
Towards Component Modelling of Embedded Systems in the Vehicular Domain

Tomáš Bureš, Jan Carlson, Séverine Sentilles and AnetaVulgarakis
Mälardalen Real-Time Research Centre, Västerås, Sweden.

{tomas.bures,jan.carlson,severine.sentilles,aneta.vulgarakis}@mdh.se

Abstract

The complexity of software and electronics in vehicular
systems has increased significantly over last few years —
up to the point when it is difficult to manage it with ex-
isting development methods. In this paper we aim at us-
ing components for managing the complexity in vehicular
systems. Compared to other approaches, the distinguishing
feature of our work is using and benefiting from components
throughout the whole development process (from early de-
sign to development and deployment). Based on the elab-
oration of the specifics of vehicular systems (resource con-
straints, real-time requirements, hard demands on reliabil-
ity), the paper identifies concerns that need to be addressed
by a component model for this domain. It also outlines ba-
sic features and characteristics of such a component model
and discusses how relevant existing formalisms and compo-
nent models relate to it and how they could be reused within
the proposed approach.

1 Introduction

Vehicles of various types have become an integral part
of the everyday life. In addition to cars, which are the
most common, they comprise other transportation vehicles
(such as trucks and busses) and special purpose vehicles
(e.g. forestry machines). It is a general trend that the level
of computerization in the vehicles grows every year. For
example in the automotive industry, the complexity of the
electrical and electronic architecture is growing exponen-
tially following the demands on the driver’s safety, assis-
tance and comfort [7].

The computerization is present in vehicles in the form of
embedded systems, which are special-purpose built-in com-
puters. They are tailored to perform a specific task by com-
bination of software and hardware. In comparison to gen-
eral purpose computers, one fundamental characteristic of
embedded systems is that many of them have to function
under severe resource limitations in terms of memory, band-
width and energy, and under difficult environmental condi-

tions (e.g. heat, dust, constant vibrations).
As the embedded systems are often used for safety-

critical tasks, there are typically requirements onreal-time
behaviour, meaning that a system must react correctly to
events in a well-specified amount of time (neither too fast
nor too slow) since any infraction of these requirements can
lead to a catastrophe. A popular example to illustrate this is
a car airbag. In case of an accident, the airbag has to inflate
suitably at a particular point in time, otherwise it is useless
or even harmful for the driver.

The criticality of tasks connected with embedded sys-
tems implies that embedded systems have to be thoroughly
tested or better formally verified for correctness (both func-
tional and with respect to timing).

The restrictions in available resources (power, CPU and
memory), environmental conditions and harsh requirements
in terms of safety, reliability, worst-case response time,
etc. make the development of embedded systems rather dif-
ficult and time-demanding. And what may be feasible when
the embedded systems in a vehicle are few and simple gets
immensely more difficult when they grow in number, get
more complex and become mutually dependent (many sys-
tems are designed as distributed systems communicating
over some network) — as is the trend today. Even the typi-
cal solution having been applied so far — encapsulating an
embedded system into a dedicated ECU with its own CPU
and memory — does not scale any more due to restrictions
in physical space and available power. Instead there arises
a need to collocate several embedded systems on one phys-
ical unit which even more adds on complexity as resources
have to be shared.

All this introduces a new challenge in software devel-
opment for embedded systems in vehicular domain. Al-
ready taken apart, each of the aforementioned issues (re-
source limitations, correctness of system behaviour, relia-
bility, distribution, etc.) is challenging by itself but together
they represent a very complex problem. A problem which
the current embedded systems development methods do not
seem to be able to easily cope with.

A promising solution lies in the adoption of a
Component-Based Development (CBD) approach, which



allows construction (resp. decomposition) of software sys-
tems out of (resp. in) independent and well-defined pieces
of software, calledcomponents. CBD has the poten-
tial to significantly alleviate the management of the ever-
increasing complexity and give possibility to reuse already
developed elements — thus increasing reliability and short-
ening the development time.

CBD has already proved to be successfully used in en-
terprise systems, service-oriented and desktop domains [6].
However, the in order to employ it in embedded systems it
is necessary to adapt it to support specifics of the embed-
ded systems in vehicular domain (i.e. strong dependence
on hardware, distribution, real-timeness, to mention justa
few).

There have been several approaches (e.g. [1, 8, 9, 10,
18]) to use CBD in embedded systems. Although, these
approaches were successful in solving particular pieces of
the puzzle, a holistic approach using CBD throughout all
the stages of the embedded system development process is
still missing.

1.1 Goals of the paper and structure of
the text

Striving for a CBD process in vehicular embedded sys-
tems, we have taken a step back and re-evaluated the re-
quirements of embedded systems in the vehicular domain
with the goal of setting up CBD and underlying component
models that would allow using components throughout the
whole development process (from early design to deploy-
ment).

