive jalis, is the worst-case execution time (WCET); is the relative
deadline C; < D; < T;), Pr; is the priority, and each elemeat; in {c; ;} represents the WCET of inside a
critical section of the global shared resouge. We assume that all tasks have unique priorities and aredsort
according to their priorities in the order of increasingopity.

For a shared resourde;, theresource holding timeé with internal resource ceilingc; = [is defined as the
maximum task execution time inside a critical section phesinhterference (inside the critical section) of higher
priority tasks that have preemption level greater thanrtermal ceiling of the locked resouro@? is computed [4]
usingW;(t) as follows;

u "
Wjt) = cxj+ Y [7-1Ck, 2
k=rcj+1 k

wherecx; = max{c; ;} for all taskr; uses resourc&;, i.e., the maximum execution time inside a critical section
of a task among all tasks that use resougeandu is the greatest internal ceiling within the subsystem.
The resource holding tim/eg is the smallest positive timg such that

W;(t7) =t ®3)

4

A subsystemS; € S, whereS is the whole system of subsystems, is characterized by asstsk and a set
of internal resource ceilingRC; of the global shared resources. Each subsysigiis assumed to have a fixed-
priority local scheduler (FPS local scheduler). Each sstesg.S; has an interface (the subsystem interface) that
is defined ag Ps, Qs, Hs), whereP; is a period,(Qs is an execution requirement budget, afdis a maximum
global resource holding time, i.d, = max{hﬂ forall R; € R}, whereR; is the set of global shared resources
used by the internal tasks 6f,.

4 Resource sharing in the HSF
4.1 Overrun mechanism

This section explains overrun mechanisms that can be udmghttie budget expiry during a critical section in
a HSF. Consider a global scheduler that schedules subsysisrording to their periodic interfaceB,(Qs, H,).
The subsystem budgél; is said toexpire at the point when one or more internal (to the subsystem}thake
executed a total af); time units within the subsystem peridetl. Once the budget is expired, no new tasks within
the same subsystem can initiate execution until the subrsystoudget is replenished. This replenishment takes
place in the beginning of each subsystem period, where ttigdbiis replenished to a value @f,.

Budget expiration can cause a problem, if it happens whitihalj of a subsystend is executing within the
critical section of a global shared resoutge. If another job.J,, belonging to another subsystem, is waiting for
the same resourck;, this job must wait untilS, is replenished so; can continue to execute and finally release
the lock on resourcék;. This waiting time exposed td;, can be potentially very long, causing to miss its
deadline.

In this paper, we consider a mechanism based on overrun §6Mibrks as follows; when the budget of
subsystent; expires ands; has a jobJ; that is still locking a global shared resource, jhlzontinues its execution
until it releases the locked resource. The extra timethaéeds to execute after the budgeboexpires is denoted
asoverrun time&d. The maximun® occurs wherJ; lock a resource that gives the longest resource holdingjtiate
before the budget of; expires. This worst case happens wileaquals toH;, where H, represents the greatest
global resource holding time &f;. To solve the budget expiration problem, one simply addst@eimum overrun
time @ to the subsystem budget for each subsysterauch that the new subsystem budga@s: Qs+ Hs.

4.2 Schedulability analysis

In this paper, we use HSRP [6] for resource synchronizatidd$F. Schedulability analysis under global and
local FPS with the overrun mechanism is presented in [6]. ¢l@n the presented approach is not suitable
for open environments. Hence, this section presents thedstdbility analysis of local and global FPS using
subsystem interfaces, which is suitable for open envirorise

Local schedulability analysis. Letdbfrp(i,t) denote the demand bound function of a tasknder FPS [12],
ie.,

dbtp(i t) = Ci+ S {Tiljck (4)

Tk EHP(i)

whereHP(7) is the set of tasks with higher priorites than thatrpf The local schedulability analysis under FPS
can be then easily extended from the results of [2, 20] asviwsli

V1,0 <t < D; dbep(i,t) +b; < Sbf(t), (5)

whereb; is the longest blocking time during which a job may be blocked by lower priority jobs, arthz (¢) is
the supply bound function.

Subsystem interface. We now explain how to derive the budg@t of the subsystem interface. Givéh, RCs,
and P, let calculateBudget(Ss, Ps, RC) denote a function that calculates the smallest subsysteigebuhat
satisfies Eq. (5) depending on the local schedulef of Such a function is similar to the one in [20]. Then,
Qs = calculateBudget(Ss, Ps, RCs).

