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Abstract

This report describes the component model developed within Progress.

In addition to defining the syntax and semantics, it also gives some back-

ground and motivation, and describes how this work relates to the overall

Progress vision and to the work in other areas of the project.
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1 Introduction

The component model described in this report is developed within Progress
1,

a strategic research centre funded by the Swedish Foundation for Strategic
Research. The key objective of Progress is to apply a software-component
approach to engineering and re-engineering of embedded software systems, in
particular within the vehicular, telecom, and automation domains.

The component model is influenced by previous work in the SAVE project2

and also to some extent by the Rubus component technology [3]. However,
compared to these projects, it provides a stronger concept of compositional and
reusable components.

1.1 Conceptual development framework

The Progress concept paper [2] identifies three major activities in the compo-
nent-based development process for embedded systems. These activities are
shown in Figure 1. (Note that this picture together with the anticipated levels
will most probably change in the next version of the concept paper.)
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Figure 1: Conceptual design framework.

At the top level (system software design), the system is split into subsystems
(e.g., ABS, engine control, etc.), which are represented by coarse-grained compo-

1Progress homepage: http://www.mrtc.mdh.se/progress
2SAVE homepage: http://www.mrtc.mdh.se/save
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nents with fairly limited interaction capabilities (typically to just asynchronous
transmission of data).

In subsystem design the internal design of each individual subsystem is elab-
orated. At this level, the partitioning of functionality into smaller units is done
at a high level of abstraction, and might not correspond to concrete, distinguish-
able parts in the final system. We envision that this level will be used mainly
when designing complex sub-systems. In case of small sub-system, this step
may be skipped – meaning that the internals of a subsystem would be directly
modeled on the architectural design level.

The third step, architectural design defines the concrete realisation of the
subsystem by means of interconnected software components. The aim of this
level is to have very concrete and low-level model of a subsystem so that var-
ious analyses may be performed and also that realization (the fourth step) is
achievable.

At all three levels, the component modeling is connected with the use of a
repository and with various analysis techniques. Components may be developed
from scratch or they can be retrieved from a repository and reused. This allows
for two types of development: top-down and bottom-up. In fact, we anticipate
that the real component development will be a mixture of these two. That means
that existing components will be reused as they are or with slight modifications,
and by composing them the complex functionality will be derived (i.e., the
bottom-up approach). Components which could not be found in the repository
will be developed from scratch in top-down manner. This is further elaborated
in the concept paper [2].

In parallel to such functional decomposition, there are also activities related
to deployment. They focus on modeling the target platform and on mapping
components (i.e., design-level functional units) to a final system consisting of
units of distribution and execution.

The whole development is accompanied by analysis, which allows estimating
execution times and memory footprint, reliability attributes, etc.; thus guiding
the design by justifying particular design decisions or providing early warnings.

1.2 Component model overview

This report presents a two-layer component model. The top layer corresponds
to the system design level in the conceptual framework, and here the system
is modelled as a number of active and concurrent subsystems, communicating
by message passing. The second layer, called ProSave, addresses the internal
design of a subsystem down to primitive functional components implemented by
code. In the conceptual framework, this corresponds to the layers of subsystem
design and architectural design, but ProSave does not distinguish between the
two. Contrasting subsystem components, ProSave components are passive and
the communication between them is based on pipes-and-filters.

In both layers, information about a component is stored along with the
components in the repository, including requirements, textual documentation
and models of the behaviour and resource usage. Since it is anticipated that
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additional analysis techniques will be developed in the future, the repository
structure is extendable, so that additional information required by a new anal-
ysis method can be added without impacting existing components.

The system layer and ProSave are described in Section 2 and Section 3,
respectively. Section 4 presents the meta-model, formalising the concepts of the
component model and how they relate. Section 5 provides a larger example of
a subsystem designed in ProSave.

