
On Optimal Hierarchical Resource Sharing in Open Environments∗

Insik Shin, Moris Behnam, Thomas Nolte, Mikael Nolin
Mälardalen Real-Time Research Centre (MRTC)
Mälardalen University, 721 23 Västerås, Sweden

Abstract

This paper presents a new perspective in the context of supporting logical resource sharing under hierarchi-
cal scheduling. Our work is motivated from a tradeoff between reducing resource holding times and reducing
system load (i.e., the collective processor requirements to guarantee the schedulability of hierarchical scheduling
frameworks). We formulate an optimization problem that determines the resource holding times of each individ-
ual tasks (and therefore those of subsystems) with the goal of minimizing the system load subject to the system’s
schedulability. We present efficient algorithms to find an optimal solution to the problem, and we prove their
correctness.

1 Introduction

This paper deals with hierarchical scheduling ofopen real-time systems, where subsystems are allowed to be
developed and validated independently of each other in one environment, and later integrated in another environ-
ment.

Motivation. Tasks often require exclusive accesses to shared resources. When a task holds an exclusive access
to a shared resource, it inherently blocks other tasks that want to access the same resource. Several synchronization
protocols [2, 17, 19] provide rules on how tasks gain exclusive accesses, primarily, focusing on how to bound their
blocking times. These protocols mainly achieve it through bounding of resource holding times. For example, the
Stack Resource Policy (SRP) [2] allows a task within a critical section to be preempted by another taskτi, only if
there is no potential to increase the blocking time of any task with higher priority than that ofτi. These protocols
share the objective of bounding blocking times of higher-priority tasks.

Subject to schedulability, Fisheret al. [10] recently proposed to minimize resource holding times,allowing for
preemption within critical sections. They presented an algorithm to decrease the resource holding times of tasks
under the semantics of SRP, however, at the expense of increasing the blocking times of higher-priority tasks.
Their basic idea is to increase the ceiling of resources as much as possible (in order to minimize resource holding
times) without violating schedulability. Having shorter resource holding times is very useful in the context of
HSFs, since this could allow for lower allocation of resources to subsystems.

However, when resources are shared between subsystems, a HSF needs to employ some synchronization pro-
tocol (e.g., HSRP [6], SIRAP [3]). Such protocols consider asubsystem’s resource holding time as an extra
requirement in terms of CPU resources needed to achieve schedulability. Therefore, definingsystem loadas a
quantitative measure to represent the collective CPU requirements of all subsystems, one could expect that min-
imizing resource holding times would be effective for reducing the system load. However, when using these

∗The work in this paper is supported by the Swedish Foundationfor Strategic Research (SSF), via the research programme PROGRESS.

1

protocols, minimizing a subsystem’s resource holding times may in fact increase the system load. That is, there
exists a tradeoff between reducing a subsystem’s resource holding time and the resulting system load. Given such
a tradeoff, we introduce thesystem load minimization problemas the problem of determining the resource holding
times of subsystems such that the system load can be minimized.

Approach. By assigning each subsystem with an abstract representation of its CPU requirements and resource
holding times, one may consider a divide-and-conquer approach to the system load minimization problem. We
denote these abstract representations asinterfaces, and for each subsystem its interface is independently calculated.
In a system, once subsystems are integrated, their interfaces are used to determine the system load. However, an
independent approach is not feasible for the minimization problem; for a single subsystem we cannot determine
which resource holding times that would yield the minimum system load. This is because the CPU requirement
of a subsystem depends on its blocking time, and its blockingtime subsequently depends on the resource holding
times of other subsystems.

Hence, we employ a two-step approach to find an optimal solution to the system load minimization problem.
In the first step, for each subsystem independently, we derive a set of interface candidates (i.e., a set of resource
holding time candidates). In the second step, during systemintegration, we collect the interface candidates of all
subsystems and selects one candidate for each subsystem to generate the minimum system load.

Contribution. The contribution of this paper is four-fold. First, motivated by the tradeoff between reducing
resource holding times and reducing system load, we introduce a new tradeoff problem to bound resource holding
times in the context of hierarchical scheduling. Second, aiming at minimizing the system load, we formulate an
optimization problem to determine the resource holding times of each subsystem. Third, we present two algorithms
that together find an optimal solution to the problem. The first algorithm efficiently generates a bounded number
of interface candidates for each subsystem, and we prove that the interface used to generating an optimal solution
is contained within this set of interfaces. The second algorithm efficiently finds an optimal solution using the
interface candidates of all subsystems, and we prove its correctness. Fourth, we also extend the schedulability
analysis of HSFs with HSRP [6] to be suitable for open environments.

Section 2 presents related work, followed by the system model and background in Section 3. Section 4 presents
how resources are shared in our HSF. Section 5 addresses the first step of our approach to the system load min-
imization problem; efficiently generating interface candidates, and Section 6 resolves the second step effectively
finding an optimal solution out of the candidates. Finally, Section 7 concludes.

2 Related work

Hierarchical scheduling. Over the years, there has been a growing attention to HSFs [1,5, 7, 8, 11, 13, 14,
18, 20, 21] for real-time systems. Since Deng and Liu [7] proposed a two-level HSF for open systems, many
studies have been proposed for its schedulability analysisof HSFs [11, 13, 15]. Various processor models, such as
bounded-delay [16] and periodic [14, 20], have been proposed for a multi-level HSFs, and schedulability analysis
techniques have been proposed for the proposed processors models [1, 5, 8, 14, 18, 20, 21]. However, none of the
above studies consider supporting logical resource sharing in HSFs.

Resource sharing. To support logical resource sharing in a mutual exclusive manner, some synchronization
protocols are proposed. They provide rules about how to gainaccess to the resource, and specifie which tasks
should be blocked when trying to access the resource. To achieve predictable real-time behaviour, several protocols
have been proposed including the Priority Inheritance Protocol (PIP) [19], the Priority Ceiling Protocol (PCP) [17],
and the Stack Resource Policy (SRP) [2]. Fisheret al. [4, 10] proposed algorithms to minimize the time duration
that a task locks a resource under fixed priority and EDF scheduling with SRP.