Global schedulability analysis. Under global FPS scheduling, we present the system loaddbfumction as
follows (on the basis of a similar reasoning of Eq. (eq:rnfipdb

LBF,(t) = DBF(t) + B, , where (6)
DBF,(t) = (Qs + Hs) + > %} (Qr + Hy), (7)
S,EHPS(Ss)

whereHPS(S;) is the set of subsystems with higher-priority than thaspnd the system-level blocking tinie,
represents the maximum blocking time during which subsysig may be blocked by lower priority subsystems,
i.e., B; = max(H;|forall S; € LPS(S;)), LPS(S;) is the set of subsystems with lower priority than thatof

A global schedulability condition under FPS is then

VSs,0 < 3t < Py LBF4(t) < t,where (8)
System load. As a quantitative measure to represent the minimum amoysrbokssor allocations necessary to
guarantee the schedulability of a subsyst&mlet us defingorocessor request bour{d.;) as

LBFg(?
as = min { s()
0<t<Ps t

| LBF,(t) < t}.)

In addition, let us define thgystem loadoadsys of the system under global FPS as follows:

loadsys = vrglae%{as}. (20)

5 Interface candidate generation

In this paper, we consider a two-step approach to the sysiathrhinimization problem. In this section, we
address the first step that each component generates a sgtrédde candidates. In the second step, when the
interface candidates of all subsystems are available, bie candidates of each subsystem will selected in order
to minimize the system load.

We define thanterface candidate generatigoroblem as follows. Given a subsyste$n and a set of global
resources, the problem is to generate a set of interfaceédzsad! C; such that there exists an element 6f; that
constitutes an optimal solution to the system load problem.

As shown in the previous section, the valu&hfis evaluated using the functi@alculateBudget(S;, Ps, RCs).

The function has 3 parametefS;, Ps, RCs) where S, contains the bounded number of tasksand RC, has
indicates a bounded number of resourees A brute-force solution to the interface generation problis to
generate all possible:” interface candidates. However, not all of thes& candidates have the potential to
constitute the optimal solution; some may require morewesdemand and impose higher blocking on other
subsystems and others may act as replicate interfaces.

Hence, we present an algorithm to find a correct solution ¢éoptoblem. Our algorithm is computationally
efficient and produces a bounded number of interface catedidaVe first provide some notions and properties
on which our algorithm is based. We then explain our algorignd illustrate it. Hereinafter, we assume that
P is given by system designer and is fixed during the whole oo generating a set of interface candidates.
Therefore an interface candiddtg;, s, Hs) can be denoted d€);, H;).

6

Definition 1 An interface candidatéQy, H}) is said to beredundantif there existSQ;, H;) such thatH; < Hj,
and Q; < Qi andi # k (denoted ag@Q;, H;) < (Qg, Hy)). If two interfaces are equivalent@®;, H;) =
(Qx, Hy))), then the interface with lower index is considered as airethnt interface. In addition(Q;, H;) is
said to benon-redundanif it is not redundant.

Lemma 1 Aredundant interface candidate does not constitute am@gtsolution to the system load minimization
problem.

Proof Suppose an interface candidadg,(H,,) is redundant. By definition, there exists another candida, H;)
such thatd, < H, andQ;, < Q,. So(Qy + Hy) <= (Q. + H,). Using a redundant interface candidate only
increaseD BF(t) (see Eq. (7)) and the blocking tini&;, respectively, compared to a non-redundant candidate.
It means that using a redundant candidate can only incré®sgét) and therebyoad, (see Eq. (9)). Thatis, a
redundant candidate only has a potential to incréasg, (see Eq. (10)). In other words, a redundant candidate
cannot constitute an optimal solution to the system loadrmiation problem. 0

Lemma 1 suggests that redundant candidates be exclude@®ohation, and it reduces the number of interface
candidates significantly. However, a brutal-force appndaceduce redundant candidates is still computationally
intractable. The complexity of an exhaustive search is Ygh O(m™). We present interesting properties that
help to develop a computationally efficient algorithm.

When tasks access the same shared resource, their maxirockingltime can be different depending on their
preemption levels. This can happen particularly when thlestaharing the same resources have different execution
times inside critical sections. To capture this, we intilthe following notation.

X! Let X! be the maximum blocking time that a task of preemption lévey experience in accessing resource
R, i.e., X2 = max{c;,} forall j <b.