2 System design level

At the system level a component represents a whole subsystem. This means
that it is fairly independent and has its own activities. The communication be-
tween components is typically asynchronous and realized by message exchange.
Thus for the system level we use a relatively simple component model with
asynchronous message passing as the communication paradigm. The compo-
nent model is hierarchical, meaning that a subsystem can internally be realised
by a collection of communicating smaller subsystems 3

The components on this level are often meant to be allocated to different
nodes in a distributed system. Even a single subsystem may consists of parts
that end up on different nodes. The distribution is however not specified in this
component model, as it is provided by a separate deployment model.

2.1 Subsystem component

A subsystem is represented by a component with typed input and output mes-
sage ports, as shown in Figure 2. The ports express what messages the subsys-
tem recieves and sends. The external view also includes attributes and models.

Figure 2: External view of a subsystem with three input message ports and two
output message ports.

Subsystems are active, in the sense that they may include activities that are
performed periodically or in response to some internal event, rather than as the
result of an external activation. They can contain reactive parts as well, that
are performed in response to the arrival of a message.

3The details of this hierarchy has not been elaborated yet.
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2.2 Connecting subsystems

A system consists of a collection of subsystems and connections from output
to input message ports. Message ports are not connected directly, but via a
message channel. This means that it is possible to define that a particular data,
e.g., speed, will be required in the system before the producer and recievers
of this data are defined. Also, it is possible to specify that two subsystems
use the same data as input, before the producer of the data has been defined.
Figure 3 shows an example. Message channels support n-to-n communication,
i.e., several output ports as well as several input ports can be connected to the
same channel.

Figure 3: Three subsystems communicating via a message channel.

2.3 Primitive and composite subsystems

Primitive subsystem can be internally modelled by ProSave components, as de-
scribed in Section 3.4. Alternatively, they can be realised by code conforming to
the runtime interface of Progress subsystems4. In the case of legacy code, i.e.,
existing code developed outside the Progress context, some modifications or
additions would typically be required to make it compatible with the Progress

subsystem interface. This componentisation activity is described in the concept
paper [2].

A composite subsystem internally consists of subsystems and local message
channels. There are also connections that associate local message channels with
message ports of the composite subsystem or the subsystems inside. This allows
an input port, acting as a message consumer outside the component, to act as
a message producer internally. Oppositely, an output port consumes messages
on the inside and act as a message producer from the outside.

Two message channels connected to the same message port, outside and
within the component, respectively, will typically not manifest as two separate
entities in the final system. Rather, this connection via the message port can be

4The details of this runtime interface remains to be decided, as a part of the work on

deployment and synthesis.
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seen as a way to “unify” a channel defined locally within a composite component
with a particular channel in the component environment5.

An example of a composite subsystem is given in Figure 4.

Figure 4: An example of a composite subsystem.

3 Subsystem design level — ProSave

Internally, subsystems can be designed in different ways, as long as they conform
to the subsystem semantics, e.g., that inter-subsystem communication is based
on message passing as described in the previous section. This section defines
ProSave, a component-based design language especially targeting subsystems
with complex control functionality. It defines the ProSave constructs and their
semantics, and describes the connection between ProSave and the system level
concepts.

In ProSave, a subsystem is constructed by hierarchically structured, inter-
connected components. Components are passive, meaning that they do not
contain their own execution threads and thus can not initiate activities on their
own. Instead, they remain passive until activated by some external entity, and
when activated they perform the associated functionality before returning to
the passive state again. Component activation is always initiated at the sub-
system level, where components can be associated with periodical activation or
the occurrences of some external or internal event. This is further discussed in
Section 3.4.

ProSave components are design-time entities that are typically not distin-
guishable as individual units in the final executing system. During the deploy-
ment and realisation process, the components are transformed into executable
units, e.g., tasks, in order to achieve the desired runtime efficiency by avoiding
a costly component framework at runtime.