2

The issues of supporting resource sharing in HSFs have been considered. Deng and Liu [7] proposed the usage
of non-preemptive global resource access, which bounds themaximum blocking time that a task might be subject
to. It was shown in [11, 1] that traditional protocols such asSRP can be used to support local resource sharing
within a subsystem. Recently, a few studies (e.g., HSRP [6],SIRAP [3], BROE [9]) have been proposed for
supporting resource sharing between subsystems in HSFs. Insummary, compared to the work in this paper, none
of the above approaches have addressed the tradeoff betweenreducing a subsystem’s resource holding times and
the resulting system load.

3 System model and background

A HSF is introduced to support CPU time sharing among applications (subsystems) under different scheduling
services. The system-level global scheduler allocates CPUtime to subsystems, and the subsystem-level local
schedulers subsequently schedule CPU time to their internal tasks. This framework also allows logical resource
sharing between tasks in a mutually exclusive manner. Taskscan sharelocal logical resources within a subsystem
andglobal logical resources across subsystems. In this paper we focuson global logical resources while local
logical resources can be easily supported by traditional synchronization protocols such as SRP [1, 6, 11].

3.1 Virtual processor models

The notion of real-time virtual processor (resource) modelwas first introduced by Moket al.[16] to characterize
the CPU allocations that a parent node provides to a child node in a HSF. TheCPU supplyof a virtual processor
model refers to the amounts of CPU allocations that the virtual processor model can provide. Thesupply bound
functionof a virtual processor model calculates the minimum possible CPU supply for any given time interval of
lengtht.

Shin and Lee [20] proposed the periodic virtual processor model Γ(P,Q) to characterize periodic processor
allocations, whereP is a period (P > 0) andQ is a periodic allocation time (0 < Q ≤ P). The capacityUΓ of a
periodic virtual processor modelΓ(P,Q) is defined asQ/P .

The supply bound functionsbfΓ(t) of the periodic modelΓ(P,Q) was given in [20] to compute the minimum
possible CPU supply for every interval lengtht as follows:

sbfΓ(t) =






t − (k + 1)(P − Q) if t ∈ [(k + 1)P − 2Q,
(k + 1)P − Q],

(k − 1)Q otherwise,
(1)

wherek = max
(
⌈(t − (P − Q))/P ⌉, 1

)
. Here, we first note that an interval of lengtht may not begin syn-

chronously with the beginning of periodP ; as shown in Figure 1, the interval of lengtht can start in the middle of
the period of a periodic modelΓ(P,Q). Figure 1 illustrates the supply bound functionsbfΓ(t).

3.2 Stack Resource Policy (SRP)

To use SRP [2] in a HSF, we extend terms associated with SRP as follows:

• Preemption level. Each taskτi has a preemption level equal toπi = Pri, wherePri is the priority ofτi.
Similarly, each subsystemSs has a preemption level equal toΠs = PRs, wherePRs is the subsystem’s
priority.

• Resource ceiling. Each global shared resourceRj is associated with two types of resource ceilings; anin-
ternal resource ceiling for local schedulingrcj = max{πi|τi accessesRj} and anexternalresource ceiling
for global schedulingRXs = max{Πs|Ss accessesRj}.

3

0 1 2 3 4 5 6 7 8 9 10
t

sb
f(

t)

P

Q

P P P

Q QQ

(k-1)P
BD =
2P-2Q

Figure 1. The supply bound function of a periodic virtual processor model Γ(3, 2).

• System and subsystem ceilings. System and subsystem ceilings are dynamic parameters thatchange dur-
ing execution. The system (subsystem) ceiling is equal to the currently locked highest external (internal)
resource ceiling in the system (subsystem).

According to SRP, a jobJi generated by taskτi can preempt the currently executing jobJk within a subsystem
only if Ji is a higher-priority job ofJk and the preemption level ofτi is greater than the current subsystem ceiling.
The same reasoning can be made for subsystems from a global scheduling point of view.

3.3 System model

We consider a deadline-constrained sporadic task modelτi(Ti, Ci,Di,Pri, {ci,j}), whereTi is the minimum
separation time between its successive jobs,Ci, is the worst-case execution time (WCET),Di is the relative
deadline (Ci ≤ Di ≤ Ti), Pri is the priority, and each elementci,j in {ci,j} represents the WCET ofτi inside a
critical section of the global shared resourceRj . We assume that all tasks have unique priorities and are sorted
according to their priorities in the order of increasing priority.

For a shared resourceRj , theresource holding timehl
j with internal resource ceilingrcj = l is defined as the

maximum task execution time inside a critical section plus the interference (inside the critical section) of higher
priority tasks that have preemption level greater than the internal ceiling of the locked resource.hi

j is computed [4]
usingWj(t) as follows;

Wj(t) = cxj +
u∑

k=rcj+1

⌈
t

Tk

⌉Ck, (2)

wherecxj = max{ci,j} for all taskτi uses resourceRj , i.e., the maximum execution time inside a critical section
of a task among all tasks that use resourceRj , andu is the greatest internal ceiling within the subsystem.

The resource holding timehl
j is the smallest positive timet∗l such that

Wj(t
∗
l) = t∗l . (3)

4

A subsystemSs ∈ S, whereS is the whole system of subsystems, is characterized by a tasksetTs and a set
of internal resource ceilingsRCs of the global shared resources. Each subsystemSs is assumed to have a fixed-
priority local scheduler (FPS local scheduler). Each subsystemSs has an interface (the subsystem interface) that
is defined as(Ps, Qs,Hs), wherePs is a period,Qs is an execution requirement budget, andHs is a maximum
global resource holding time, i.e.,Hs = max{hl

j | for all Rj ∈ Rs}, whereRs is the set of global shared resources
used by the internal tasks ofSs.

4 Resource sharing in the HSF

4.1 Overrun mechanism

This section explains overrun mechanisms that can be used tohandle budget expiry during a critical section in
a HSF. Consider a global scheduler that schedules subsystems according to their periodic interfaces (Ps, Qs,Hs).
The subsystem budgetQs is said toexpireat the point when one or more internal (to the subsystem) tasks have
executed a total ofQs time units within the subsystem periodPs. Once the budget is expired, no new tasks within
the same subsystem can initiate execution until the subsystem’s budget is replenished. This replenishment takes
place in the beginning of each subsystem period, where the budget is replenished to a value ofQs.

