

MRTC report ISSN 1404-3041 ISRN MDH-MRTC-222/2008-1-SE

Mälardalen Real-Time Research Centre, Mälardalen University, Feburary 2008 1(10)

Using Software Evolvability Model for Evolvability Analysis

Hongyu Pei Breivold

ABB Corporate Research

Industrial Software Systems

SE-721 78 Västerås, Sweden

Hongyu.pei-breivold@se.abb.com

Ivica Crnkovic

Mälardalen University

School of Innovation, Design and

Engineering

SE-721 23 Västerås, Sweden

Ivica.crnkovic@mdh.se

Abstract
Software evolution is characterized by inevitable

changes of software and increasing software

complexities, which in turn may lead to huge costs

unless rigorously taking into account change

accommodations. This is in particular true for long-

lived systems in which changes go beyond

maintainability. For such systems, there is a need to

address evolvability explicitly in the requirements and

early design phases and maintain it during the entire

lifecycle. Nevertheless, there is a lack of a model that

can be used for analyzing, evaluating and comparing

software systems in terms of evolvability. In this paper,

we describe the initial establishment of an evolvability

model as a framework for analysis of software

evolvability. We motivate and exemplify the model

through an industrial case study of a software-

intensive automation system.

1. Introduction

Software maintenance and evolution are

characterised by their huge cost and cumbersome

implementation [1, 2]. Today, software needs to be

changed on a constant basis with major enhancements

within short timescale, in order to launch new products

and services and keep up with new business

opportunities, through coping with the changing

environments and the radically changing requirements.

All these put critical demands on the software

system’s capability of rapid modification and

enhancement. In this sense, software evolution is one

term that can express the software changes during

software system’s lifecycle and software evolvability

is an attribute that describes the software system’s

capability to accommodate these changes with the

condition of having the lifecycle costs under control.

As software evolution activities are performed,

software evolvability must be considered. However,

many people use software evolvability as synonymous

to software maintainability. Although both have

similarities in many senses, software maintainability

and evolvability have specific focus, which has

resulted in confusion in understanding and applying

similar concepts designated differently. Besides, the

lack of evolvability model hinders us from analyzing

and evaluating software systems in terms of

evolvability.

In this paper, we intend to (i) outline the

differences between software maintainability and

evolvability, (ii) define a software evolvability model

and (iii) identify subcharacteristics of software

evolvability based on literature surveys, analyses of

several well-known quality models and an industrial

case study. This evolvability model is established as a

first step towards quantifying evolvability, a base and

check points for evolvability analysis and evaluation

as well as evolvability improvement. Further we

demonstrate the model through an industrial case

study, in which evolvability was analyzed.

The outline of the paper is as follows: Section 2

describes the related work. In section 3, we analyze the

differences between evolvability and maintainability.

Section 4 presents the motivations for evolvability

analysis from the case perspective. We outline a

software evolvability model in section 5, where

necessary subcharacteristics of software evolvability

and corresponding measuring attributes are identified.

Further in section 6, we present the structured way of

evolvability evaluation that we used in the case study,

and demonstrate the evolvability model with following

analysis. Section 7 concludes the paper and outlines

the future work.

2. Related Work

Several metrics have been proposed for evaluating

evolvability. Ramil and Lehman proposed metrics

MRTC report ISSN 1404-3041 ISRN MDH-MRTC-222/2008-1-SE

Mälardalen Real-Time Research Centre, Mälardalen University, Feburary 2008 2(10)

based on implementation change logs [26] and

computation of metrics using the number of modules

in a software system [19]. Another set of metrics is

based on software life span and software size [30]. In

[29], a framework of process-oriented metrics for

software evolvability was proposed to intuitively

develop architectural evolvability metrics and to trace

the metrics back to the evolvability requirements based

on the NFR framework [6].

An approach was described in [20] to measure

software architecture’s quality characteristics through

identified key use cases, based on the customization of

the ISO 9126 standard. An ontological basis which

allows for the formal definition of a system and its

change at the architectural level is presented in [27]

and applied to the domain of computer-based systems

engineering. Taxonomy was proposed in [28] to

address change as factors and classify evolvability into

several aspects, e.g. generality, adaptability, scalability

and extensibility. However, it does not cover all the

types of software evolution, e.g. concerns of product

line development.

A quality model provides a framework for quality

assessment. It aims at describing complex quality

criteria through breaking them down into concrete sub-

characteristics. The best known quality models include

McCall [22], Boehm [3], FURPS [13], ISO 9126 [16]

and Dromey [10]. Although several quality attributes

are correlated to software evolvability, e.g.

extensibility and maintainability, the term evolvability

is not explicitly addressed in either of the quality

models.

3. Evolvability vs. Maintainability

In this paper, we use evolution to refer to the

particular evolution stage as described in the staged

model by Bennett and Rajlich [2]. Among the various

definitions of evolvability [7, 14, 24, 28], we refer to

the definition in [28], since it expresses the dynamic

behaviour during a software system’s lifecycle and

supports the staged model:

“Evolvability: An attribute that bears on the

ability of a system to accommodate changes in its

requirements throughout the system’s lifespan with the

least possible cost while maintaining architectural

integrity.”