The component model is based on a pipes-and-filters architectural style, but
there is an explicit separation between data transfer and control flow. The

5Currently, the component model does not contain any constructs that modify messages as

they pass the boundary of the enclosing subsystem, for example queuing incoming messages

that are to be delivered to an internal subsystem that does not support queuing. This type

of construct might be introduced later on, if it is required for the development scenarios we

envision.
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former is captured by data ports where data of a given type can be written or
read, and the latter by trigger ports that control the activation of components.

3.1 Components

A ProSave component is a reusable unit of functionality. Its task is to encap-
sulate relatively small and rather low-level functionality, thus it may not be
distributed.

The external view of a component consists of two major parts: ports through
which the functionality provided by component can be accessed, and information
about the component, represented by structured attributes.

Internally, the functionality of a component can either be realised by code,
or by interconnected sub-components, but the distinction is not visible from the
outside. This black-box view of a component, based only on the externaly visible
structure and attributes, is useful since it facilitates compositional reasoning
and supports early analysis of systems when some components are yet to be
implemented. Still, some analysis might require or benefit from a more detailed
information than what is provided by the external view. In this case, nothing
prevents it from examining the contents of a component, e.g., the sub-component
structure. In particular, synthesis activities assume a fully defined system, and
will probably mostly adopt a white-box view to allow optimisations spanning
several levels of nesting.

3.1.1 Services, groups and ports

The functionality of a component is made available to external entities by a
set of services, each corresponding to a particular type of functionality that the
component provides. Each service consists of the following parts:

• An input port group consisting of a trigger port by which the service can
be activated and a set of data ports corresponding to the data required to
perform the service.

• A set of output port groups where the data produced by the service will
be available. Each group consists of a number of data ports and a single
trigger port indicating when new data is available.

Each port belongs to a single group, and each group belongs to one service. The
ports of an input group are informally refered to as input ports, and ports of
output groups are called output ports. Figure 5 illustrates these concepts.

Data ports are typed and associated with a default value used for initialisa-
tion. The type is specified by a type definition in C.6

In addition to the input trigger ports and the related entities, a component
has a collection of attributes. Some of them are explicitly associated with a
specific port, group or service (e.g., the worst case execution time of a service,

6Elaborating on the details of a suitable type system is included in the plan for future

improvements.
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S1

S2

Figure 5: External view of a component with two services; S1 has two output
groups and S2 has a single output group. Triangles and boxes denote trigger
ports and data ports, respectively.

or the range of values produced at a data port), while others are related to
the component as a whole, for example a specification of the total memory
footprint.

3.1.2 Component semantics

Initially, all services of a component are in an inactive state where they can
recieve data and trigger signals to the input ports, but no internal activities are
performed. When an input trigger port is activated, all the data ports in the
group are read in one atomic operation and then the service switches into an
active state where it performs internal computations and produces output at its
output groups. The data and triggering of an output group are always produced
in a single atomic step. Before the service may return to the inactive state again,
each of the associated output groups must have been activated exactly once.7

It is assumed that a service is not triggered again while in the running state.
To avoid inefficency, we envision that this is ensured by analysis at design time,
rather than by a runtime mechanism, and thus the result of triggering a running
service is not specified by the component model.8

3.2 Connecting components

Components can be connected to collaborate in providing more complex func-
tionality. This is done by simple connections that transfer data or control and
by additional connectors providing more elaborate manipulation of the data-

7The requirement that all output groups must be activated might be relaxed in the future,

if optional output groups are introduced.
8If this is determined to be too weak, future versions of ProSave might specify that trig-

gering reaching an active service should be ignored.
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and control flow. Connected components can be found inside composite com-
ponents, and on the top level inside subsystems.

3.2.1 Connections

A connection is a directed edge which connects two ports — either input data
port to output data port or input trigger port to output trigger port. In the
case of data ports, they must have compatible types. Graphically, a connection
is represented by an arrow from output- to input port.