Budget expiration can cause a problem, if it happens while a job Ji of a subsystemSs is executing within the
critical section of a global shared resourceRj. If another jobJk, belonging to another subsystem, is waiting for
the same resourceRj , this job must wait untilSs is replenished soJi can continue to execute and finally release
the lock on resourceRj . This waiting time exposed toJk can be potentially very long, causingJk to miss its
deadline.

In this paper, we consider a mechanism based on overrun [6] that works as follows; when the budget of
subsystemSs expires andSs has a jobJi that is still locking a global shared resource, jobJi continues its execution
until it releases the locked resource. The extra time thatJi needs to execute after the budget ofSs expires is denoted
asoverrun timeθ. The maximumθ occurs whenJi lock a resource that gives the longest resource holding timejust
before the budget ofSs expires. This worst case happens whenθ equals toHs, whereHs represents the greatest
global resource holding time ofSs. To solve the budget expiration problem, one simply adds themaximum overrun
timeθ to the subsystem budget for each subsystemSs such that the new subsystem budget isQ̂s = Qs + Hs.

4.2 Schedulability analysis

In this paper, we use HSRP [6] for resource synchronization in HSF. Schedulability analysis under global and
local FPS with the overrun mechanism is presented in [6]. However, the presented approach is not suitable
for open environments. Hence, this section presents the schedulability analysis of local and global FPS using
subsystem interfaces, which is suitable for open environments.

Local schedulability analysis. Let dbfFP(i, t) denote the demand bound function of a taskτi under FPS [12],
i.e.,

dbfFP(i, t) = Ci +
∑

τk∈HP(i)

⌈ t

Tk

⌉
· Ck, (4)

whereHP(i) is the set of tasks with higher priorites than that ofτi. The local schedulability analysis under FPS
can be then easily extended from the results of [2, 20] as follows:

∀τi, 0 < ∃t ≤ Di dbfFP(i, t) + bi ≤ sbf(t), (5)

wherebi is the longest blocking time during which a jobJi may be blocked by lower priority jobs, andsbf(t) is
the supply bound function.

5

Subsystem interface. We now explain how to derive the budgetQs of the subsystem interface. GivenSs, RCs,
andPs, let calculateBudget(Ss, Ps,RCs) denote a function that calculates the smallest subsystem budget that
satisfies Eq. (5) depending on the local scheduler ofSs. Such a function is similar to the one in [20]. Then,
Qs = calculateBudget(Ss, Ps,RCs).

Global schedulability analysis. Under global FPS scheduling, we present the system load bound function as
follows (on the basis of a similar reasoning of Eq. (eq:rm-dbf)):

LBFs(t) = DBFs(t) + Bs , where (6)

DBFs(t) = (Qs + Hs) +
∑

Sk∈HPS(Ss)

⌈ t

Pk

⌉
· (Qk + Hk), (7)

whereHPS(Ss) is the set of subsystems with higher-priority than that ofSs and the system-level blocking timeBs

represents the maximum blocking time during which subsystem Ss may be blocked by lower priority subsystems,
i.e.,Bs = max(Hj | for all Sj ∈ LPS(Ss)), LPS(Ss) is the set of subsystems with lower priority than that ofSs.

A global schedulability condition under FPS is then

∀Ss, 0 < ∃t ≤ Ps LBFs(t) ≤ t, where (8)

System load. As a quantitative measure to represent the minimum amount ofprocessor allocations necessary to
guarantee the schedulability of a subsystemSs, let us defineprocessor request bound(αs) as

αs = min
0<t≤Ps

{
LBFs(t)

t
| LBFs(t) ≤ t}. (9)

In addition, let us define thesystem loadloadsys of the system under global FPS as follows:

loadsys = max
∀Ss∈S

{αs}. (10)

5 Interface candidate generation

In this paper, we consider a two-step approach to the system load minimization problem. In this section, we
address the first step that each component generates a set of interface candidates. In the second step, when the
interface candidates of all subsystems are available, one of the candidates of each subsystem will selected in order
to minimize the system load.

We define theinterface candidate generationproblem as follows. Given a subsystemSs and a set of global
resources, the problem is to generate a set of interface candidatesICs such that there exists an element ofICs that
constitutes an optimal solution to the system load problem.

As shown in the previous section, the value ofQs is evaluated using the functioncalculateBudget(Ss, Ps,RCs).
The function has 3 parameters(Ss, Ps,RCs) whereSs contains the bounded number of tasksn, andRCs has
indicates a bounded number of resourcesm. A brute-force solution to the interface generation problem is to
generate all possiblemn interface candidates. However, not all of thesemn candidates have the potential to
constitute the optimal solution; some may require more resource demand and impose higher blocking on other
subsystems and others may act as replicate interfaces.

Hence, we present an algorithm to find a correct solution to the problem. Our algorithm is computationally
efficient and produces a bounded number of interface candidates. We first provide some notions and properties
on which our algorithm is based. We then explain our algorithm and illustrate it. Hereinafter, we assume that
Ps is given by system designer and is fixed during the whole process of generating a set of interface candidates.
Therefore an interface candidate(Ps, Qs,Hs) can be denoted as(Qs,Hs).

6

Definition 1 An interface candidate(Qk,Hk) is said to beredundantif there exists(Qi,Hi) such thatHi ≤ Hk

and Qi ≤ Qk and i 6= k (denoted as(Qi,Hi) ≤ (Qk,Hk)). If two interfaces are equivalent ((Qi,Hi) =
(Qk,Hk))), then the interface with lower index is considered as a redundant interface. In addition,(Qi,Hi) is
said to benon-redundantif it is not redundant.

Lemma 1 A redundant interface candidate does not constitute an optimal solution to the system load minimization
problem.