Evolvability is, similar to maintainability, a

system characteristic that depends on many

subcharacteristics. The problem of evolvability is more

difficult than maintainability; in evolvability we

should expect the unexpected changes. However,

many people use software evolvability as synonymous

to software maintainability. Therefore, we give a

summary of the definitions of maintainability in

various quality models in Table 1, and summarize the

differences between evolvability and maintainability in

Table 2. We intend to distinguish software evolvability

from maintainability from a collection of aspects, such

as software change stimuli that trigger the changes,

type of change, impact on development process,

respective focus and type of scenarios used in analysis,

etc.

Table 1 Definitions of maintainability in quality

models
Quality

Models

Maintainability

Definition

Focus

McCall The effort required to

locate and fix a fault in the

program within its

operating environment

Corrective

maintenance

Boehm It is concerned with how

easy it is to understand,

modify and test.

Understandability,

modifiability and

testability

FURPS Implicit Adaptability,

extensibility

ISO 9126 The capability of the

software product to be

modified. Modifications

may include corrections,

improvements or

adaptation of the software

to changes in environment,

and in requirements and
functional specifications.

Analyzability,

changeability,

stability, testability

Table 2 Comparisons between evolvability and

maintainability
Characteristics Evolvability Maintainability

Software Change

Stimuli

Business model,

business objectives,

functional and quality

requirement,

environment,

underlying and

emerging

technologies, new

standards, new

versions of

infrastructure

Bugs, functional

requirement,

requirements from

customers

Type of Change Coarse-grained, long

term, higher level,

[31] radical functional

or structural

enhancements or

adaptations

Fine-grained, short

term, localized

change [31]

Focus Activity Cope with changes Keep the system

perform functions

Software

Structure

Structural change Relatively constant

Analysis

Scenarios

Growth scenarios

(change scenarios)

Existing use case

scenarios

Development

Process

May require

corresponding

process changes

Relatively constant

Architecture

Integrity

Conformance is

required

Conformance is

preserved

MRTC report ISSN 1404-3041 ISRN MDH-MRTC-222/2008-1-SE

Mälardalen Real-Time Research Centre, Mälardalen University, Feburary 2008 3(10)

4. Motivations for Evolvability Analysis

from a Real Case

The need to explicitly address software evolvability

is becoming recognized [7]. This is in particular true

for long-lived systems in which changes go beyond

maintainability. We have seen at ABB examples of

different industrial systems that often have a lifetime

of 20-30 years. These systems are subject to and may

undergo a substantial amount of evolutionary changes,

e.g. software technology changes, software systems

merge due to organizational changes, demands for

distributed development, system migration to product

line architecture, etc.

The evolution problems we have observed came

from different cases. In this paper, we exemplify and

analyze in particular one industrial case study that was

carried out on a large automation control system at

ABB. During the long history of product development,

several generations of automation controllers have

been developed as well as a family of software

products, ranging from programming tools to varieties

of application software. The case study focused on the

latest generation of the software controller.

The controller software consists of more than three

million lines of code written in C/C++ and a complex

threading model, with support for a variety of different

applications and devices. It has grown in size and

complexity, as new features and solutions have been

added to enhance functionality and to support new

hardware, such as devices, I/O boards and production

equipment. Such a complex system is difficult to

maintain. It is also important and considerably more

difficult to evolve. Due to different measures such as

organizational and lifecycle process improvements, the

system keeps the maintainability, but the evolvability

becomes more difficult since the increased complexity

in turn leads to decreased flexibility, resulting in

problems to add new features. Consequently, it would

become costly to adapt to new market demands and

penetrate new markets.

Our particular system is delivered as a single

monolithic software package, which consists of

various software applications developed by distributed

development teams. These applications aim for

specific tasks in painting, arc welding, spot welding,

gluing, machine tending and palletizing, etc. In order

to keep the integration and delivery process efficient,

the initial architectural decision was to keep the

deployment artifact monolithic; The complete set of

functionality and services is present in every product

even though not everything is required in the specific

product. As the system grew, it became more difficult

to ensure that the modifications of specific application

software do not affect the quality of other parts of the

software system. As a result, it becomes difficult and

time-consuming to modify software artifacts, integrate

and test products. To continue exploiting the

substantial software investment made and to

continuously improve the system for longer productive

lifetime, it has become essential to explicitly address

evolvability, since the inability to effectively and

reliably evolve software systems means loss of

business opportunities [2]. We want to emphasize here

that the problem raised is not a problem of

maintainability. The major problems arise when broad

new (very different) features or different development

paradigms, shifting business and organizational goals

are introduced, so the problems related to the software

evolvability – a fundamental element for increasing

strategic and economic value of the software [31].