The following lemma shows an important property: if a reseur;, implies the longest blocking time among the
resources having the same resource ceilings, ihewill provides the longest resource holding time among them.

Lemma 2 Let R? denote a set of resources whose resource ceilings.aBuppose a resourck, € R' yields
the greatest blocking time among all the element®of Then, the resourc®;, generates the greatest resource
holding time among all the elementsRf, i.e.,

(xi = Jmax X3 = (h = Jmax Ani}). (11)
Proof The resource holding tim/e% of a resourceR; at its ceiling ofi depends on two parameters (see Eq. (3));
the maximum blocking at that ceiIinngﬁ = rx;) and the interference from tasks with higher preemptioellev

(The summation patf). Sincel is the same for all resources that have the same ceihjﬂgepends only od(j-
as only tasks with preemption level greater thavill contribute in the summation. O

The following shows when redundant interface candidatesbeagenerated. In other words, it indicates when
we can effectively exclude redundant candidates.

Lemma 3 Consider a resource?, of a ceilingk (rc, = k) and another resourcéz. of a ceilingi (rc, =),
wherek < i. SupposeX{j < XFandre, < re,. Then an interface candidate generated by having the cgilin
rcy = k4 1,..,7 is redundant, hence it is possible to increase the ceilingipfto that of R, directly (i.e.,
rey =rC; =1).

Proof Let (Q', H') denote an interface candidate generated whgn= k andrc, = i, wherek < i. Let
(Q*, H*) denote another interface candidate generated whgr= rc, = i. We wish to show thatQ*, H*) <
(Q',H'),ie,Q* <Q andH* < H'.

Given X; < X, it follows from Lemma 2 that, < h.. This means that even though the ceiling/of
increases to, it does not change the maximum blocking timé&Y) duringt € [D;1, D;]. Therefore, it does not
change the demand bound function either. As a re§ilt= Q'.

We wish to show thati* < H’. When the ceiling of?, increases ta from £, its resulting resource holding
time hg becomes smaller th&rjj because there will be less interference from higher pyidaisks, (i.e.hg < h’;).
In fact, this is the only change that occurs to the resourtdidgptime of all shared resources wher), increases.
Hence, the maximum resource holding titHecan remain the same (M”; < H') or decrease (ih’?j = H') after
rcy increases. Thatidf* < H'. O

Using Lemmas 1, 2, and 3, we can reduce the complexity of alsedgorithm. The algorithm shown in
Figure 2 is based on these Lemmas. It increases the ceilitiig@Esource that generates the maximum resource
holding time by one step, and then checks the conditionsxgiveemma 3 to further increase the ceiling of that
resource if possible. It then increases the ceiling of albteces that have the same ceiling as the selected resource,
to the selected resource ceiling. This way, we can reduaendzoht interface candidates. Lines 8-11 checks the
condition in Lemma 1. The following lemma proves the comess of algorithm shown in Figure 2.

Lemma 4 LetZC denote a set of up ta interface candidates that are generated by the algorithriigéire 2.
There exists no non-redundant interface candid&dg, H,) such thatQ,,, H,) ¢ ZC.

Proof Assume that@,, H,) is a non-redundant interface candidate and fhat= hi, i.e., the resource holding
time of Ry, is the maximum among all global shared resources whgn- i. Then we shall prove that

1. There is naR; such thatX} > Xj for all r¢; > i. Otherwise we could change the ceiling, = rc;
according to Lemma 3, and by thig # H,.

2. There is naR; such thatX > X for all r¢; < i,t < i. Otherwiseh}; > hj, because when we compute the
resource holding time ak;, andR;, the interference from higher preemption level tasks asasdblocking
is higher forR;, and them, # H,. If we increase the ceilingc; = 7, it will not give other non-redundant
interface candidates (see Lemma 2 and 3).

We can conclude that there is only one resouRgehat may generate a non-redundant interface at a preemption
level 7, and this is the one that imposes the highest blocking atlélrat. The initial ceiling of R is v, where
v € [1,i]. From Lemma 2X,{ (wheref € [v,1]) is the maximum blocking at preemption leve}, € [v,i]. Since
the presented algorithm increases the ceiling of the maximasource holding time, it will increase the ceiling of
Ry, whenrcy, = v up toi. Hence, we can guarantee that the algorithm will cover ttexface whert, = hi. O

The proof of the previous property also shows that the coxitylef the proposed algorithm i©(n) since we
haven tasks (which equals to the number of preemption levels) aarktis either 0 or 1 non-redundant interface
for each preemption level, and the algorithm will only treseethese non-redundant interfaces. Moreover, the
proposed algorithm thereby produce at mogtterface candidates.