There can be at most one connection attached to a port. An exception to
this rule is that the ports of a composite component can have one connection
on the inside and one on the outside.9

A connection between data ports denotes the data transfer. ProSave follows
the push-model for data transfers. It means that whenever data is produced on
a data output port, the data is transfered by the connection to the input data
port and stored there. The triggered component or connector always uses the
latest value written to the input data port.

A connection between trigger ports transfers the control flow. That means
that a trigger port on the target endpoint of the connection is triggered as
the result of the trigger port on the source endpoint of the connection being
activated.

In general, a transfer is not an atomic action, and the transfer over two differ-
ent connections can be carried out concurrently or in arbitrary order. However,
there is one exception to this, described in more detail in Section 3.5. This
exception essentially specifies that when data and triggering appear together at
an output port group, the data should always be delivered before the trigger
transfer starts.

3.2.2 Connectors

In addition to connections, there are constructs called connectors that may be
used to control the data- and control-flow. In general, a connector is represented
by a rounded rectangle with the name of the connector written inside. The most
used connectors may also have a simplified notation. This is the case of Data
fork and Control fork, which may be abbreviated using a thick dot.

Data

fork .
..

A data fork is used to split a data connection to several
ones. It has one input data port and at least two data
output ports. Data written to the input port are duplicated
on the output ports. Graphically, this connector can also
be denoted by a thick dot.

9Strictly speaking, we should say one connection on the inside of the component and one

on the outside of each instance of the component. This is further discussed in Section .
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Data or.
..

The data or connector is used to merge several data con-
nections to one. It has one output data port and least two
data input ports. Data written to any of the input ports are
forwarded to the output port.

Data

muxer
.
..

A data muxer allows grouping several data inputs into one
output. It is mainly used to build data of a message (ex-
changed at a system level). It has two or more input data
ports and one output data port. The type of the output
data port is a struct comprising data of all input data ports.
Whenever data is written to an input data port, it updates
it in the relevant parts of the output data stuct and makes
the data visible on the output data port.

Data

demuxer .
..

A data demuxer works as an inverse to data muxer. It has
two or more output data ports and one input data port.
Whenever data is written to the input data port, it is ex-
tracted and respective parts made available on the output
data ports.

Control

fork .
..

A control fork is used to split control flow to several con-
current paths. This connector has one input trigger port
and at least two output trigger ports. Whenever the input
trigger port is triggered, the trigger is transfered to all out-
put trigger ports. Graphically, this connector can also be
denoted by a thick dot.

Control

join
.
..

The control join connector joins the control flows of sev-
eral concurrent paths (an inverse operation to Control fork).
This connector has one output trigger and at least two in-
put trigger ports. It waits until all input trigger ports are
triggered, then it triggers the output port.

Selection .
..

.

..

Selection is used to choose a path of the control flow depend-
ing on a condition. This connector has one input trigger
port, and several output trigger ports and at least one in-
put data port. The connector has associated conditions over
the data coming from the input data ports. Based on the
result of evaluating the conditions, it forwards the incoming
trigger to exactly one of the output trigger ports.10

Control or.
..

The control or connector is used to join control flows of
alternative paths (an inverse operation to Selection). The
connector has at least two input trigger ports and one out-
put trigger port. It forwards each incoming trigger to the
output trigger. In contrast to control join, it does not wait
for all input triggers to become triggered.

11



A

B

C

D

Control 

join

Figure 6: A typical usage of fork- and join connectors. When component A is
finished, components B and C are executed in arbitrary order (possibly inter-
leaved). Component D is executed once both B and C have finished.

A

B

C D

Selection

Data 

or

Control 

or

Figure 7: A typical usage of selection and or-connectors. When component A
is finished, either B or C is executed, depending on the value at the selection
data port. In either case, component D is executed afterwards, with the data
produced by B or C as input.