Proof Suppose an interface candidate (Qa,Ha) is redundant. By definition, there exists another candidate (Qb,Hb)
such thatHb ≤ Ha andQb ≤ Qa. So(Qb + Hb) <= (Qa + Ha). Using a redundant interface candidate only
increasesDBFs(t) (see Eq. (7)) and the blocking timeBs, respectively, compared to a non-redundant candidate.
It means that using a redundant candidate can only increasesLBFs(t) and therebyloads (see Eq. (9)). That is, a
redundant candidate only has a potential to increaseloadsys (see Eq. (10)). In other words, a redundant candidate
cannot constitute an optimal solution to the system load minimization problem. 2

Lemma 1 suggests that redundant candidates be excluded froma solution, and it reduces the number of interface
candidates significantly. However, a brutal-force approach to reduce redundant candidates is still computationally
intractable. The complexity of an exhaustive search is veryhigh O(mn). We present interesting properties that
help to develop a computationally efficient algorithm.

When tasks access the same shared resource, their maximum blocking time can be different depending on their
preemption levels. This can happen particularly when the tasks sharing the same resources have different execution
times inside critical sections. To capture this, we introduce the following notation.

Xb
a LetXb

a be the maximum blocking time that a task of preemption levelb may experience in accessing resource
Ra, i.e.,Xb

a = max{cj,a} for all j < b.

The following lemma shows an important property: if a resourceRk implies the longest blocking time among the
resources having the same resource ceilings, thenRk will provides the longest resource holding time among them.

Lemma 2 Let Ri denote a set of resources whose resource ceilings arei. Suppose a resourceRk ∈ Ri yields
the greatest blocking time among all the elements ofRi. Then, the resourceRk generates the greatest resource
holding time among all the elements ofRi, i.e.,

(
Xi

k = max
∀Rj∈Ri

{Xi
j}

)
→

(
hi

k = max
∀Rj∈Ri

{hi
j}

)
. (11)

Proof The resource holding timehi
j of a resourceRj at its ceiling ofi depends on two parameters (see Eq. (3));

the maximum blocking at that ceiling (Xi
j = rxj) and the interference from tasks with higher preemption level

(The summation partI). SinceI is the same for all resources that have the same ceiling,hi
j depends only onXi

j

as only tasks with preemption level greater thani will contribute in the summation. 2

The following shows when redundant interface candidates can be generated. In other words, it indicates when
we can effectively exclude redundant candidates.

Lemma 3 Consider a resourceRy of a ceilingk (rcy = k) and another resourceRz of a ceiling i (rcz = i),
wherek < i. SupposeXk

y < Xk
z and rcy < rcz. Then an interface candidate generated by having the ceiling

rcy = k + 1, .., i is redundant, hence it is possible to increase the ceiling ofRy to that of Rz directly (i.e.,
rcy = rcz = i).

7

Proof Let (Q′,H ′) denote an interface candidate generated whenrcy = k and rcz = i, wherek < i. Let
(Q∗,H∗) denote another interface candidate generated whenrcy = rcz = i. We wish to show that(Q∗,H∗) ≤
(Q′,H ′), i.e.,Q∗ ≤ Q′ andH∗ ≤ H ′.

Given Xi
y < Xi

z, it follows from Lemma 2 thathi
y < hi

z. This means that even though the ceiling ofRy

increases toi, it does not change the maximum blocking time (b(t)) during t ∈ [Di+1,Di]. Therefore, it does not
change the demand bound function either. As a result,Q∗ = Q′.

We wish to show thatH∗ ≤ H ′. When the ceiling ofRy increases toi from k, its resulting resource holding
timehi

y becomes smaller thanhk
y because there will be less interference from higher priority tasks, (i.e.,hi

y < hk
y).

In fact, this is the only change that occurs to the resource holding time of all shared resources whenrcy increases.
Hence, the maximum resource holding timeH can remain the same (ifhk

y < H ′) or decrease (ifhk
y = H ′) after

rcy increases. That is,H∗ ≤ H ′. 2

Using Lemmas 1, 2, and 3, we can reduce the complexity of a search algorithm. The algorithm shown in
Figure 2 is based on these Lemmas. It increases the ceiling ofthe resource that generates the maximum resource
holding time by one step, and then checks the conditions given in Lemma 3 to further increase the ceiling of that
resource if possible. It then increases the ceiling of all resources that have the same ceiling as the selected resource,
to the selected resource ceiling. This way, we can reduce redundant interface candidates. Lines 8-11 checks the
condition in Lemma 1. The following lemma proves the correctness of algorithm shown in Figure 2.

Lemma 4 Let IC denote a set of up ton interface candidates that are generated by the algorithm ofFigure 2.
There exists no non-redundant interface candidate(Qy,Hy) such that(Qy,Hy) 6∈ IC.

Proof Assume that(Qy,Hy) is a non-redundant interface candidate and thatHy = hi
k, i.e., the resource holding

time ofRk is the maximum among all global shared resources whenrck = i. Then we shall prove that

1. There is noRj such thatXi
j > Xi

k for all rcj > i. Otherwise we could change the ceilingrck = rcj

according to Lemma 3, and by thishi
k 6= Hy.

2. There is noRj such thatXt
j > Xi

k for all rcj < i, t < i. Otherwiseht
j > hi

k because when we compute the
resource holding time ofRk andRj, the interference from higher preemption level tasks as well as blocking
is higher forRj, and thenhi

k 6= Hy. If we increase the ceilingrcj = i, it will not give other non-redundant
interface candidates (see Lemma 2 and 3).

We can conclude that there is only one resourceRk that may generate a non-redundant interface at a preemption
level i, and this is the one that imposes the highest blocking at thatlevel. The initial ceiling ofRk is v, where
v ∈ [1, i]. From Lemma 2,Xf

k (wheref ∈ [v, i]) is the maximum blocking at preemption levelrck ∈ [v, i]. Since
the presented algorithm increases the ceiling of the maximum resource holding time, it will increase the ceiling of
Rk whenrck = v up toi. Hence, we can guarantee that the algorithm will cover the interface whenHy = hi

k. 2

The proof of the previous property also shows that the complexity of the proposed algorithm isO(n) since we
haven tasks (which equals to the number of preemption levels) and there is either 0 or 1 non-redundant interface
for each preemption level, and the algorithm will only traverse these non-redundant interfaces. Moreover, the
proposed algorithm thereby produce at mostn interface candidates.