5.1 Example

We illustrate the local algorithm with the following exareplConsider a subsystef) that has six tasks as
shown in Table 1. The local scheduler for the subsystgris Rate Monotonic (RM) and we choose subsystem
period P; = 100.

- calculateBudget(Ss, Ps, RC;) returns the smallest subsy-
stem budget that satisfies Eq. (4).

- increaseCeilingH*(RC5) returns whether or not the ceil-
ing of the resource associated with (the current grea-
tes resource holding time) can be increased by one i.e.,
the ceiling of the resource associated wiit #
maximum ceiling. If so, it increases the ceiling of the
selected resource as well as the ceiling of all resources
that have the same ceiling as the selected resource,
motivated by Lemma 3.

- Interface is an array of interface candidates; each catlid

(Q, H, RC).
1. RCs={rcy,--,rem}
2: num=0
3: Interface[num].Q = P
4: do
5: H* = max{h(rey), -+, h(rcy,)}
6: @ = calculateBudget(Ss, Ps, RC5)
7: count = num
8: for j=counttoOstep-1
9: i f (Q < Interface[j].Q)
10: ——num
11: end if
12: Interface[++num].H = H*
13: Interface[num].QQ = @
14: Interface[++num].RC = RC
15: whi | e (increaseCeilingH*(RC5))
16: r et ur n Interface,num()

Figure 2. The local algorithm.

The algorithm works as shown in Table 3. The results from stee(Q1 = 26, H; = 47), atstep 2Q,, H1) >
(Q2, Hy). So(Q1,H,) is redundant (see Definition 1). That is, this interface carrdmoved according to
Lemma 1. For the same reasdf),, H2) can be removed after step 3. At step 3, thgis increased directly td
according to Lemma 3 sinee:; > rcp and X? > X3. At both steps 4 and 5, the ceiling; is increased by one
sinceH; = h; but we increase the ceiling ot; according to Lemma 3.

In summary, the algorithm generates the interface careidstiown in Table 3.

6 Interface Selection

In this section, we consider an optimization problem, chtiptimal interface selectioproblem, that selects a
system configurationonsisting of a set of subsystem interfaces, one from edudystem that together minimize
system load subject to the schedulability of system.

Section 6.1 presents the Greedy-GB (Greatest Blockingyighgn, an algorithm that finds an optimal solution

TG | Ti |[{Rj}|ciy
7| 8 |750| Ry | 4
7 | 50| 650| Ry | 5
7310|600 - | O
7, | 20| 500| R; | 20
75| 1165 - | O
| 2150 - | O

Table 1. Example task set parameters

Step | re1 | res | hy | he | Qi | H;
1 4 1 | 23|47 26| 47
2 4 2 1 23|37| 26| 37
3 4 4 | 23| 7 |26 23
4 5 5 122| 6 | 30| 22
5 6 6 20| 4 | 36| 20

Table 2. Example algorithm

to this problem. The proposed algorithm basically finds ao$dteuristic solutions through a finite number of
iteration steps. Section 6.2 shows that an optimal solutiasts within the set of such heuristic solutions generated
by the Greedy-GB algorithm.

6.1 Description of the Greedy-GB algorithm

The Greedy-GB algorithm relies on a couple of assumptionasdumes theefinedproperty of each subsys-
tem’s interface candidate set such that it containeedaondantelements (see section 5). Moreover, it assumes that
each interface candidate set is sorted in a decreasing afrdesource holding timeH,). In other words, each set
is sorted in an increasing order of demanigl (+ H,). Then, the first candidate has the largest resource holding
time and the smallest demand.

Heuristic solution. The Greedy-GB algorithm generates a finite number of hézigstutions through iteration
steps. Each heuristic solution is a set of individual irsteef candidates of all subsystems, i.e.,

HS; Let HS; denote aheuristic solutionthat the Greedy-GB algorithm generates at-dh iteration step. For
notational convenience, we introduce a variatjléo denote an element fS;, i.e.,HS; = {c},...,c.}.
The variabler!, indicates which interface candidate of a subsystnis included inHS;.