The goal of this paper is to establish concepts and re-
quirements for a CBD process for vehicular embedded sys-
tems and to characterize the component models underlying
it — with the main objectives of (a) aligning the CBD with
specifics of vehicular embedded systems, (b) reducing sys-
tem complexity, (c) increasing dependability by allowing
for various kind of analyses (functional behaviour, timing
behaviour, reliability), and (d) reducing development time
by supporting reuse. An emphasis also lies in supporting
components in all stages of the development process.

The remainder of this paper is organized as follows: Sec-
tion 2 introduces a concrete example of an embedded sys-
tem in the vehicular domain and Section 3 describes the
background of this work. Section 4 identifies key concerns
to be addressed when applying CBD to the vehicular do-
main and Section 5 outlines a suitable component model
family. Related work is described in Section 6, and Sec-
tion 7 concludes the paper.

2 Example

As a running example demonstrating the specifics of the
vehicular domain, we will consider the electronic systems
of a modern car, focusing on an anti-lock braking system
(ABS) in particular.

Today, electronics and software stands for a substantial
part of the producton cost of a car (as much as 40% [5]).
This is explained by the fact that much of the competitive
edge of a modern car is provided by functionality realised
by software. Such functionality includes infotainment, cli-
mate control and navigation systems, but also core function-
ality such as engine control, shift-by-wire, anti-lock braking
and airbags.

The physical system architecture can consist of a fairly
large number of computational nodes (ECUs), connected
by a number of different networks. For example, a Volvo
XC90, depicted in Figure 1, has around 40 ECUs, two CAN
busses of different speed, several LIN busses, and a MOST
bus for the infotainment systems.

Figure 1. The electronic system architecture
of Volvo XC90.

In the automotive domain, low production cost is a very
important concern, since each car model is manufactured in
such large quantities. At the same time, many of the elec-
tronic systems are highly safety-critical, and some are sub-
ject to hard real-time constraints. Thus, a key design chal-
lenge is finding a minimal (with respect to cost, but this typ-
ically means minimal in terms of resources, as well) that can
provide the desired functionality with a sufficiently levelof
dependability.

Looking specifically at the ABS, its role is to improve the
braking performance by preventing the wheels from lock-
ing. When a wheel is about to lock — a situation charac-
terised by the speed of that wheel being significantly lower
than that of the other wheels — the brake force should be



decreased until the wheel starts to move faster again.

In addition to the main functionality, the ABS is respon-
sible for monitoring for hardware or software faults, includ-
ing faults in the associated sensors and actuators. Transient
faults should be handled locally, and in case of persistent
problems, the system should be shut down in a safe way
and the driver should be informed.

Functionally, the ABS is fairly independent from other
subsystems, although it shares some information about the
state of the vehicle with other subsystems. For example,
if the ABS is shut down, other subsystems might want to
change the way they operate. Also, the ABS could share
wheel speed sensors and brake actuators with, e.g., a trac-
tion control system (TCS).

At a more fine-grained level of detail, there are many de-
sign decisions to be made in order to achieve an optimal per-
formance: what wheel speed difference should be tolerated
without the system considering it a locking situation, ex-
actly how much and for how long should the braking force
be adjusted, etc. This type of concerns are tightly connected
to the behavior of the actual car interacting with its environ-
ment, and might require significant testing and fine-tuning.
For many of them, control theory provides well established
parameterised solutions that can be adjusted by simulations
and actual tests.

The correctness and quality of the ABS system strongly
depends on its real-time behaviour, e.g., how often the
wheel speed is sampled and the time delay between sam-
pling and actuating. This adds to the complexity, since these
temporal aspects depend on many factors outside the ABS,
such as other subsystems using the same bus. The current
trend in automotive systems is towards running multiple
subsystems on the same physical node, which introduces
additional temporal dependencies.

It is common that sub-systems are developed relatively
independently by a few large OEM manufacturers, who sell
the sub-systems to car manufacturers. In the case of ABS it
means that the ABS sub-system produced by one company
is used (with some modifications) in several car brands.
That brings the necessity to be able to reuse the overall de-
sign of the ABS at a level which abstracts from the interfer-
ence from other sub-systems in the car. Although the overall
functionality remains unchanged when the ABS subsystem
is reused in a different car model, it is typically necessary
to adjust details, e.g., how much the brake force should be
decreased in a locking situation, depending on the charac-
teristics of the car. Thus, it is not enough to reuse the ABS
sub-system just as a “black box”. Instead, it is necessary to
be able to access the internal structure to make adjustments
on the appropriate level of detail.

