Adding the Time Dimension to Majority Voting Strategies

Hiiseyin Aysan, Sasikumar Punnekkat, and Radu Dobrin
Milardalen Real-Time Research Centre, Milardalen University, Visteras, Sweden
{huseyin.aysan, sasikumar.punnekkat, radu.dobrin} @mdh.se

Abstract

Industrial real-time applications typically have to cope
with high dependability requirements and require fault tol-
erance in both value and time domain. A widely used ap-
proach to ensure fault tolerance in dependable systems is
the N-modular redundancy (NMR) approach which typi-
cally uses a majority voting mechanism. However, NMR
primarily focuses on producing the correct value, without
taking into account the time dimension. In this paper we
propose a new approach, Value and Time Voting (VTV), ap-
plicable to real-time systems, which extends the modular
redundancy approach by explicitly considering both value
and timing failures in the voting mechanism, such that cor-
rect value is produced at correct time, under specified as-
sumptions.

1. Introduction

Many real-time applications are also characterized by
their high dependability requirements due to their inter-
actions and possible impacts on the environment. Ensur-
ing dependable performance of such systems typically in-
volves both fault prevention and fault tolerance approaches
in their design. Usage of redundancy is the key for achiev-
ing fault tolerance and it has been employed successfully in
the physical, temporal, information and analytical domains
of many critical applications. Static techniques such as N-
modular redundancy (NMR) have been used in safety and
mission critical domains such as avionics, space and nu-
clear applications, most often in the particular case where
three nodes are used for replication, i.e., triple-modular re-
dundancy (TMR) [6]. The key attraction of this approach
lies in its low overhead and fault masking abilities with-
out the need for any backward recovery. The disadvantages
include cost of redundancy and single point failure mode
of the voter. Traditionally, voters are constructed as sim-
ple electronic circuits so that a very high reliability can be
achieved. Usage of triplicated voters can be employed to
take care of the single-point failure mode in case of highly

critical systems [5]. A survey and taxonomy of software
voting algorithms has been presented in [4].

Timing variations in receiving outputs from replicated
nodes by the voter can occur due to factors such as clock
drifts, node failures, processing and scheduling variations
at node level as well as communication delays. Most of the
proposed voting strategies, however, focus only on masking
value failures by assuming that the system is tightly syn-
chronized as in [3]. On the contrary, loosely synchronized
systems may be an attractive alternative due to low over-
heads, but require specifically designed asynchronous vot-
ing algorithms to compensate for the timing variations.

A simple approach towards tolerating both value and
timing failures in a replica using the NMR approach could
be to attach time stamps to the replica outputs. Then, per-
forming majority voting on time stamp values could detect
possible timing anomalies of the nodes, under the assump-
tion that the communication is perfect and nodes never halt.
However, this is far from true as well as late timing failures
are not possible to be masked in this approach.

Shin and Dolter [8] proposed two voting techniques ap-
plicable to real-time systems, not necessarily having tight
synchronization, viz., Quorum Majority Voting (OMV) and
Compare Majority Voting (CMV). QMV performs majority
voting among the received values as soon as 2n+1 out of
3n+1 replicas deliver their outputs to the voter, thus, guar-
anteeing the existence of a majority of non-faulty values
even in the case n replicas fail. CMV masks failures of n
out of 2n+1 replicas as in basic majority voting. The main
difference is that, in CMV, as soon as the majority of identi-
cal values has been received, the output is delivered without
waiting for the rest of the replicas. Both QMV and CMV
provide outputs within a bounded time as long as the as-
sumptions for maximum number of failures hold. However,
unlike standard majority voters, which can identify certain
assumption violations when there is no agreed result, QMV
and CMV are incapable of indicating any anomalies with
respect to time.