Figure 3 shows an example search space for a system cogsithsubsystems, where subsystSimhas 3
interface candidates, and two other subsystSmand.Ss have 2 candidates, respectively. Each node in the graph
represents a solution candidate, and each number in theaooaesponds to an interface candidate index in the

Interface| P Q | H
1 100| 26 | 23
2 100 | 30.2| 22
3 100 | 36.5| 20

Table 3. Interface candidates.

10

Figure 3. Search space for a system consisting of 3 subsystems.

order of S, Se, andSs. In the figure, at the second iteration step, the heuristigtisn is HS, = {2,1,2}, and
the first element oHS, is ¢? = 2.

Initialization. In the beginning, this algorithm generates an initial h&igisolutionHS, such that it consists of

the first interface candidates of all subsystems. In the pl@shown in Figure 3HSy = {1,1, 1} (see line 2 of
Figure 4).

Iteration step. At an arbitraryi-th iteration step, the Greedy-GB algorithm takes a haarsstiutionHS; _; from
the previous step and transforms it to another heuristigtisol HS,;. Transformation is made to increase only one
element ofHS;_; in value by one. Let us introduce a variabdg) {o state this more formally.

6; Letd; denote the only single element whose value increases byameénHS; _; andHS;, i.e.,

-1 (12)

i Ci;il—f—l |fk:5“
Cr, = .
c otherwise

In the example shown in Figure 8, = 1.

Let us explain how to determing at ani-th step. We can potentially increase every elementdSf ¢, and
thereby we have at mostcandidates for the value of. Here, we choose one out of at mastandidates such
that a resultingd S; can cause the system load to be minimized.

Let loadsys(HS;—1) denote the value dbads,s when a heuristic solutioRlS;_; is used as aystem interface

We are now interested in reducing the valuéoatls,s(HS;_1). We introduce a variablg; that is useful to explain
how to reducédoadsys(HS;—1).

11

i Lets? denote the subsyste: that has the largegtrocessor request bourainong all subsystems. That
is, IoadSyS(HSZ 1) = load, st We can find suchb;: by evaluating theprocessor request bouisdof all
subsystems (in line 5 of Figure 4).

By the definition ofs}, we can reduce the value fads,s(HS; 1) by reducing the value diBF.:(t). There
are two potential ways to reduce the valuelsF.:(t). From the definition ofLBF;(t) in Eq. (6), one is to
reduce its maximum blocking tim&,- and the other is to reduce the subsystem demalmiss»(()). A key
aspect of this algorithm is that it always reduces the blugkime part, but does not reduce the demand part. An
intuition behind is as follows: this algorithm starts frohetinterface candidates that have the smallest demands
but the largest resource holding times, respectively. Egiot each interface candidate, there is no room to further
reduce its demand. However, there is a chance to reduce ttimora blocking timeBs; of Ss;. It can be reduced
by decreasing the resource holding time of a subsystgnthat imposes the largest blocking time to the subsystem
Ssx. We definek; in a more detail.

k; Letk; denote the subsystery- that imposes the largest blocking time to the subsystemi.e., B: =
Hy» = max{H; | forallH; € LPS(s)}, whereLPS(i) is a set of lower-priority subsystems Bf:. We
can find suctby: easily by looking at the resource holding times of all loeibrity subsystems of - (in
ine 6 of Figure 4)

When suchSki* is found, it then checks whether the resource holding tin&p’can be further reduced (in line
7 of Figure 4). If so, itis reduced (in line 8), aftd,_; becomes tdS; (in line 9). Thatisg; = k.

Iteration termination. The above iteration process terminates when the blocking B, of subsystent;:
cannot be reduced further. The algorithm then finds the sstalhlue ofoadss out of the values saved during the
iteration, and it returns a set of interfaces correspontbirtpe smallest value.

Complexity of the algorithm. During ani-th iteration, the algorithm only increases the interfasedidate
index of a subsysterfi;,. Then, it can repeaP(n x m’) iterations, where: is the number of subsystems amd
is the greatest number of interface candidates of a sulmsyateong all.

6.2 Correctness of the Greedy-GB algorithm

In this section, we show that the Greedy-GB algorithm predua set of heuristic solutions that contains an
optimal solution. We first present notations that are usefpkove the correctness of the algorithm.

AS. We consider the entire search space of the optimal inerfatection problem. It contains all possible
subsystem interfaces comprising a system configuratiahledtdS denote it, i.e.,

AS =1Cy x --- x IC,,. (13)
In the example shown in Figure 3, the entire solution spake) has 12 elements.