5.1 Example

We illustrate the local algorithm with the following example. Consider a subsystemSs that has six tasks as
shown in Table 1. The local scheduler for the subsystemSs is Rate Monotonic (RM) and we choose subsystem
periodPs = 100.

8

- calculateBudget(Ss, Ps,RCs) returns the smallest subsy-
stem budget that satisfies Eq. (4).

- increaseCeilingH∗(RCs) returns whether or not the ceil-
ing of the resource associated withH∗ (the current grea-
tes resource holding time) can be increased by one i.e.,
the ceiling of the resource associated withH∗ 6=
maximum ceiling. If so, it increases the ceiling of the
selected resource as well as the ceiling of all resources
that have the same ceiling as the selected resource,
motivated by Lemma 3.

- Interface is an array of interface candidates; each candidate is
(Q, H, RC).

1: RCs = {rc1, · · · , rcm}
2: num=0
3: Interface[num].Q = Ps

4: do
5: H∗ = max{h(rc1), · · · , h(rcm)}
6: Q = calculateBudget(Ss, Ps,RCs)
7: count = num
8: for j = count to 0 step -1
9: if (Q < Interface[j].Q)
10: – –num
11: end if
12: Interface[++num].H = H∗

13: Interface[num].Q = Q
14: Interface[++num].RC = RCs

15: while (increaseCeilingH∗(RCs))
16: return Interface,num()

Figure 2. The local algorithm.

The algorithm works as shown in Table 3. The results from step1 are(Q1 = 26,H1 = 47), at step 2(Q1,H1) >
(Q2,H2). So (Q1,H1) is redundant (see Definition 1). That is, this interface can be removed according to
Lemma 1. For the same reason,(Q2,H2) can be removed after step 3. At step 3, therc2 is increased directly to4
according to Lemma 3 sincerc1 > rc2 andX2

1 > X2
2 . At both steps 4 and 5, the ceilingrc1 is increased by one

sinceHi = h1 but we increase the ceiling ofrc2 according to Lemma 3.
In summary, the algorithm generates the interface candidates shown in Table 3.

6 Interface Selection

In this section, we consider an optimization problem, called optimal interface selectionproblem, that selects a
system configurationconsisting of a set of subsystem interfaces, one from each subsystem that together minimize
system load subject to the schedulability of system.

Section 6.1 presents the Greedy-GB (Greatest Blocking) algorithm, an algorithm that finds an optimal solution

9

T Ci Ti {Rj} ci,j

τ1 8 750 R2 4
τ2 50 650 R1 5
τ3 10 600 - 0
τ4 20 500 R1 20
τ5 1 165 - 0
τ6 2 150 - 0

Table 1. Example task set parameters

Step rc1 rc2 h1 h2 Qi Hi

1 4 1 23 47 26 47
2 4 2 23 37 26 37
3 4 4 23 7 26 23
4 5 5 22 6 30 22
5 6 6 20 4 36 20

Table 2. Example algorithm

to this problem. The proposed algorithm basically finds a setof heuristic solutions through a finite number of
iteration steps. Section 6.2 shows that an optimal solutionexists within the set of such heuristic solutions generated
by the Greedy-GB algorithm.

6.1 Description of the Greedy-GB algorithm

The Greedy-GB algorithm relies on a couple of assumptions. It assumes therefinedproperty of each subsys-
tem’s interface candidate set such that it contains noredundantelements (see section 5). Moreover, it assumes that
each interface candidate set is sorted in a decreasing orderof resource holding time (Hs). In other words, each set
is sorted in an increasing order of demand (Qs + Hs). Then, the first candidate has the largest resource holding
time and the smallest demand.

Heuristic solution. The Greedy-GB algorithm generates a finite number of heuristic solutions through iteration
steps. Each heuristic solution is a set of individual interface candidates of all subsystems, i.e.,

HSi Let HSi denote aheuristic solutionthat the Greedy-GB algorithm generates at ani-th iteration step. For
notational convenience, we introduce a variableci

k to denote an element ofHSi, i.e.,HSi = {ci
1, . . . , c

i
n}.

The variableci
k indicates which interface candidate of a subsystemSk is included inHSi.

Figure 3 shows an example search space for a system consisting of 3 subsystems, where subsystemS1 has 3
interface candidates, and two other subsystemsS2 andS3 have 2 candidates, respectively. Each node in the graph
represents a solution candidate, and each number in the nodecorresponds to an interface candidate index in the

Interface P Q H
1 100 26 23
2 100 30.2 22
3 100 36.5 20

Table 3. Interface candidates.

10

1, 1, 1

1, 1, 21, 2, 12, 1, 1

2, 1, 21, 2, 22, 2, 13, 1, 1

2, 2, 23, 2, 13, 1, 2

3, 2, 2

1, 1, 1

1, 1, 21, 2, 12, 1, 1

2, 1, 21, 2, 22, 2, 13, 1, 1

2, 2, 23, 2, 13, 1, 2

3, 2, 2

Figure 3. Search space for a system consisting of 3 subsystems.

order ofS1, S2, andS3. In the figure, at the second iteration step, the heuristic solution is HS2 = {2, 1, 2}, and
the first element ofHS2 is c2

1 = 2.

Initialization. In the beginning, this algorithm generates an initial heuristic solutionHS0 such that it consists of
the first interface candidates of all subsystems. In the example shown in Figure 3,HS0 = {1, 1, 1} (see line 2 of
Figure 4).

Iteration step. At an arbitraryi-th iteration step, the Greedy-GB algorithm takes a heuristic solutionHSi−1 from
the previous step and transforms it to another heuristic solution HSi. Transformation is made to increase only one
element ofHSi−1 in value by one. Let us introduce a variable (δi) to state this more formally.

δi Let δi denote the only single element whose value increases by one betweenHSi−1 andHSi, i.e.,

ci
k =

{
ci−1
k + 1 if k = δi,

ci−1
k otherwise.

(12)

In the example shown in Figure 3,δ1 = 1.