The list of connectors is presumably incomplete and may grow over time as
additional data-/control-flow constructs prove to be needed. Figures 6 and 7
show two typical usages of connectors.

3.3 Primitive and composite components

When considering the internal structure, components come in two types: prim-
itive components which are realised by code, and composite components which
consist of internal components that together provide the desired functionality.

3.3.1 Primitive components

Primitive components may consist of several services, but they are restricted to
have at most one output port group for each service.11 The behaviour of each
service is realised by a non-suspending C function. In addition, the component

11If primitive components with multiple services turn out to be problematic for synthesis,

they might be restricted to have only a single service.
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S1

S2

speed

dist

speed brakeMode

control

typedef struct {

int *speed;

float *dist;

} in_S1;

typedef struct {

int *control;

} out_S1;

typedef struct {

int *speed;

} in_S2;

typedef struct {

int *brakeMode;

} out_S2;

void init();

void entry_S1(in_S1 *in, out_S1 *out);

void entry_S2(in_S2 *in, out_S2 *out);

Figure 8: Example of header file for a primitive component with two services,
and no explicit name mappings.

has an init function which is called at system startup to initialise the internal
state.

More concretely, the primitive component specifies a header C file and a
source C file, where the init function and the service entry functions are declared
and defined. The header file also declares the structs used for input and output
to the services. By default, the naming of entry functions and argument structs
is based on the names of services and ports, but explicit name mappings can
also be supplied (see 4.2). Figure 8 shows an example of a header file.

3.3.2 Composite components

The internal view of a composite component consists of sub-component in-
stances, connections and connectors. Each sub-component instance (or sub-
component for short) is realised by a primitive or composite component, devel-
oped either from scratch or retrieved from repository. Connections and connec-
tors control the order in which sub-components are invoked and how data are
exchanged among them.

The ports of the encapsulating composite component appear “inwards” with
the opposite direction — for example an input trigger port of the enclosing
component acts as an output trigger port when seen from inside. That allows
us to define the connections as always going from an output port to an input
port.

When the component writes to an output port, this data does not become
available outside the component until the trigger port of the port group is acti-
vates. When this happens, the values of all data ports in the group atomically
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appear on the outside. Similarly, the input data ports can receive data also
when the service is in the active state, but these data are not propagated inside
the component until the next time the service is activated.

The usage of sub-components, connections and connectors actually form
workflows starting in an input trigger port of the composite component and
ending in the output trigger ports. If the component has several services, then
each service has its own workflow. It should not happen that a workflow trig-
gers an output trigger of another service. To prevent such problems, ProSave
limits internal interactions between services to only data connections (i.e. no
triggering).

There are no additional restrictions imposed by the component model on
the internal architecture of a composite component. Obviously, an incorrect use
of the connections and connectors may produce an architecture which exhibits
behavior forbidden for a component. Basically, we leave this as the responsibility
of the component developer. However, we envision tool support and analysis
methods that would allow a developer to validate an architecture and discover
such faulty behavior.

3.4 Using ProSave components in a subsystem

ProSave serves for low-level modeling of a subsystem. Components in ProSave
are passive, typically local and they communicate via data exchange and trig-
gering. A subsystem differs from a ProSave component in several aspects. A
subsystem has its own threads of execution, which means that it can actively
initiate the execution of a particular functionality. Moreover, subsystems use
message passing with explicit message channels as the means of communica-
tion, and parts of a single subsystem often end up on different nodes in the final
system.

This section describes how ProSave can be used to define the internals of a
subsystem. This is done in a similar way to how composite components are de-
fined internally — as a collection of interconnected components and connectors
— but with some additional connector types. These connectors allow for:

a) mapping between message passing (used at the system level) and trig-
ger/data communication (used in ProSave), and

b) specifying activation of ProSave components, either periodically or as the
result of an external event.

The additional connectors are described in detail in the list below.