We present some notations to denote the properties of thedg®B algorithm at an arbitrarith iteration
step.

LIf more tan one lower priority subsystem impose same maxirblatking onSs; then we select the one with lowest priority.

12

- ICs is an array of interface candidates of subsystensorted in a
decreasing order dff;.
- icig is an index tol C; of subsystent
- 7 is a set of interface$l }, each of which indicated bigi
- subsystemWithMaxLoad() returns the subsysteS\- that has the
greatesprocessor request bourainong all subsystems, i.¢oadsys = g+
- maxBlockingSubsystemToSysload(s*) returns a subsystersi«
that produces the greatest blocking time to a subsystem
Note thatS,- determines the system load.

1: forall S,e€8

2 iciy = 1; I, = IC,]icis]

3: loadg,, =10, I* =7

4: do

5: s* = subsystemWithMaxLoad()

6: k* = maxBlockingSubsystemToSysload(s*)
7 i f (icig+ can increase by one)

8 icigs = icips + 1

10: computdoadsys according to Eq. (10)
11: i f (loadsys < loadge)

12: loadg,s = loadsys

13: I*=7

14: el se

15: r et ur n Z* (that determinetad?, .)

sys

16: until (true)

Figure 4. The Greedy-GB algorithm.

f@; In the beginning, the Greedy-GB algorithm has the entisrcespace AS) to explore. Basically, this
algorithm gradually reduces a remaining search space torexguring iteration. For notation convenience,

we introduce a variable[f)l) to indicate the remaining interface candidates of a subsys), to explore.
By definition, c;, indicates which interface candidate of a subsystanis selected byHS;. This algorithm

continues exploration from the interface candidate intditdyc;, from the end of an-th step. ThenIAC;C
is defined as

[0y = {ch,... ,mazy} forallk=1,...,n. (14)

wheremax;, is the number of interface.

In the example shown in Figure B/Cﬁ = {2,3}.

XP;. Let us define<P; to denote the search space remaining to explore after thefemd-th iteration step. Note
that such a remaining search space does not have to incladgmliition candidatélS; chosen at thé-th
step. ThenXP; is defined as

13

XP; = (IC} x --- x IC") \ HS,. (15)

RM; In essence, the Greedy-GB algorithm gradually decreaseshaiming search space during iteration. That
is, at ani-th step, it keeps reducingP;_; to XP;, whereXP; c XP;_;. Let RM; denote a set of interface
settings that is excluded froXP;_, at thei-th step. Note that at thieth step, the interface candidate of a
subsystents, changes frorm:gi‘1 to ¢ . Then, a subset ofP; that contains the value og;l, is excluded
at thei-th step.RM; is defined as

(i) — (i—1)x
RM; = (IC, x---xIC,)\ {HS;-1}, where (16)
— (i—1)+ { {¢. '} ifk=4,

10, otherwise

In the example shown in Figure BM; = {{1,2,1},{1,2,2},{1,1,2}}.

AH; Let AH; represents a set of heuristic solutions that the Greedy-Ig&itom selects from the first step
through to an-th step, i.e.,
AH; = {HS4, ..., HS;}. (18)

AR; Let AR; represents a set of interface candidates that the Greedglgaithm excludes from the first step
through to an-th step, i.e.,

whereARy = ¢.

We define partial ordering between solution candidates |ksvs:

Definition 2 A solution candidatec = {c, ..., ¢, } is said to bestrictly precedentf another solution candidate
s¢' = {c},...,c,} (denoted asc < sc') if ¢; < ¢; for somej andcy, < ¢, for all k, wherel < j,k < n.

As an example{1,1,1} < {1,2,1}.
The following lemma states that when the algorithm exclumest of solution candidates from further explo-
ration at an arbitrary-th step, a set of such excluded solution candidates doasontdin an optimal solution.

Lemma5 At an arbitrary i-th iteration step, the Greedy-GB algorithm excludes a $etotution candidates
(RM;), and any excluded solution candidate= RM; does not yield a smaller system load than thatH$;_,,
i.e.,

Vr € RM; loadsys(HS;—1) < loadsys(r). (20)

Proof As explained in Section 6.1, there are two potential wayethice the value dbads,s(HS;_1) at thei-th
step. One is to reduce the demand of the subsysteni.e., DBF: (t)), and the other is to reduce its maximum
blocking timeBS;.