Let us explain how to determineδi at ani-th step. We can potentially increase every elements ofHSi−1, and
thereby we have at mostn candidates for the value ofδi. Here, we choose one out of at mostn candidates such
that a resultingHSi can cause the system load to be minimized.

Let loadsys(HSi−1) denote the value ofloadsys when a heuristic solutionHSi−1 is used as asystem interface.
We are now interested in reducing the value ofloadsys(HSi−1). We introduce a variables∗i that is useful to explain
how to reduceloadsys(HSi−1).

11

s∗i Let s∗i denote the subsystemSs∗
i

that has the largestprocessor request boundamong all subsystems. That
is, loadsys(HSi−1) = loads∗

i
. We can find suchSs∗

i
by evaluating theprocessor request bound’s of all

subsystems (in line 5 of Figure 4).

By the definition ofs∗i , we can reduce the value ofloadsys(HSi−1) by reducing the value ofLBFs∗
i
(t). There

are two potential ways to reduce the value ofLBFs∗
i
(t). From the definition ofLBFs(t) in Eq. (6), one is to

reduce its maximum blocking timeBs∗
i

and the other is to reduce the subsystem demands (DBFs∗
i
(t)). A key

aspect of this algorithm is that it always reduces the blocking time part, but does not reduce the demand part. An
intuition behind is as follows: this algorithm starts from the interface candidates that have the smallest demands
but the largest resource holding times, respectively. Hence, for each interface candidate, there is no room to further
reduce its demand. However, there is a chance to reduce the maximum blocking timeBs∗

i
of Ss∗

i
. It can be reduced

by decreasing the resource holding time of a subsystemSk∗

i
that imposes the largest blocking time to the subsystem

Ss∗
i
. We definek∗

i in a more detail.

k∗
i Let k∗

i denote the subsystemsk∗

i
that imposes the largest blocking time to the subsystemSs∗

i
, i.e., Bs∗

i
=

Hk∗

i
= max{Hj | for allHs ∈ LPS(s∗i)}

1, whereLPS(i) is a set of lower-priority subsystems ofSs∗
i
. We

can find suchSk∗

i
easily by looking at the resource holding times of all lower-priority subsystems ofSs∗

i
(in

ine 6 of Figure 4).

When suchSk∗

i
is found, it then checks whether the resource holding time ofSk∗

i
can be further reduced (in line

7 of Figure 4). If so, it is reduced (in line 8), andHSi−1 becomes toHSi (in line 9). That is,δi = k∗
i .

Iteration termination. The above iteration process terminates when the blocking time Bs∗ of subsystemSs∗
i

cannot be reduced further. The algorithm then finds the smallest value ofloadsys out of the values saved during the
iteration, and it returns a set of interfaces correspondingto the smallest value.

Complexity of the algorithm. During ani-th iteration, the algorithm only increases the interface candidate
index of a subsystemSδi

. Then, it can repeatO(n ∗ m′) iterations, wheren is the number of subsystems andm′

is the greatest number of interface candidates of a subsystem among all.

6.2 Correctness of the Greedy-GB algorithm

In this section, we show that the Greedy-GB algorithm produces a set of heuristic solutions that contains an
optimal solution. We first present notations that are usefulto prove the correctness of the algorithm.

AS. We consider the entire search space of the optimal interface selection problem. It contains all possible
subsystem interfaces comprising a system configuration, and letAS denote it, i.e.,

AS = IC1 × · · · × ICn. (13)

In the example shown in Figure 3, the entire solution space (AS) has 12 elements.

We present some notations to denote the properties of the Greedy-GB algorithm at an arbitraryi-th iteration
step.

1If more tan one lower priority subsystem impose same maximumblocking onSs
∗

i then we select the one with lowest priority.

12

- ICs is an array of interface candidates of subsystemSs, sorted in a
decreasing order ofHs.

- icis is an index toICs of subsystemSs

- I is a set of interfaces{Is}, each of which indicated byicis
- subsystemWithMaxLoad() returns the subsystemSs∗ that has the

greatestprocessor request boundamong all subsystems, i.e.,loadsys = αs∗ .
- maxBlockingSubsystemToSysload(s∗) returns a subsystemSk∗

that produces the greatest blocking time to a subsystemSs∗.
Note thatSs∗ determines the system load.

1: for all Ss ∈ S
2: icis = 1; Is = ICs[icis]
3: load∗sys = 1.0; I∗ = I

4: do
5: s∗ = subsystemWithMaxLoad()
6: k∗ = maxBlockingSubsystemToSysload(s∗)
7: if (icik∗ can increase by one)
8: icik∗ = icik∗ + 1
9: Ik∗ = ICk∗[icik∗]
10: computeloadsys according to Eq. (10)
11: if (loadsys < load∗sys)
12: load∗sys = loadsys

13: I∗ = I
14: else
15: return I∗ (that determinesload∗sys)
16: until (true)

Figure 4. The Greedy-GB algorithm.

ÎC
i

k. In the beginning, the Greedy-GB algorithm has the entire search space (AS) to explore. Basically, this
algorithm gradually reduces a remaining search space to explore during iteration. For notation convenience,

we introduce a variable (̂IC
i

k) to indicate the remaining interface candidates of a subsystemSk to explore.
By definition,ci

k indicates which interface candidate of a subsystemSk is selected byHSi. This algorithm

continues exploration from the interface candidate indicated byci
k from the end of ani-th step. Then,̂IC

i

k

is defined as

ÎC
i

k = {ci
k, . . . ,maxk} for all k = 1, . . . , n. (14)

wheremaxk is the number of interface.

In the example shown in Figure 3,̂IC
1

1 = {2, 3}.