Externally, an input message port acts as a subsystem input
message port. Internally, it has one output trigger port and
one output data port which can be connected to a ProSave
component or connector. Whenever a message is received,
the message port writes message data to the output data
port and activates the output trigger.

14
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Figure 9: A subsystem internally modelled by ProSave.

The output message port is an inverse to the input message
port. It acts externally as a sub-system output message
port. Internally, it exhibits one input trigger and one input
data port. When the trigger is activated, the port sends a
message with the data currently available on the input data
port.

Clock

A clock serves for generating periodic triggers. It has one
output trigger port which is triggered at a specified rate.
Clocks are assumed to follow a common conceptual time,
i.e., they are not allowed to drift. However, it is not as-
sumed that all clocks produce their first activation simulta-
neously, meaning that the relative phasing between clocks
is arbitrary. As an alternative notation, this connector can
be represented by a clock symbol.

The coupling between ProSave and the system level is performed only at the
top top level in ProSave, which means that the connectors listed above are not
allowed inside a ProSave component.

The use of these connectors is exemplified in Figure 9. The encapsulating
subsystem has message ports as described in Section 2. Internally, each mes-
sage port acts as a trigger and a data port, which can be connected to other
components or connectors in the ProSave way. Additionally, it is possible to
use clocks for generating periodic triggers.

3.5 Abstract execution semantics

Parts of the semantics has been presented in previous sections, including the
behaviour of a component as viewed from the outside and the meaning of the
different connectors. This section gives a more complete view of the ProSave
execution semantics.
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The execution semantics follows the component hierarchy, meaning that it is
defined for a single level of nesting, either inside a subsystem or inside a compos-
ite component. This allows reasoning about the behaviour of a system also when
some components are not fully decomposed down to primitive components.

Note that the semantics defines activities and communication on a concep-
tual level, and is not meant to illustrate the concrete runtime communication
mechanisms. During synthesis, the design-time components are transformed
into runtime entities, such as tasks, with different communication possibilities.
It is the responsibility of synthesis to ensure that the behaviour of the run-
time system is consistent with what is specified by the execution semantics and
the ProSave design. For example, although the semantics view data transfer
on different levels of nesting as separate activities, the final system may realise
communication between two primitive components on different levels by a single
write to a shared variable, ignoring the intermediate steps of activating input
and output port groups, as long as the overall behaviour is consistent with the
execution semantics.

For simplicity, we consider first the case of a composite component, and later
extend this to the subsystem case. The overall responsibility of a composite com-
ponent is to realise the internal workflows defined by connections, connectors
and subcomponents. Concretely, this amounts to transfering data and trigger-
ing over connections, carrying out connector functionality and interacting with
constructs one level of nesting above and below.

Seen from inside, data and triggering appear at the ports of the input port
group when a service is activated. When this happens, or when new data or
triggering become available at the output port of a subcomponent or connector,
it should be forwarded on the connection leading out of the port. This transfer
may take an arbitrary amount of time, and different transfers may be performed
concurrently or in any order. There is only one restriction, related to the end-
to-end delivery of the data and triggering of a single activation of an output
port group: The transfer of the trigger signal should not start before all data
has arrived to its end destinations (i.e., to component ports). Informally, this
should hold also if the data passes through a connector that modifies it, such
as a data demuxer.

The final phase of a transfer depends on the destination:

• When data reaches a port, it overwrites the current value of that port. In
the case of a connector, the data is handled according to the connector
semantics (e.g., written to the connector ouptut ports in case of a data
split), otherwise nothing more happens.

• When triggering reaches a connector, it is handled according to the con-
nector semantics.

• When triggering reaches a component input port, nothing happens if the
service is currently active. If it is currently passive, then the values of the
data ports of the triggered port group are atomically copied inside the
component, and the service becomes active.
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• When triggering reaches an output port of the enclosing component, the
current contents of the ports of that group become available at the next
level of nesting, possibly after some delay.