In this paper we propose a new approach, Value and
Time Voting (VTV), which performs majority voting in
both time and value domains, and provides timely and cor-

rect outputs under specified assumptions or indicates as-
sumption violations, if any. It does so by, first, using coun-
ters to identify the correct time interval in which the voter
has to deliver the output, and then, by selecting the valid
values (with respect to time) to be used in the voting mech-
anism. This enhances the fault tolerance abilities of NMR
by restricting the replica outputs to be both correct in value
and delivered within a specified feasible (admissible) time
interval.

The rest of the paper is organized as follows: In Section
2 we present the system model and the assumptions used in
this paper. Section 3 describes our approach and illustrates
it by an instantiation to a system using triplicated nodes. We
conclude the paper in Section 4 outlining the on-going and
future work.

2. System Model

In this paper, we assume a distributed real-time system,
where each critical node is replicated for fault tolerance, and
replica outputs are voted to ensure correctness in both value
and time. For the sake of readability, in the rest of the paper,
we denote the i replica of a node N by N;. The output de-
livered by N;, is specified by two domain parameters, viz.,
value and time [1, 7]:

Specified output for N; = < v}, t7, A >

177

where v; is the correct value, t7 is the correct time point
when the output should be delivered and [t} — A, ¢ + A]
is the feasible time interval for output delivery as per the
real-time system specifications.

An output delivered by NN; is denoted as:

Delivered output from N; = < v;, t; >

where v; is the value and ¢; is the time point at which the
value was delivered.

We define the output generated by replica INV; as incorrect
in value domain if v; # v}, and incorrect in time domain if
t; < tf — A (early timing failure), or if t; > t7 + A (late
timing failure).

Assumptions: Our approach relies on the following set of
assumptions (to a large extent based on [2]):

1. replicated nodes are characterized by deterministic ex-
ecutions

2. non-faulty nodes produce identical values after each
computation block

3. the voter does not fail

4. incorrect values do not form majority

5. A maximum permissible drift from the global time
is specified and ensured by infrequent synchronization
(which is significantly less costly than tight synchro-
nization).

3. Value and Time Voting (VTV)

In this section we present our novel voting strategy that
explicitly considers failures in both value and time domains.
As a consequence of assumption 5, in the worst case, the
maximum deviation between any two replica outputs is 29.
Hence, in VTV approach, agreement in the time domain
is reached when a majority of replicas deliver their outputs
within this derived time interval of 20 (referred to as feasi-
ble window henceforth). If a node has n replicas, then at
least m = ("TH] outputs from these replicas need to match
for establishing majority. Since, at a given time instant, the
majority in time domain can be formed by the latest m out-
puts, a separate feasible window needs to be initiated upon
receiving each of first m replica outputs. We keep track
of the feasible windows by using simple countdown timers.
Once an agreement in time domain is obtained, then values
are voted for majority. If majority in value is not obtained
for a particular feasible window, the process continues with
subsequent feasible windows, until a majority in both time
and value can be formed, or an assumption violation is de-
tected.

Output from N,

timely Erly late

‘ correct/incorrect ‘ ‘ correct/incorrect ‘ ‘ correct/incorrect

time domain

value domain

invalid

validity

Figure 1. Replica output flow through voter

Depending on the real-time application characteristics, a
value produced by a node may be considered valid or in-
valid for the purpose of voting, in case it is produced early.
An illustration of replica output flow through the voter is
given in Figure 1. An issue is the choice of the set of valid
values to be used in the voting mechanism, i.e., all received
values vs. all timely received values. We illustrate this vot-
ing dilemma by using the scenario described in Figure 2.
Let us assume, for example, an airbag control system where

a sensor is replicated in five different nodes and produces
one out of two values periodically, e.g., value a in case of a
collision and value b otherwise. If a collision is detected at a
time ¢ < ¢; let us assume that the airbag has to inflate within
a time interval [tsqrt, tend], Where where to < tgqrt < t3
and t5 < teng. In our example, the first two values are
detected as early and the last three are identified as timely.
However, in this case, an early value has to be taken into
consideration in the voting since an early collision detection
is still a valid output with respect to the value domain. Thus,
the output has to be voted upon receiving the last value at
time ¢5, among all values, i.e., a, a, a, b, and b, resulting
in an output ¢ at time (¢5 + ¢€) (where ¢ is the time required
for the voting and is assumed to be negligible in this paper
for simplifying the presentation).