XPi. Let us defineXPi to denote the search space remaining to explore after the endof ani-th iteration step. Note
that such a remaining search space does not have to include the solution candidateHSi chosen at thei-th
step. Then,XPi is defined as

13

XPi = (ÎC
i

1 × · · · × ÎC
i

n) \ HSi. (15)

RMi In essence, the Greedy-GB algorithm gradually decreases a remaining search space during iteration. That
is, at ani-th step, it keeps reducingXPi−1 to XPi, whereXPi ⊂ XPi−1. Let RMi denote a set of interface
settings that is excluded fromXPi−1 at thei-th step. Note that at thei-th step, the interface candidate of a
subsystemSδi

changes fromci−1
δi

to ci
δi

. Then, a subset ofXPi that contains the value ofci−1
δi

, is excluded
at thei-th step.RMi is defined as

RMi = (ÎC
(i−1)∗

1 × · · · × ÎC
(i−1)∗

n) \ {HSi−1}, where (16)

ÎC
(i−1)∗

k =

{
{ci−1

k } if k = δi,

ÎC
i

k otherwise.
(17)

In the example shown in Figure 3,RM1 = {{1, 2, 1}, {1, 2, 2}, {1, 1, 2}}.

AHi Let AHi represents a set of heuristic solutions that the Greedy-GB algorithm selects from the first step
through to ani-th step, i.e.,

AHi = {HS1, . . . ,HSi}. (18)

ARi Let ARi represents a set of interface candidates that the Greedy-GBalgorithm excludes from the first step
through to ani-th step, i.e.,

ARi = RM(i−1) ∪ RMi, (19)

whereAR0 = φ.

We define partial ordering between solution candidates as follows:

Definition 2 A solution candidatesc = {c1, . . . , cn} is said to bestrictly precedentof another solution candidate
sc′ = {c′1, . . . , c

′
n} (denoted assc ≺ sc′) if cj < c′j for somej andck ≤ c′k for all k, where1 ≤ j, k ≤ n.

As an example,{1, 1, 1} ≺ {1, 2, 1}.
The following lemma states that when the algorithm excludesa set of solution candidates from further explo-

ration at an arbitraryi-th step, a set of such excluded solution candidates does notcontain an optimal solution.

Lemma 5 At an arbitrary i-th iteration step, the Greedy-GB algorithm excludes a set of solution candidates
(RMi), and any excluded solution candidater ∈ RMi does not yield a smaller system load than that byHSi−1,
i.e.,

∀r ∈ RMi loadsys(HSi−1) ≤ loadsys(r). (20)

Proof As explained in Section 6.1, there are two potential ways to reduce the value ofloadsys(HSi−1) at thei-th
step. One is to reduce the demand of the subsystemSs∗

i
(i.e.,DBFs∗

i
(t)), and the other is to reduce its maximum

blocking timeBs∗
i
.

Firstly, we wish to show that the demand ofSs∗
i

does not decrease when we transform the heuristic solution of
HSi−1 to any solution candidater ∈ RMi. Note that each interface candidate set is sorted in an increasing order
of resource requirement budget (Q). One can easily see thatHSi−1 ≺ r. Then, it follows thatDBFs∗

i
(t) never

decreases whenHSi−1 changes tor.

14

Secondly, we wish to show that when we change the heuristic solution of HSi−1 to any solution candidate
r ∈ RMi, Bs∗

i
does not decrease. As shown in line 6 in Figure 4, the Greedy-GB algorithm finds the subsystem

Sδi
that generates the maximum blocking time to for subsystemSs∗

i
. Then, the algorithm increasesci−1

δi
by one,

if possible, to decreaseBs∗
i
. However, by definition, for all elementsr of RMi, the element for the subsystemSδi

has the value ofci−1
δi

, rather than the value ofci
δi

. This means thatBs∗
i

never decreases when we changeHSi−1 to
r. 2

The following lemma states that when the algorithm terminates at an arbitraryf -th step, a set of remaining
solution candidates does not contain an optimal solution.

Lemma 6 When the Greedy-GB algorithm terminates at an arbitraryf -th step, any remaining solution candidate
(xp ∈ XPf) does not yield a smaller system load thanHSf does, i.e.,

∀xp ∈ XPf loadsys(HSf) ≤ loadsys(xp). (21)

Proof As explained in the proof of lemma 5, there are two ways to reduce loadsys (i.e.,LBFs∗
f
(t)).

One is to reduce the demand of the subsystemSs∗
f

(i.e., DBFs∗
f
(t) in Eq. (7)). However, it does not decrease,

sinceHSf ≺ xp for all xp ∈ XPf .
The other is to reduce the maximum blocking time (Bs∗

f
). In fact, the Greedy-GB algorithm terminates at the

f -th step because there is no way to decreaseBs∗
f
. That is,Bf does not decrease whenHSf changes to anyxp. 2

The following lemma states that at anyi-th step, the remaining search space to explore decreases by(RMi ∪
{HSi}).

Lemma 7 At an arbitrary i-th iteration step,

XPi = XPi−1 \ (RMi ∪ {HSi}). (22)

Proof The Greedy-GB algorithm transformsHSi−1 to HSi at ani-th step by increasing the value of itsδi-th
element. Then, we have

ÎC
i

k =





ÎC

i−1

k \ {ci−1
k } if k = δi,

ÎC
i−1

k otherwise.
(23)

Without loss of generality, we assume thatδi = 1. For notational convenience, letXP∗
i = XPi ∪ {HSi}, and

RM∗
i = RMi ∪ {HSi}. Then, we have

XP∗
i = ÎC

i

1 × ÎC
i

2 × · · · × ÎC
i

n

=
(
ÎC

i−1

1 \ {ci−1
1 }

)
× ÎC

i

2 × · · · × ÎC
i

n

=
(
ÎC

i−1

1 × ÎC
i−1

2 × · · · × ÎC
i−1

n

)
\

(
{ci−1

1 } × ÎC
i

2 × · · · × ÎC
i

n

)

= XP∗
i−1 \ RM∗

i

=
(
XPi−1 ∪ {HSi−1}

)
\

(
RMi ∪ {HSi−1}

)

= XPi−1 \ RMi . (24)

That is, consideringXP ∗
i = XPi ∪ {HSi}, it follows

XPi = XPi−1 \ (RMi ∪ {HSi}) . (25)

2

15

The following lemma states that at anyi-th iteration step, the entire search space can be divided into a set of
explored candidates (AHi), a set of excluded candidates (ARi), and a set of remaining candidates to explore (XPi).