3 The PROGRESS approach

The work presented in this paper is conducted as a part of
the larger research vision of PROGRESS, which is a Swedish
national research centre for predictable development of em-
bedded systems. In this section we provide a brief overview
of the PROGRESSvision as it provides background and mo-
tivation for our work.

The goal of PROGRESSis to provide theories, methods
and tools to increase quality and reduce costs in the devel-
opment of systems for vehicular, automation and telecom-
munication domains. Together they are to cover the whole
development process, supporting the consideration of pre-
dictability and safety througout the development. To sup-
port this idea and propose a basis for work, PROGRESSre-
lies on a holistic approach using CBD throughout all the
stages of the embedded system development process to-
gether with an interlacing of various kind of analysis and
an emphasis on reusability issues.

To be able to apply a CBD approach across the whole
development process (starting from a vague specification of
the system based on early requirements up to its final and
precise specification and implementation ready to be de-
ployed), PROGRESSadopts a particular notion for compo-
nent. Similarly to SaveCCM [1] and Robocop [10], a com-
ponent is considered as “a whole”, i.e. a collection gather-
ing all the information needed and/or specified at different
points of time of the development process. That means a
component comprises requirements, documentation, source
code, various models (e.g. behavioural and timing), pre-
dicted and experimentally measured values (e.g. perfor-
mance and memory consumption), etc., thus making a com-
ponent a unifying concept in the whole development pro-
cess.

In addition to modelling with components (which is the
topic of this paper), PROGRESSputs a strong emphasis on
analysis and deployment.

The analysis parts of PROGRESSaim at providing es-
timations and guarantees of different important properties.
The analysis is present throughout the whole development
process and gives results depending on the completeness
and accuracy of the components’ models and description.
This means that an early (and rather inaccurate) analysis
may be performed during design to guide design decisions
and provide early estimates. Once the development is com-
pleted the analysis may be used to validate that the cre-
ated components and their composition meet the original re-
quirements. The different analyses planned for PROGRESS

include reliability predictions, analysis of functional com-
pliance (e.g. ensuring compatibility of interconnected inter-
faces), timing analysis (analysis of high-level timing as well
as low-level worst-case execution time analysis) and re-
source usage analysis (e.g. memory, communication band-



width).
Deployment in PROGRESS is strongly conforming to

specifics of embedded real-time systems. The design and
development of components is supplemented by deploy-
ment activities consisting of two parts: (1) allocation of
components to physical nodes and (2) code synthesis. In
code synthesis, the code of components are merged, opti-
mized and mapped to artefacts of an underlying real-time
operating system. This step also includes creating real-time
schedules. The binary images resulting from code synthesis
are ready to be executed at the target physical nodes.

4 Towards CBD in vehicular systems

In this section we outline two important requirements on
CBD when used in the vehicular domain, focusing on how
CBD can be integrated with early design and a high level of
predictability.

In a broad sense the development of an embedded system
or a sub-system means going from an abstract specification
to a concrete product. Starting with vague or incomplete
descriptions, information regarding the software structure,
timing, the physical platform, etc., is gradually introduced
in order to approach a finished system. As discussed ear-
lier, this whole process should be supported by analysis to
support early detection of problems, and to achieve a high
quality in the final product. When a system is developed by
reusing existing components, which is a key idea in CBD,
this progression from abstract to concrete becomes more
complex, since concrete reused components are mixed with
early (i.e., abstract) versions of components to be developed
from scratch.

Another important concern — conceptually separate
from the progression from abstract to concrete — relates
to component granularity. In a system as complex as those
found in the vehicular domain, it is clear that components
representing big parts of the whole system are different
from those responsible for a small part of some control
functionality.

4.1 Abstract to concrete

The development of an embedded system or a subsystem
typically starts with use-cases, domain diagrams and basic
sketches of the system. These abstract models are then grad-
ually detailed to eventually end up with an implementation.

Some properties of the system may be specified in a very
concrete and detailed manner already in early stages of de-
velopment (e.g. real-time requirements, messages used for
interaction with existing systems, etc.), however, it is the
fact that the overall system is far from a concrete imple-
mentation that makes it abstract at this stage.

With regard to CBD, the abstract-to-concrete concern
typically means that a system is first modelled by a set
of components, which however have only vague bound-
aries and only some properties and requirements specified.
Also the communication among the components is perhaps
only represented by lines representing arbitrary exchangeof
some data. Gradually during the development this abstract
view is made more concrete, meaning that components are
assigned behaviour, communication is detailed, concrete in-
terfaces are identified and components are implemented.

A closer inspection reveals that this process from ab-
stract to concrete is far from a straightforward linear pro-
gression in a series of well-defined system wide steps. In
particular, the following issues must be taken into consider-
ation:

• It is often necessary to move back and forth between
the abstraction levels in order to explore and reject dif-
ferent design alternatives.