To solve the problems presented above, we need to

handle several research issues: (i) which

characteristics are necessary for a software system to

be evolvable; (ii) how to assess evolvability in a

systematic manner; (iii) how to achieve evolvability;

and (iv) how to measure evolvability. We will address

these issues in section 5 and 6.

5. Software Evolvability Model

Software evolvability concerns both business and

technical issues [32], since the stimuli of changes

come from both perspectives, e.g. environment,

organization, process, technology and stakeholders’

needs. These change stimuli have impact on the

software system in terms of software structures and/or

functionality.

Software evolution and software evolvability can

be examined at different levels of software systems,

e.g. requirement level, architectural level, detailed

design, and source code level [9]. In this paper, we

focus on assessing software evolvability at

architectural level. This is because software

architecture is a key asset in a software system, which

allows or precludes nearly all of the system’s quality

attributes [8].

5.1. Evolvability Model

Software evolvability is a multifaceted quality

attribute [28]. Based on the definition of evolvability

in [28], the software quality challenges and assessment

[12, 14], the types of change stimuli and evolution [5],

and experiences we gained through industrial case

studies, we have discovered that only having a

collection of the subcharacteristics of maintainability

as defined in the ISO software quality standard [16] is

not sufficient for a software system to be evolvable.

Therefore, we have (i) complimented and identified

MRTC report ISSN 1404-3041 ISRN MDH-MRTC-222/2008-1-SE

Mälardalen Real-Time Research Centre, Mälardalen University, Feburary 2008 4(10)

subcharacteristics that are of primary importance for

an evolvable software system, and (ii) outlined a

software evolvability model that provides a basis for

analyzing and evaluating software evolvability.

The idea with the evolvability model is to further

derive the identified subcharacteristics to the extent

when we are able to quantify them and/or make

appropriate reasoning about the quality of service, as

in Figure 1.

Figure 1 Concept of the evolvability model

The identified subcharacteristics are summarized in

Table 1. They are a union of quality characteristics

having to do with changes, and are relevant for

characterization of evolution of software-intensive

systems during their life cycle. With these

subcharacteristics in mind, we have a basis on which

different systems can be examined and compared in

terms of evolvability. Any system that does not

explicitly address one or more of these

subcharacteristics is missing an element that probably

will undermine the system’s ability to be evolved.

Table 3 Subcharacteristics of evolvability

The additional quality subcharacteristics that are required by specific

domains [12].

Domain-specific

attributes

The capability of the software system to enable modified software to

be validated [16].

Testability

The capability of the software system to be transferred from one

environment to another [16].

Portability

The capability of the software system to enable the implementation of

extensions to expand or enhance the system with new capabilities and

features with minimal impact to the existing system (based on [16]).

Extensibility

The capability of the software system to enable a specified

modification to be implemented and avoid unexpected effects (based

on [16]).

Changeability

The non-occurrence of improper alteration of architectural information

(based on [18]).

Integrity

The capability of the software system to enable the identification of

influenced parts due to change stimuli (based on [16]).

Analyzability

DescriptionSub-
characteristics

The additional quality subcharacteristics that are required by specific

domains [12].

Domain-specific

attributes

The capability of the software system to enable modified software to

be validated [16].

Testability

The capability of the software system to be transferred from one

environment to another [16].

Portability

The capability of the software system to enable the implementation of

extensions to expand or enhance the system with new capabilities and

features with minimal impact to the existing system (based on [16]).

Extensibility

The capability of the software system to enable a specified

modification to be implemented and avoid unexpected effects (based

on [16]).

Changeability

The non-occurrence of improper alteration of architectural information

(based on [18]).

Integrity

The capability of the software system to enable the identification of

influenced parts due to change stimuli (based on [16]).

Analyzability

DescriptionSub-
characteristics

These subcharacteristics serve as a catalog of check

points for evaluation, and each subcharacteristic is

motivated and explained below in conjunction with the

case study. Examples of measuring attributes for each

subcharacteristic are given. However, the description

of how to apply the measuring attributes through

metrics is subject for further research.

Analyzability

Case Motivation: The release frequency of the

controller software is twice a year, with around 40

various new requirements that need to be implemented

in each release. These requirements may have impact

on different attributes of the system, and the possible

impact must be analyzed before the implementation of

the requirements. This requires that the software

system must have the capability to be analyzed and

explored in terms of the impact to the software by

introducing a change.

Description: Many perspectives are included in this

dimension, e.g. identification and decisions on what to

modify, analysis and exploration of emerging

technologies from maintenance and evolution

perspectives.

Measuring attributes: modularity, complexity,

documentation.

Integrity

Case Motivation: A strategy for communicating

architectural principles that we found out from various

case studies was to appoint members of the core

architecture team as technical leaders in the

development projects. However, this strategy although

helpful to certain extent, did not completely prevent

developers from insufficient understanding and/or

misunderstanding of the initial architectural decisions,

resulting in unconscious violation of architectural

conformance. This may lead to evolvability

degradation in the long run.