It is also the responsibility of the composite component to turn a service back to
the passive mode once all the activities related to the activation of the service
have finished. This means that there should be no pending transfer of data
or triggering, and all subcomponent services that was activated should have
returned to a passive state.

The semantics of the top level inside a subsystem is more or less the same
as that of composite components. A transfer activity is initiated when data or
triggering appears at an output port of a componentor connector, or at an input
message port. When triggering reaches an output message port, the current data
of that port is sent as a message.

4 Meta-model

The meta-model is a formalization of the component model. It models its con-
cepts as classes and shows the relations among them. Following the different
levels in Progress CM, the meta-model is also divided to two parts — System
level and ProSave level.

4.1 System level

A system is at the system-level represented by class System (see Figure 10). A
sub-system in a system is represented by class SubsystemInstance, which refers
to a particular descendant of class Subsystem as its implementation. The dis-
tinction of the SubsystemInstance and Subsystem is to allow for instantiating
the same sub-system inside a system several times.

Each sub-system is equiped by message ports (classes InputMessagePort

and OutputMessagePort), which it uses for communication with other sub-
systems (see Figure 11).

The distinction between a sub-system and its instance impacts also ports.
The class MessagePort and its descendants serve for defining the ports of a
sub-system. A sub-system instance, however owns its own set of port instances
(MessagePortAttachmentPoint), which are used in connecting the sub-system
instances. The port instances of a sub-system instance must correspond one-to-
one to the ports defined by the respective sub-system.

The communication between sub-system instances is realized by explicit
message channels (class MessageChannel). The actual connection of a sub-
system instance to a particular message channel is realized by class Connection
which attaches the message channel to a port of the sub-system instance (class
MessagePortAttachmentPoint).
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Figure 10: System level metamodel — Sub-systems

*

1

+ port

1 *

+ messagePort+ messagePort

name : String
name : String

type : String

Figure 11: System level metamodel — Ports
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Figure 12: ProSave level metamodel — Subsystems

4.2 ProSave level

The top-level of a ProSave design is represented by class ProSaveSubsystem

(see Figure 12) which is a specialization of the sub-system at the System level
(class SubSystem).

The internals of a ProSave subsystem are modeled by sub-component in-
stances, connectors and connections.

A sub-component instance (class SubcomponentInstance) represents a par-
ticular instantiation of a component (class Component). (This is similar to
sub-systems and their instances at the system level.) The class Component is
abstract and it has two specializations — the primitive component and the
composite component.

By itself Component defines the services (class Service), each of which splits
to an input port-group (class InputPortGroup) and a number of output port-
groups (class OutputPortGroup). Each port-group defines one trigger port and
a set of data ports (see Figure 13).

Ports are categorized and represented in the meta-model by classes Input-
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DataPort, OutputDataPort, InputTriggerPort, OutputTriggerPortand their
abstract ancestors DataPort, TriggerPort, Port.

In a similar way to the system-level, there is also class PortAttachmentPoint
representing a port of a sub-component instance (thus making possible to refer
to a port of a particular sub-component instance).

The flow between sub-component instances is driven by connectors and con-
nections (see Figure 14). There are a number of connectors defined in ProSave.
Each type of a connector is represented by a dedicated class in the meta-model
(DataFork, Selection, ControlJoin, etc.).

Each connector defines its ports by including descendants of Port. However,
to allow for common handling of components and connectors, each connector
defines also its set of port instances (MessagePortAttachmentPoint which cor-
respond one-to-one to the connector ports.

The connectors at the top-level of ProSave include also message input/output
ports (classes InputMessagePort and OutputMessagePort — see Figure 15).
These correspond to ports defined by the sub-system and in fact make the sub-
system ports accessible to the ProSave design.

The linkage between connectors and components is realized by connections.
Each connection (class Connection) connects two port instances (PortAttachment-
Point) together (see Figure 16).