On the other hand, let us assume the same Figure 2 illus-
trating an altitude measurement sensor in an airplane, repli-
cated by five nodes to read and output the altitude periodi-
cally to the voter, where data freshness may be a more de-
sirable aspect. As the correct window of time for the output
is the same as described in the previous example, the only
relevant values to be taken into consideration by the voter
are a, b, and b corresponding to the time points t3, t4, and
t5 respectively. Hence, the output produced at time (¢5 + €)
is b.

N, a
N, a
N, a @ — alb?
N, b
N, b
; TIME
t1 t2 t3 t4 t5
-
5 5 5

Figure 2. Voting dilemma

In case of early outputs being considered as valid out-
puts, upon finding a feasible window, if majority in value
domain is obtained with all the values received so far, the
voter delivers the majority value without waiting for the rest
of the replicas. Otherwise, either majority, receipt of all
replica outputs or the end of the feasible window is waited
for, whichever comes first. If a majority is obtained, it is de-
livered as a correct output. If the end of the feasible window
is reached without a majority, the process continues with a

subsequent feasible window. If the last feasible window is
reached, or all replica outputs are received without reaching
an agreement on the majority of the values, disagreement is
signalled to the rest of the system.

In the scenario where only timely outputs are considered
as valid outputs, upon finding a feasible window, if major-
ity in value domain is obtained with all the values received
within the feasible window, the value is delivered as a cor-
rect output. Otherwise, either majority, receipt of all replica
outputs or the end of the last feasible window is waited for,
whichever comes first. If majority is obtained, the value is
output. If the end of the feasible window is reached without
a majority, the process continues with a subsequent feasi-
ble window. If the end of feasible window is reached or
all replica outputs are received without a majority in values,
majority among the timely values is voted and delivered.

3.1 Example: VTV in TMR

In this section we present in instantiation of our approach
to triple modular redundancy which can tolerate single node
failures in value domain, time domain or both (Algorithm
1). In this example, we assume early timing failures as in-
valid for the purpose of voting. However, the validity of
such values can be easily tuned in the algorithm.

Majority in time domain is achieved if at least two val-
ues are delivered to the voter within a time interval less than
or equal to 26, since this is the maximum deviation in time
among all the values as long as there is no failure. Major-
ity in value domain is formed if at least two of the timely
outputs have the same value.

The algorithm signals disagreement in case majority
condition is not satisfied in any of the domains, thus en-
abling a fail-safe or fail-stop behavior of the system.

The replicated nodes’ output values are stored in local
variables V1, V2 and V3. Values are assigned to these vari-
ables in the order of receiving inputs from the nodes (i.e.,
the first received value is stored in V1, the second one in
V2 and the last one in V3). Two countdown timers, C1 and
C2, initially set to 24, are used to keep track of feasible win-
dows in order to identify majority in time domain.

The algorithm waits for the first node output to be deliv-
ered and then starts C1. It continues by waiting for the sec-
ond node output and starts C2 upon its arrival. If both values
have arrived before C1 expires, and match in the value do-
main, the voter will output the correct value. Otherwise we
have two cases:

Case 1 C1 has not reached zero, but the values V1 and V2
do not match. In this case, the algorithm waits for V3
until C1 reaches zero. If the third value arrives be-
fore C1 has reached zero and matches either V1 or V2,
the matching value is output since all values are within

Algorithm 1: VTV (executed in the voter)