Description: Architectural integrity is related to

understanding and coherence to the architectural

decisions and adherence to the original architectural

styles, patterns or strategies. However, taking integrity

as one subcharacteristic of evolvability does not mean

that the architectural approaches are not allowed to be

changed. Proper architectural integrity management is

essential for the architecture to allow unanticipated

changes in the software without compromising

software integrity and to evolve in a controlled way

[2].

Measuring attributes: architectural documentation.

Changeability
Case Motivation: Due to the monolithic characteristic

of the controller software, modifications in certain

parts of the software package may lead to ripple

effects, and requires recompiling, reintegrating and

retesting of the whole system. This results in

inflexibility of patching and customers have to wait for

a new release even in case of corrective maintenance

and configuration changes. Therefore, it is strongly

required that the software system must have the ease

and capability to be changed without negative

implications or with controlled implications to the

other parts of the software system.

Description: Software architecture that is capable of

accommodating change must be specifically designed

MRTC report ISSN 1404-3041 ISRN MDH-MRTC-222/2008-1-SE

Mälardalen Real-Time Research Centre, Mälardalen University, Feburary 2008 5(10)

for change [15]. Changeability is closely related to

coupling, cohesion, modularity and software

complexity in terms of software design and coding

structure [17, 23].

Measuring attributes: complexity, coupling, change

impact, encapsulation, reuse, modularity.

Portability

Case Motivation: The current controller software

supports VxWorks and Microsoft Windows NT. There

is a need of openness for choosing among different

operating system vendors, e.g. Linux and Windows

CE.

Description: Due to the rapid technical development

on hardware and software technologies, portability is

one of the key enablers that can provide possibility to

choose between different hardware and operating

system vendors as well as various versions of

frameworks.

Measuring attributes: mechanisms facilitating

adaptation to different environments.

Extensibility

Case Motivation: The current controller software

supports around 20 different applications that are

developed by several distributed development centers

around the world. To adapt to the increased customer

focus on specific applications and to enable

establishment of new market segments, the controller,

like any other software systems, must constantly raise

the service level through supporting more functionality

and providing more features [4].

Description: One might argue that extensibility is a

subset of changeability. Due to the fact that about 55%

of all change requests are new or changed

requirements [25], we define extensibility explicitly as

one subcharacteristic of evolvability. It is a system

design principle where the implementation takes future

growth into consideration.

Measuring attributes: modularity, coupling,

encapsulation, change impact.

Testability

Case Motivation: The controller software exposed

huge number of public interfaces which resulted in

tremendous time merely on interface tests. One task

was therefore to reduce the public interfaces to around

10%. Besides, due to the monolithic characteristic,

error corrections in one part of the software requires

retesting of the whole system. One issue was therefore

to investigate the feasibility of testing only modified

parts.

Description: According to statistics [11], software

testing spends as much as 50% of development costs

and comprises up to 50% of development time. Hence,

testability is a key feature permitting high quality to be

combined with reduced time-to-market.

Measuring attributes: complexity, modularity.

Domain- specific attributes

Case Motivation: The controller software has critical

real-time calculation demands and is expected to

reduce base software code size and runtime footprint.

Besides, the devices that the controller software

supports are required to have a MTBF (Mean Time

Between Failures) with up to 50000 hours.

Description: Different domains may require additional

quality characteristics that are specific for a software

system to be evolvable. For example, the World Wide

Web domain requires additional quality characteristics

such as visibility, intelligibility, credibility,

engagibility and differentiation [12]. Component

exchangeability in the context of service reuse [21] is

another example within the distributed domain, e.g.

wireless computing, component-based and service-

oriented applications.

Measuring attributes depend on the specific domains.

6. Case study

The change stimuli to the controller software in

the case study came from the emerging critical issues

in terms of software evolution, which are: (i) time-to-

market requirements, such as building new products

for dedicated market within short time; (ii)

improvement of software system quality; (iii)

increased ease and flexibility of distributed

development of products in combination with the

diversity of application variants.

6.1. Evaluating Evolvability

In order to address evolvability, we conducted the

following structured evaluation steps as shown in

Figure 2.
Phase 1. Analyze the implications

of change stimuli on software
architecture

Phase 2. Analyze and prepare the
software architecture to

accommodate change stimuli
and potential future changes

Step 1. Identify requirements on the software architecture
Step 2. Prioritize requirements on the software architecture

Step 3. Extract architectural constructs related to the

identified issues from phase 1
Step 4. Identify refactoring components for each identified

issue

Step 5. Identify and assess potential refactoring solutions
from technical and business perspectives

Step 6. Identify and define test cases

Phase 3. Finalize the evaluation Step 7. Present evaluation results

Figure 2 Evaluation steps

Phase 1: Analyze the implications of change stimuli on
software architecture.

This phase addresses analyzability.

MRTC report ISSN 1404-3041 ISRN MDH-MRTC-222/2008-1-SE

Mälardalen Real-Time Research Centre, Mälardalen University, Feburary 2008 6(10)

Step 1: Identify requirements on the software

architecture.