Firstly, we wish to show that the demand$f- does not decrease when we transform the heuristic solution o
HS;_: to any solution candidate € RM;. Note that each interface candidate set is sorted in anasitrg order
of resource requirement budgép) One can easily see thHS; ; < r. Then, it follows thaDBF:(t) never
decreases whadS;_; changes ta.

14

Secondly, we wish to show that when we change the heurishigi®o of HS; ; to any solution candidate
r € RM;, B, does not decrease. As shown in line 6 in Figure 4, the GredlglGorithm finds the subsystem

Ss, that generates the maximum blocking time to for subsys$gm Then, the algorithm mcrease}s by one,
if possible, to decreasB,-. However, by definition, for all elementsof RM;, the element for the subsystm

has the value o(fzi ! rather than the value @gi This means thaB;:- never decreases when we chaitjg_; to
r. O

The following lemma states that when the algorithm terngisait an arbitraryf-th step, a set of remaining
solution candidates does not contain an optimal solution.

Lemma 6 When the Greedy-GB algorithm terminates at an arbitréfth step, any remaining solution candidate
(xp € XPy) does not yield a smaller system load thd®, does, i.e.,

Vxp € XP loadsys(HS ¢) < loadsys(xp). (21)

Proof As explained in the proof of lemma 5, there are two ways tocethadsys (i.€., LBFg: (t)).

One is to reduce the demand of the subsys%m(l e.,DBFg:(t) in Eq. (7)). However, it does not decrease,
sinceHS; < xp for all xp € XP;.

The other is to reduce the maximum blocking tind&«). In fact, the Greedy-GB algorithm terminates at the
f-th step because there is no way to decr@;}e That is,B; does not decrease whei$ s changes to anyp. U

The following lemma states that at aith step, the remaining search space to explore decreaggvhyJ

{HS:}).
Lemma 7 At an arbitraryi-th iteration step,

XP; = XP;—1 \ (RM; U {HS;}). (22)
Proof The Greedy-GB algorithm transform4S; ; to HS; at ani-th step by increasing the value of idgth

element. Then, we have
ol = 10 Mah k=0 (23)
1C,, otherwise

Without loss of generality, we assume that= 1. For notational convenience, I¥P; = XP; U {HS;}, and
RM; = RM; U {HS;}. Then, we have

XP; = IAC’Z1><IAC;><><IAC:1

= (I \ {1y x Iy x -+~ x IC,

= (f(\i'i_l X I/(\J’;_l X e X fbil_l) \
({cil_l} X 1?]; X e X ﬁj’z)

= XPi_; \RMj

= (XPaU{HS; 1}) \ (RM; U {HS; 1})

= XP_;\RM;. (24)

That is, considering P = X P; U {HS,}, it follows
XP, = XP_1 \ (RM; U {HS,}). (25)
O

15

The following lemma states that at aivh iteration step, the entire search space can be dividedaiset of
explored candidate#\{;), a set of excluded candidateSR;), and a set of remaining candidates to explX&g;{.

Lemma 8 At an arbitrary i-th step, the sets &R;, AH;, andXP; include all possible solution candidates, i.e.,
AR; UAH; UXP; = AS (26)

Proof We will prove this lemma by using mathematical induction. aAkase step, we wish to show Eq. (26) is
true, wheni = 1. Note thatARy = ¢ andAHy = {HS,}. In addition,XPy = AS \ HSy, according to Eqg. (15). It
follows thatARy U AHy U XPg = AP.

We assume that Eq. (26) is true at thth iteration step of the Greedy-GB algorithm. We then wisiptove
that it also holds at thé + 1)-th step, i.e.,

AR; UAH; UXP; = AR;11 UAH; 11 UXP;41. (27)

According to the definition&\H, 1, AR; 1, andXP; (see Eq. (18), (19) and (22)), we can rewrite the right-
hand side of Eq. (27) as follows:

ARi+1 UAH 11 UXPjiq
(AR: URM;;1) U (AH; U {HS ;1) U

(XPi \ (RMys1 U {HS11}))

O

The following theorem states that the Greedy-GB algorithotdpces a set of heuristic solutions, which must
contain an optimal solution.

Theorem 9 When the Greedy-GB algorithm terminates at fhth step, a set of heuristic solutionsH ;) includes
an optimal solution.

Proof Let opt denote an optimal solution. We prove this theorem by coittiad, i.e., by showing thatpt ¢
ARf andopt ¢ XPf.