/+ Values from replicas are assigned to
V1l, V2 and V3 in the order of

receiving them */
/+* Cl and C2 are countdown timers */
1 V1,V2,V3=NULL;
2 C1,C2=26;
3 while V1 = NULL do wait;
4 start Cl1;
5 while V2 = NULL do wait;
6 start C2;
7 if C1 > O then
8 if VI = V2 then
9 ‘ output V1;
10 else
11 while C1 > 0 and V3 = NULL do wait;
12 if C1 > Oand (V3 = VI or V3 = V2) then
13 ‘ output V3;
14 else if V3 <> NULL then
15 | signal disagreement;
16 else
17 while C2 > 0 and V3 = NULL do wait ;
18 if V3 = V2 then
19 ‘ output V3;
20 else
21 ‘ signal disagreement;
22 end
23 end
24 end
25 else if C2 > O then
26 while C2 > 0 and V3 = NULL do wait;
27 if V3 = V2 then
28 ‘ output V3;
29 else
30 ‘ signal disagreement;
31 end
32 else
33 ‘ signal disagreement;
34 end

the timeliness bound 24. In case of an assumption vi-
olation, e.g., V1 # V2 # V3 the algorithm signals
disagreement. If the third value does not arrive before
C1 reaches zero, the algorithm waits for V3 until C2
reaches zero. If V3 is received and matches V2 before
C2 reaches zero, it is output. Otherwise the algorithm
signals disagreement.

Case 2 Cl1 has reached zero. In this case, V1 is consid-
ered invalid, and the algorithm waits for V3 until C2
reaches zero, as only a match between V2 and V3 may
result in an agreement. If the values do not match or
V3 has not been received at all, the algorithm signals
disagreement.

4. Conclusions

In this paper we have presented a new voting strategy
called Value and Time Voting (VTV) for redundant sys-
tems, to explicitly consider both value and timing failures
for achieving fault tolerance in real-time applications. Un-
der specified failure assumptions, our method is capable of
producing the correct output as well as identifying the cor-
rect window of time in which the output has to be delivered.

We have presented an algorithm for the particular case
where one output is replicated in three different nodes, and
illustrated the basic idea on how we perform the voting in
both value and time domain.

Our ongoing research indicates that VTV, when used in
the general case to mask arbitrary number of value and tim-
ing failures, is cost-effective in comparison with the number
of nodes required by majority voting in NMR. The main
reason is that, in our approach, a non-faulty node can be
successfully used to mask both a value and a timing failure
in the voting procedure.

References

[1] A. Avizienis, J. Laprie, and B. Randell. Fundamental con-
cepts of dependability. Research Report NOI1145, LAAS-
CNRS, April 2001.

[2] P. Ezhilchelvan, J.-M. Helary, and M. Raynal. Building
responsive tmr-based servers in presence of timing con-
straints. Object-Oriented Real-Time Distributed Computing,
2005. ISORC 2005. Eighth IEEE International Symposium
on, pages 267-274, 2005.

[3] H. Kopetz. Fault containment and error detection in the time-
triggered architecture. Autonomous Decentralized Systems,
2003. ISADS 2003. The Sixth International Symposium on,
pages 139-146, 2003.

[4] G. Latif-Shabgahi and a. S. B. J.M. Bass. A taxonomy for
software voting algorithms used in safety-critical systems.
IEEE Transactions on Reliability, 53(3):319-328, 2004.

[5]1 R. E. Lyons and W. Vanderkulk. The use of triple-modular
redundancy to improve computer reliability. Journal of Re-
search and Development, 6:200-209, 1962.

[6] J.V.Neuman. Probabilistic logics and the synthesis of reliable
organisms from unreliable components. Automata Studies,
pages 43-98, 1956.

[7] D. Powell. Failure mode assumptions and assumption cover-
age. Proceedings of 22nd International Symposium on Fault-
Tolerant Computing, 1992.

[8] K. ShinandJ. Dolter. Alternative majority-voting methods for
real-time computing systems. Reliability, IEEE Transactions
on, 38(1):58-64, 1989.