Any change stimulus results in a collection of

requirements that the software architecture needs to

adapt to. The aim of this step is to extract requirements

that are essential for software architecture

enhancement so as to cost-effectively accommodate to

change stimuli. Several architecture workshops were

conducted, where the architecture core team members

and key stakeholders met and identified the following

requirements on the software architecture.

R1. The software architecture needs to be migrated

from monolithic to modular one.

R2. The complexity of the architecture structures

needs to be reduced.

R3. The architecture needs to enable distributed

development of extensions with minimum

dependency.

R4. The portability needs to be investigated.

R5. The impact on product development process needs

to be investigated.

R6. The base software code size and runtime footprint

need to be reduced.

Step 2: Prioritize requirements on the software

architecture.

In order to establish a basis for common

understanding of architecture requirements among the

stakeholders within the organization, all the

requirements identified from the first step were

prioritized. Since the main idea was to apply product

line approach and separate application-specific

extensions from base software, the criteria for

requirement prioritization were: (i) enable building of

existing types of extensions after refactoring and

architecture restructuring (ii) enable new extensions

and simplify interfaces that are difficult to understand

and may have negative effects on implementing new

extensions.

Phase 2: Analyze and prepare the software

architecture to accommodate change stimuli and

potential future changes.

This phase addresses integrity, changeability,

extensibility, portability, testability and domain-

specific attributes. Mappings must be made between

each identified requirement and the perceived

evolvability subcharacteristics. This is used to check

the model and the requirements for consistency and

completeness.

Step 3: Extract architectural constructs related to the

respective identified issue.

We mainly focused on architectural constructs that

are related to each identified requirement from

integrity perspective. Integrity management is

illustrated in Figure 3. An architectural approach

comprises of its intent, applicability, affected quality

attributes and supported generic or specific scenarios.

During software maintenance and evolution, an

emerging architectural approach introduces certain

consequences on the quality and behavior of the

software system. Furthermore, it might be in conflict

with existing architectural approaches. In this case, an

evaluation is required to verify the appropriateness of

existing and emerging architectural approaches, and

identify design tradeoffs if any. In this sense,

documentation and evaluation of architectural

approaches play a key role in integrity management.

Existing Architectural
Approaches

Emerging Architectural
Approaches

Evaluate

Revise/update

Documentation

NoYes

If emerging approach affects
negatively existing one

Revise/update

If there is weak point
in existing approach

In Conflict
Action

Artifact

Condition

KEY

Figure 3 Integrity management

Step 4: Identify refactoring components for each

identified issue.

In this step, we identified the components that need

refactoring in order to fulfill the prioritized

requirements. For example, the basic idea of

architecture restructuring in the case study was to

divide the architecture into three parts: a kernel,

common extensions and application-specific

extensions. To achieve the build- and development-

independency between the kernel and extensions,

functionality needed to be separated from resource

management. Accordingly, the low-level basic

services in resource allocations were identified as

some of the components that need refactoring, e.g.

semaphore ID management component, memory

allocation management component.

Step 5: Identify and assess potential refactoring

solutions from technical and business perspectives.

The change propagation of the effect of refactoring

was considered and was provided as an input to the

business assessment, estimating the cost and effort on

applying refactorings. In some cases, the refactoring of

a certain component was straight forward and we

knew how to refactor with only local impact. When

the implementation was uncertain and might affect

several subsystems or modules, prototypes were made

to investigate the feasibility of potential solutions as

well as the estimation of implementation workload.

Step 6: Identify and define test cases.

The emerging new test cases that cover the affected

component, modules or subsystems were identified.

We identified regression test scenarios that were used

MRTC report ISSN 1404-3041 ISRN MDH-MRTC-222/2008-1-SE

Mälardalen Real-Time Research Centre, Mälardalen University, Feburary 2008 7(10)

to test the separation between kernel and extension,

and test scenarios for validating if existing domain-

specific applications can still work as intended without

being affected after building the kernel. A test scenario

example is to implement an additional option that

contains a task utilizing the basic services.

Phase 3: Finalize the evaluation.

Step 7: Present evaluation results.

The evaluation results included (i) the identified

and prioritized requirements on the software

architecture; (ii) identified components/modules that

need to be refactored for enhancement or adaptation;

(iii) refactoring investigation documentation which

describes the current situation and solutions to each

identified candidate that need to be refactored,

including estimated workload; and (iv) test scenarios.

6.2. Analysis of Software Evolvability

Subcharacteristics

The requirements that needed to be addressed in the

case study were captured and mapped towards the

evolvability subcharacteristics as shown in Table 4.