Supposept € ARy. Then, by definition, there should exiBM; such thabpt € RM; for an arbitraryi < f.
According to Lemma 5loadsys(HS;—1) < loadsys(opt), which contradicts the definition aipt. Hence,opt ¢
ARjy.

Supposept € XP;. Then, according to Lemma 6, it shouldlbeds,s(HS f) < loadsys(opt), which contradicts
the definition ofopt as well. Hencegpt & ARy.

According to Lemma 8, it follows thatpt € HS;. O

7 Conclusion

When subsystems share logical resources in a hierarcloivedisling framework, they can block each other. In
particular, when a budget expiry problem exists, such bimckan imposes extra resource demands. However,
simply minimizing the blocking times (or resource holdiimés) of subsystems may result in increase on the sys-
tem load; in this paper, we introduced such a tradeoff batweducing the resource holding times of subsystems
and increasing the system load. Given such a tradeoff, weulated the system load minimization problem, and

16

presented a two-step approach to the problem. As a first-etgi subsystem generates a set of solution candi-
dates, and in the second step, the system selects one ofiflidat@s of each subsystem in order to constitute an
optimal solution. We presented efficient algorithms and/gdatheir correctness for both steps.

In this paper, we only consider FPS. We plan to extend ourdveonk to EDF scheduling. Another direction
for future work is to extend our framework to other hieracatisynchronization protocols, such as SIRAP [3] and
BROE [9].

References

[1] L. Almeida and P. Pedreiras. Scheduling within tempgraidtitions: response-time analysis and server design. In
EMSOFT '04 2004.

[2] T. P. Baker. Stack-based scheduling of realtime preee$eal-Time System3(1):67—-99, March 1991.

[3] M. Behnam, I. Shin, T. Nolte, and M. Nolin. Sirap: A synomization protocol for hierarchical resource sharing in
real-time open systems. EMSOFT’07 2007.

[4] M. Bertogna, N. Fisher, and S. Baruah. Static-prioritieduling and resource hold times.Rroceedings of the 15th
International Workshop on Parallel and Distributed Redtn& Systemd.ong Beach, CA, March 2007.

[5] R. 1. Davis and A. Burns. Hierarchical fixed priority pesptive scheduling. IRTS$2005.

[6] R. 1. Davis and A. Burns. Resource sharing in hierardtfigad priority pre-emptive systems. RTSS2005.

[7] Z. Deng and J. W.-S. Liu. Scheduling real-time applicas in an open environment. RTSS '971997.

[8] X.A.Fengand A. K. Mok. A model of hierarchical real-tim@tual resources. IRTS$2002.

[9] N. Fisher, M. Bertogna, and S. Baruah. The design of arseb&duled resource-sharing open environmenRT8S
2007.

[10] N. Fisher, M. Bertogna, and S. Baruah. Resource-lagtlisrations in edf-scheduled systemsRIMAS 2007.

[11] T.-W. Kuo and C.-H. Li. A fixed-priority-driven open emenment for real-time applications. RTS$1999.

[12] J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic scitiag algorithm: exact characterization and average case
behavior. INRTS$1989.

[13] G. Lipari and S. Baruah. Efficient scheduling of reahéi multi-task applications in dynamic systems.RMAS '00
2000.

[14] G. Lipari and E. Bini. Resource partitioning among réale applications. IECRTS 2003.

[15] G. Lipari, J. Carpenter, and S. Baruah. A framework fohiaving inter-application isolation in multiprogrammed
hard-real-time environments. RTSS '002000.

[16] A. Mok, X. Feng, and D. Chen. Resource partition for riéale systems. IlRRTAS '012001.

[17] R.Rajkumar, L. Sha, and J. P. Lehoczky. Real-time symaization protocols for multiprocessors. RTS$1988.

[18] S. Saewong, R. R. Rajkumar, J. P. Lehoczky, and M. H.rKléinalysis of hierar hical fixed-priority scheduling. In
ECRTS '022002.

[19] L. Sha, J. P. Lehoczky, and R. Rajkumar. Task schedulindjstributed real-time systems. Rroceedings of the
International Conference on Industrial Electronics, Cohtand Instrumentationpages 909-916, Cambridge, MA,
USA, November 1987.

[20] I. Shin and I. Lee. Periodic resource model for composél real-time guarantees. RTSS '032003.

[21] I. Shin and I. Lee. Compositional real-time scheduliragnework. INRTSS '042004.

17