Lemma 8 At an arbitrary i-th step, the sets ofARi, AHi, andXPi include all possible solution candidates, i.e.,

ARi ∪ AHi ∪ XPi = AS (26)

Proof We will prove this lemma by using mathematical induction. Asa base step, we wish to show Eq. (26) is
true, wheni = 1. Note thatAR0 = φ andAH0 = {HS0}. In addition,XP0 = AS \ HS0, according to Eq. (15). It
follows thatAR0 ∪ AH0 ∪ XP0 = AP .

We assume that Eq. (26) is true at thei-th iteration step of the Greedy-GB algorithm. We then wish to prove
that it also holds at the(i + 1)-th step, i.e.,

ARi ∪ AHi ∪ XPi = ARi+1 ∪ AHi+1 ∪ XPi+1. (27)

According to the definitionsAHi+1, ARi+1, andXPi+1 (see Eq. (18), (19) and (22)), we can rewrite the right-
hand side of Eq. (27) as follows:

ARi+1 ∪ AHi+1 ∪ XPi+1

=
(
ARi ∪ RMi+1

)
∪

(
AHi ∪ {HSi+1}

)
∪

(
XPi \ (RMi+1 ∪ {HSi+1})

)

= ARi ∪ AHi ∪ XPi .

2

The following theorem states that the Greedy-GB algorithm produces a set of heuristic solutions, which must
contain an optimal solution.

Theorem 9 When the Greedy-GB algorithm terminates at thef -th step, a set of heuristic solutions (AHf) includes
an optimal solution.

Proof Let opt denote an optimal solution. We prove this theorem by contradiction, i.e., by showing thatopt 6∈
ARf andopt 6∈ XPf .

Supposeopt ∈ ARf . Then, by definition, there should existRMi such thatopt ∈ RMi for an arbitraryi ≤ f .
According to Lemma 5,loadsys(HSi−1) < loadsys(opt), which contradicts the definition ofopt. Hence,opt 6∈
ARf .

Supposeopt ∈ XPf . Then, according to Lemma 6, it should beloadsys(HSf) < loadsys(opt), which contradicts
the definition ofopt as well. Hence,opt 6∈ ARf .

According to Lemma 8, it follows thatopt ∈ HSf . 2

7 Conclusion

When subsystems share logical resources in a hierarchical scheduling framework, they can block each other. In
particular, when a budget expiry problem exists, such blocking can imposes extra resource demands. However,
simply minimizing the blocking times (or resource holding times) of subsystems may result in increase on the sys-
tem load; in this paper, we introduced such a tradeoff between reducing the resource holding times of subsystems
and increasing the system load. Given such a tradeoff, we formulated the system load minimization problem, and

16

presented a two-step approach to the problem. As a first-step, each subsystem generates a set of solution candi-
dates, and in the second step, the system selects one of the candidates of each subsystem in order to constitute an
optimal solution. We presented efficient algorithms and proved their correctness for both steps.

In this paper, we only consider FPS. We plan to extend our framework to EDF scheduling. Another direction
for future work is to extend our framework to other hierarchical synchronization protocols, such as SIRAP [3] and
BROE [9].

References

[1] L. Almeida and P. Pedreiras. Scheduling within temporalpartitions: response-time analysis and server design. In
EMSOFT ’04, 2004.

[2] T. P. Baker. Stack-based scheduling of realtime processes.Real-Time Systems, 3(1):67–99, March 1991.
[3] M. Behnam, I. Shin, T. Nolte, and M. Nolin. Sirap: A synchronization protocol for hierarchical resource sharing in

real-time open systems. InEMSOFT’07, 2007.
[4] M. Bertogna, N. Fisher, and S. Baruah. Static-priority scheduling and resource hold times. InProceedings of the 15th

International Workshop on Parallel and Distributed Real-Time Systems, Long Beach, CA, March 2007.
[5] R. I. Davis and A. Burns. Hierarchical fixed priority pre-emptive scheduling. InRTSS, 2005.
[6] R. I. Davis and A. Burns. Resource sharing in hierarchical fixed priority pre-emptive systems. InRTSS, 2005.
[7] Z. Deng and J. W.-S. Liu. Scheduling real-time applications in an open environment. InRTSS ’97, 1997.
[8] X. A. Feng and A. K. Mok. A model of hierarchical real-timevirtual resources. InRTSS, 2002.
[9] N. Fisher, M. Bertogna, and S. Baruah. The design of an edf-scheduled resource-sharing open environment. InRTSS,

2007.
[10] N. Fisher, M. Bertogna, and S. Baruah. Resource-locking durations in edf-scheduled systems. InRTAS, 2007.
[11] T.-W. Kuo and C.-H. Li. A fixed-priority-driven open environment for real-time applications. InRTSS, 1999.
[12] J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic scheduling algorithm: exact characterization and average case

behavior. InRTSS, 1989.
[13] G. Lipari and S. Baruah. Efficient scheduling of real-time multi-task applications in dynamic systems. InRTAS ’00,

2000.
[14] G. Lipari and E. Bini. Resource partitioning among real-time applications. InECRTS, 2003.
[15] G. Lipari, J. Carpenter, and S. Baruah. A framework for achieving inter-application isolation in multiprogrammed

hard-real-time environments. InRTSS ’00, 2000.
[16] A. Mok, X. Feng, and D. Chen. Resource partition for real-time systems. InRTAS ’01, 2001.
[17] R. Rajkumar, L. Sha, and J. P. Lehoczky. Real-time synchronization protocols for multiprocessors. InRTSS, 1988.
[18] S. Saewong, R. R. Rajkumar, J. P. Lehoczky, and M. H. Klein. Analysis of hierar hical fixed-priority scheduling. In

ECRTS ’02, 2002.
[19] L. Sha, J. P. Lehoczky, and R. Rajkumar. Task schedulingin distributed real-time systems. InProceedings of the

International Conference on Industrial Electronics, Control, and Instrumentation, pages 909–916, Cambridge, MA,
USA, November 1987.

[20] I. Shin and I. Lee. Periodic resource model for compositional real-time guarantees. InRTSS ’03, 2003.
[21] I. Shin and I. Lee. Compositional real-time schedulingframework. InRTSS ’04, 2004.

17