Table 4 Subcharacteristics and requirements

mapping

R6. The base software code size and runtime footprint need to be

reduced

Domain-specific

attributes

R5. The impact on product development process needs to be

investigated

Testability

R4. Portability needs to be investigatedPortability

R3. The architecture needs to enable distributed development of

extensions with minimum dependency

Extensibility

R1. The software architecture needs to be migrated from

monolithic to modular one

Changeability

R1 – R6Integrity

R1 – R6Analyzability

RequirementsSubcharacteristics

R6. The base software code size and runtime footprint need to be

reduced

Domain-specific

attributes

R5. The impact on product development process needs to be

investigated

Testability

R4. Portability needs to be investigatedPortability

R3. The architecture needs to enable distributed development of

extensions with minimum dependency

Extensibility

R1. The software architecture needs to be migrated from

monolithic to modular one

Changeability

R1 – R6Integrity

R1 – R6Analyzability

RequirementsSubcharacteristics

The results of the evolvability analysis were

achieved through applying the aforementioned

evaluation steps and are presented below.

6.2.1. Analyzability.

The knowledge of analyzability is achieved through

the first two steps (Figure 2). The activities for each

identified requirement were refined:

R1. The software architecture needs to be migrated

from monolithic to modular one:

a) Enable the separation of layers within the

controller software: (i) a kernel which consists of

components that must be included by all

application variants; (ii) common extensions

which are available to and can be selected by all

application variants; and (iii) application

extensions which are only available to specific

application variants.

b) Investigate dependencies between the existing

extensions.

R2. The architecture complexity needs to be reduced:

a) Define interfaces and reduce public interface

calls.

b) Support task isolation and task management.

c) Support choosing a new scripting language, since

modern scripting languages are flexible,

productive and reduce the need to recompile.

R3. The architecture needs to enable distributed

development of extensions with minimum

dependency:

a) Build the application-specific extensions on top of

the base software (kernel and common extensions)

without the need of access to the internal base

source code.

b) Investigate existing dependencies between base

software and application extensions.

c) Package the base software into software

development kit, which provides necessary

interfaces, tools and documentation to support

distributed application development.

d) Separate release cycles of the base software and

application-specific extensions.

R4. The portability needs to be investigated:

a) Investigate portability across various target

operating system platforms.

b) Investigate portability across hardware platforms.

R5. The impact on product development process needs

to be investigated:

a) Investigate the implications of restructuring the

automation controller software, with respect to

product integration, verification and testing.

R6. The base software code size and runtime footprint

need to be reduced:

a) Investigate enabling mechanisms, e.g. properly

partitioning functionality.

6.2.2. Integrity.

The knowledge of integrity was achieved through the

third step (Figure 2). Over years of development, a lot

of functionality has been added to the system to

support new requirements. It becomes easy to

unconsciously violate the original good design

decisions, especially when there is a lack of proper

tool support to monitor the violations, e.g. improper

use of conditional compilation in case of environment

changes. To prevent any implementation violations,

two aspects were considered: (i) Extract design

decisions through documentation of architectural

constructs, with especially rationale specified for each

design decision. An example of documenting rationale

for a portability-related architectural design decision is

illustrated in Table 3. (ii) Provide training,

guidelines/rules and code examples for software

developers in writing code and using tactics that

MRTC report ISSN 1404-3041 ISRN MDH-MRTC-222/2008-1-SE

Mälardalen Real-Time Research Centre, Mälardalen University, Feburary 2008 8(10)

enable the achievement of a certain quality

characteristic.

Table 5 Documentation of rationale for a design

decision

Easy to move to a different operating system and hardware

platform (+)

Encapsulation of technology choices (+)

Tradeoff against performance (-)

Consequences

Introduce portability layerCandidate alternatives

Encapsulate COTS infrastructure technology choices, including
operating systems and communication services

Architectural design
decision

Portability R-id1Rationale ID

Easy to move to a different operating system and hardware

platform (+)

Encapsulation of technology choices (+)

Tradeoff against performance (-)

Consequences

Introduce portability layerCandidate alternatives

Encapsulate COTS infrastructure technology choices, including
operating systems and communication services

Architectural design
decision

Portability R-id1Rationale ID

In order to maintain and evolve the architecture for

future development, tool support such as Lattix LDM

(www.lattix.com) was one alternative. It can be used

for defining design rules, e.g. rules for against direct

access to OS native APIs, rules to indicate software

exposing hardware-content dependencies, rules to

reflect layering architecture, etc. These rules allow for

the periodic automatic checking of the code base for

design violations.

6.2.3. Changeability.

The knowledge of changeability was achieved through

step 4 and 5 (Figure 2). To cope with R1, consistent

changes needed to be carried out to restructure the

original function-oriented architecture to product-line

architecture as illustrated in Figure 4.