The ProSave component model is nested, meaning that each component may
be either primitive or composite.

A primitive component (class PrimitiveComponent) is tied to a particular
implementation in C programming language (see Figure 17). It also provides
mapping of each of its services to a particular C-method and for each service it
defines mapping of ports to C-variables.

A composite component (class CompositeComponent) is modeled in a sim-
ilar way as the ProSave subsytem on the top-level (see Figure 16) — by sub-
component instances, connectors and connections. However, an important disc-
tion is that only a restricted subset of connectors may be used inside a composite
component — only connectors inheriting from class ConnectorInsideComponent.

In addition to those, CompositeComponent has a set of port instances (Port-
AttachmentPoint) which correspond one-to-one to its ports. These port in-
stances are used to connect component internals to its external ports (i.e. to
make delegations).

When using the PortAttachmentPoint for this purpose (i.e. internal port
instances), the direction defined by the corresponding Port is used inverted (i.e.
an input port becomes and output port and vice-versa). To mark this change,
PortAttachmentPoint contains the property external which is set to false

in this case.
Virtually any element in ProSave design may have a set of attributes (see

Figure 18). These attributes capture requirements, models and other properties.
On the level of a meta-model this is captured by abstract class Attribute,
which should be specialized to model a particular requirement, quality attribute,
timing information, etc.
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Figure 17: ProSave level metamodel — Primitive components
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Figure 19: The design of the ACC subsystem.

5 Example

In order to illustrate the use of Progress CM we present a simple design of
an Adaptive Cruise Controller (ACC) that was as well used as a case study
throughout the development of the SaveComp component model [1].

The ACC works as a regular cruise controller if the road is free. But, if there
is another vehicle in front moving with a lower speed, the ACC automatically
reduces the vehicle’s speed. If the ACC is enabled it also adjusts the maximum
speed of the vehicle depending on the speed limit regulations.

The ACC itself forms a subsystem (as depicted in Figure 19). It communi-
cates with other subsystems using its messages ports. From other subsystems
it receives the information about the current traffic situation and input from
the driver. Based on these values it computes braking force and throttle adjust-
ment, which is communicated to the brake subsystem and to the engine control,
respectively. Futher, it reports the state of the subsystem to the driver (HMI
output).

The ACC subsystem is internally modelled using ProSave. It is a purely
time-triggered system in the sense that it is not triggered by incoming messages
— it uses only their data. The subsystem contains two activities triggered at
different frequencies. The control functionality, which controls the throttle and
brakes is triggered at 50 Hz. The logging and HMI output functionality is
executed at a lower frequency of 10 Hz.

The control functionality executing at 50 Hz frequency can choose between
two execution paths: braking (Brake controller component) or controlling the
vehicle’s throttle (ACC controller). In order to do this choice, a selection con-
nector is used. The connector has one input trigger port coming from the Object
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Figure 20: The design of “ACC Controller”.

recognition component, three data input ports and two outputs trigger ports;
one connected to the ACC controller and the other one to the Brake controller
component. Further, a control-or connector is used to join the control flows of
these two workflows.

The responsibilities of individual components are as follows:

Speed Limit component estimates the maximum speed of the vehicle depend-
ing on the speed limit regulations.

Object recognition component determines if there is a vehicle in front and
in that case estimates the relative speed. If there is a need for braking it
sends information to the Brake controller component.

Brake controller component is used to assist the driver if there is a vehicle
in front and continuing at the same speed would lead to a collision.

ACC controller is a composite component (see Figure 20) consisting of a
distance controller and a speed controller component (see Figure 21). It
is used to regulate the throttle control of the vehicle on the basis of the
current speed, desired speed and distance to the vehicle in front. Both, the
distance controller component and the speed controller component have
similar architecture. Each has two services – one corresponding to the
control chain and the other to the feedback chain.

Logger HMI Output component gives information to the driver about the
state of the vehicle and latest request.
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