Kernel

Common Extensions

B
a

s
e

 S
o

ft
w

a
re

KEY

Package A
p

p
li

c
a

ti
o

n
-S

p
e

c
if

ic
 E

x
te

n
s

io
n

s

Base for

building

Functional Areas

Support/OS

IO/File SystemSafety

Control Interface
Resources

Controller
Language

PC Applications
Man Machine

Interface

Restructure into

Functional Area

Figure 4 Architecture restructuring

The product line approach was adopted to achieve

clear separation of concerns and interface definition

from two perspectives: (i) Identify commonalities e.g.

modules, components and services that are essential

for all applications, and exclude those that are bound

to a specific application. Figure 5 illustrates the

dependency analysis between specific

applications/common extensions and base services,

where x represents the expected presence of a

dependency and nothing for its absence. It is not a

complete list due to company confidentiality. (ii)

Identify dependencies between existing applications

and plan for future potential dependencies. Some

applications have dependencies because they need to

be run on the same controller. Therefore, sufficient

control of product features is required.

etc

etc

XXXXModels

XXApplication support

XXField buses

Common Extensions

etc

XXXPicking, Packing

XXXPainting

XXXArc welding

device eventipcerror logalarmApplication Extensions

Services

etc

etc

XXXXModels

XXApplication support

XXField buses

Common Extensions

etc

XXXPicking, Packing

XXXPainting

XXXArc welding

device eventipcerror logalarmApplication Extensions

Services

Figure 5 Dependency analysis extracting kernel/extension

To cope with the above two perspectives,

corresponding refactoring work needed to be done. All

the ripple effects must be investigated. In this sense,

tool support was necessary for building dependency

structure matrix and creating what-if and should-be

architectures.

6.2.4. Extensibility.

The knowledge of extensibility was achieved through

step 4 and 5 (Figure 2). To cope with R3, a Base

Software SDK (Software Development Kit),

consisting of the kernel and common extensions,

should be developed, thus to enable distributed

development of extensions. The SDK includes well-

documented API (Application Programming

Interface), wizards and tools for developing

application-specific extensions. Accordingly, separate

release cycles for base software and applications

become possible due to the clear separation of

concerns after the architecture restructuring. To

minimize negative side-effect of extensions on the

behavior and quality of the final system, the fault-

tolerant mechanisms for extensions need to be

considered, e.g. the possibility of dividing software

into multiple containment zones, resource and

functionality isolation, thread management, etc.

6.2.5. Portability.

The knowledge of portability was achieved through

step 4 and 5 (Figure 2). One of the main design goals

was to make the software portable across different

target operating system (OS) platforms, as well as to

run it in form of a “Virtual Controller” hosted on a

general purpose computer, such as a UNIX

workstation or a PC. The architecture style for the

current generation automation control software is

layered architecture, and within the layers object-

oriented architecture. The main enabler for portability

is the portability layer in the architecture as shown in

Figure 6.

MRTC report ISSN 1404-3041 ISRN MDH-MRTC-222/2008-1-SE

Mälardalen Real-Time Research Centre, Mälardalen University, Feburary 2008 9(10)

KEY

Package

Layer

Figure 6 Layered architecture in portability perspective

The portability layer encapsulates many

infrastructure technology choices and provides

interfaces for application software in the controller.

Within the platform layer, there are also other layers,

which are not shown in the figure.

6.2.6. Testability.

The knowledge of testability was achieved through

step 6 (Figure 2). Since the kernel merely contains a

set of loosely coupled components but no complete

applications, a test application having sufficient

functionality is needed to ensure that the kernel covers

sufficient functionality for applications to build on.

Adopting the product line approach, the amount of

variability has to be limited to avoid system

complexity and decreased testability. Tool support was

needed, e.g. appropriate regression testing frameworks

and AQTime (www.automatedqa.com) for code

coverage. One technical challenge is to investigate

model-based verification and enable testing of certain

quality properties of extensions.

6.2.7. Domain-specific attributes

The knowledge of domain-specific attributes is

achieved through step 4 and 5 (Figure 2). To cope with

R6, we need to partition the functionality of the

controller software and create a Base Software SDK

that contains separate link modules to build products.

A constraint with respect to reducing the runtime

footprint is the size of memory footprint that each

session consumes, e.g. memory used per deployed

component and per connection. This is a work-in-

progress.

7. Conclusions and Future Work

Based on literature and industrial case studies, we

identify subcharacteristics that are of primary

importance for evolvable software systems and outline

a software evolvability model. We exemplify with a

case study on how the model can be applied into

complex industrial context to assist software

evolvability analysis, with the aid of the structured

evaluation steps. All involved stakeholders expressed

that they were pleased with this systematic approach,

as it made architecture requirements and

corresponding design decisions more explicit, better

founded and documented. By establishing the

evolvability model, we hope to have improved the

capability in being able to on forehand understand and

analyze systematically the impact of a change

stimulus. This, in turn, helps us to prolong the

evolution stage.

We intend to continue working on the evolvability

model by conducting more case studies to confirm and

refine the model. We need to further explore the

application of the evaluation steps, and generalize

towards an evolvability evaluation method.

Meanwhile, we need to provide a catalog of guidelines

for each subcharacteristic that can be applied in

conducting evolvability analysis. Further we plan to

analyze the correlations among the subcharacteristics

with respect to constraints and tradeoffs.

8. References

[1] K. Bennett. Software Evolution: Past, Present and Future.

Information and Software Technology 38 (1996) 673-680.

[2] K. Bennett and V. Rajlich. Software Maintenance and

Evolution: a Roadmap. The Future of Software Engineering,

Anthony Finkelstein (Ed.), ACM Press 2000.
[3] B.W. Boehm et al. Characteristics of Software Quality.

Amsterdam, North-Holland, 1978.

[4] J. Bosch. Design and Use of Software Architectures –

Adopting and Evolving a Product-Line Approach. Addison-

Wesley. 2000.

[5] N. Chapin et al. Types of Software Evolution and

Software Maintenance, Journal of Software Maintenance and

Evolution: Research and Practice, 2001.

[6] L. Chung et al. Non-Functional Requirements in

Software Engineering. Kluwer Academic Publishers,

Boston, 2000.

[7] S. Ciraci and P. Broek. Evolvability as a Quality

Attribute of Software Architectures. The International

ERCIM Workshop on Software Evolution 2006.

[8] P. Clements, R. Kazman and M. Klein. Evaluating

Software Architectures: Methods and Case Studies.

Addison-Wesley. 2002.

[9] S. Cook, H. Ji and R. Harrison. Dynamic and Static

Views of Software Evolution. Proceedings IEEE

International Conference on Software Maintenance ICSM,

2001.

[10] G. Dromey. Cornering the Chimera. IEEE Software

(January): 33-43, 1996.

[11] N.S. Eickelmann and D.J. Richardson. What Makes

One Software Architecture More Testable Than Another?

SIGSOFT Workshop, 1996.

[12] R. Fitzpatrick et al. Software Quality Challenges. 26th

International Conference on Software Engineering, 2004.

[13] R. Grady and D. Caswell. Software Metrics:

Establishing a Company-Wide Program. Englewood Cliffs,

NJ, PrenticeHall. 1987.

[14] R.F. Hilliard et al. MITRE’s Architecture Quality

Assessment, Software Engineering and Economics

Conference, 1997.

MRTC report ISSN 1404-3041 ISRN MDH-MRTC-222/2008-1-SE

Mälardalen Real-Time Research Centre, Mälardalen University, Feburary 2008 10(10)

[15] D. Isaac and G. McConaughy. The Role of Architecture

and Evolutionary Development in Accommodating Change.

Proc. NCOSE’94, 1994.

[16] ISO/IEC 9126-1. International Standard. Software

Engineering – Product Quality – Part 1: Quality Model,

2001.

[17] ISO/IEC 9126-3. International Standard. Software

Engineering – Product Quality – Part 3: Internal Metrics,

2003.

[18] Laprie, Dependable Computing and Fault-Tolerant

Systems. Vol. 5, Dependability: Basic Concepts and

Terminology in English, French, German, Italian, and

Japanese. Laprie, J.C. (ed.). New York: Springer-Verlag,

1992

[19] M.M. Lehman and J.F. Ramil et al. Metrics and Laws

of Software Evolution – The Nineties View. IEEE Computer

Press, pp 20-32, 1997.

[20] F. Losavio et al. ISO Quality Standards for Measuring

Architectures. The Journal of Systems and Software, 2004.

[21] C. Lüer et al. The Evolution of Software Evolvability.

IWPSE 2001.

[22] J.A. McCall, P.K. Richards and G.F. Walters. Factors in

Software Quality. National Technical Information Service,

1977.

[23] M. Ortega et al. Construction of a Systemic Quality

Model for Evaluating a Software Product. Software Quality

Journel, v11, n3, p219-42, Sept 2003.

[24] G.S. Percivall. System Architecture for Evolutionary

System Development, Proc. NCOSE’94.

[25] T.M. Pigoski. Practical Software Maintenance. Wiley

Computer Publishing, 1996.

[26] J.F. Ramil and M.M. Lehman. Metrics of Software

Evolution as Effort Predictors – A Case Study. Proceedings

of the International Conference on Software Maintenance,

2000.

[27] D. Rowe and J. Leaney. Evaluating Evolvability of

Computer Based Systems Architectures – an Ontological

Approach. Proceedings of International Conference and

Workshop on Engineering of Computer-Based Systems,

1997.

[28] D. Rowe, J. Leaney and D. Lowe. Defining Systems

Evolvability – a Taxonomy of Change. Proceedings of the

IEEE Conference on Computer Based Systems, 1998.

[29] N. Subramanian and L. Chung. Process-Oriented

Metrics for Software Architecture Evolvability. Proceedings

of the 6th International Workshop on Principles of Software

Evolution, 2002.

[30] T. Tamai and Y. Torimitsu. Software Lifetime and its

Evolution Process over Generations. Proceedings of the

International Conference on Software Maintenance, 1992.

[31] N.H. Weiderman et al. Approaches to Legacy Systems

Evolution. Technical Report CMU/SEI-97-TR-014, 1997.

[32] H. Yang and M. Ward. Successful Evolution of

Software Systems. Artech House Publishers, London, 2003