• At a particular point in time, different parts of the sys-
tem will be modelled on different levels of abstrac-
tion — for example, when reusing an existing (con-
crete) component in a system which is not yet so ma-
ture otherwise, or when the development of different
parts is not performed concurrently and at the same
pace (which is the typical case).

• Some analysis techniques require a certain level of ab-
straction, either because the required information is not
present at higher abstractions, or because the complex-
ity of a more concrete level makes the method pro-
hibitively expensive.

This requires the component model supporting this pro-
cess to provide support for initial and abstract design as
well as detailed and concrete design. An important re-
quirement is also supporting the transformation (progres-
sion) between abstract and concrete (as opposed to having
just two descriptions without any direct correspondence be-
tween them). Moreover a component should contain the in-
formation from all levels of abstraction through which it has
progressed, so that even a reused concrete component may
be used in the abstract design together with other abstract
components.

Two particular aspects of the abstract-to-concrete scale
are discussed further:structural decompositionand target
platform. Other important concerns, which are not elabo-
rated here, includedata, timingandresource consumption.

4.1.1 Structural decomposition

In an abstract form, a component can be modelled as a black
box, not because the internal structure must remain hidden
but because it has not been decided yet. The functionality of



the component, as well as aspects related to timing, resource
consumption, communication, etc., can be modelled with
respect to the externally visible interface of the component,
which allows the information to be taken into account in the
analysis.

As one important part of the progression to a concrete
system, the internal structure of the component should be
elaborated. This includes, for example, deciding whether
to realise the component by means of composed subcompo-
nents (reusing existing or developing new), or to implement
it as an atomic unit.

4.1.2 Target platform

The coupling between the software and the target platform
is typically quite high in an embedded system. One rea-
son is to achieve the required functionality with the least
manufacturing costs, especially when producing a system
in large quantities. As the result, the hardware is typically
quite restricted and the software is tailored and optimized
specifically for that particular hardware and real-time oper-
ating system.

The target platform is often predetermined to some ex-
tent already by the initial requirements on the system, and
additional knowledge comes from experience with previous
versions of the system, or similar products. However it is
not always fully known in all details. A lot of details are
refined as the actual system is being developed and assump-
tions of individual components on the target platform are
being clarified. Thus the development of a system influ-
ences and in turn is influenced by the target platform speci-
fication.

In our example, it is known a priori that the ABS will
be distributed over at least five physical nodes, dictated by
the physical location of the wheel speed sensors and the
actuators. We would also typically be able to make some
assumptions about the nature of these nodes and the net-
work between them, based on experience from other sys-
tems. However, the final choice of hardware might be made
later, as well as the decision whether the main functionality
of the ABS will be allocated to a dedicated node or if it will
share a node with other subsystems.

This reality of system development being interwoven
with target platform specification is however in contrast to
the main goals of CBD — component reusability. This
poses a challenge for the component model and the associ-
ated CBD process, which must be able to take into account
the target platform while not sacrificing the reusability of
components.

4.2 Component granularity

In a system as complex as a typical vehicular system,
it is clear that components representing big parts of the

whole system are different from those responsible for a
small part of some control functionality. Components at
different granularity have different needs in terms of execu-
tion model, communication style, synchronisation, etc., but
also with respect to the kind of information that should be
associated with the component and the type of analysis that
is appropriate.

In general, the big components encapsulate complex
functionality but they are relatively independent. In current
systems it is often the case that each of those big compo-
nents are allocated to one or several dedicated ECUs. Thus,
the communication between big components often mani-
fests as messages sent over a bus in order to share data (e.g.
the current vehicle speed used by several sub-systems) or
to notify other components of important events. The small
components (e.g. control loops, tasks), on the other hand,
tend to have dedicated, restricted functionality, simple com-
munication and stronger synchronisation. The semantics of
small components is also tailored for some specific purpose
(e.g. control logic).

With respect to the component model this means hav-
ing different kinds of components with different semantics
depending on at which level of granularity the component
lies and what it is meant for (e.g. modeling control logic
vs. modelling a user interface). Having these several lev-
els of components it is vital to establish relation between
them so as a big component may be modelled out of small
components.

5 Conceptual component model family

In previous sections we have described the general
PROGRESSview and outlined important concerns when ap-
plying a CBD approach to vehicular systems. However, a
component model is needed to provide the formal grounds
for the CBD process. This component model must be able
to handle the concerns presented above and also facilitate
the analysability and synthesisability of the system.

Ideally, the whole range from abstract to concrete but
also from big to small components should be addressed by
a single unified component model. However, since the de-
mands differ significantly between the end points of the two
scales, this is not an easy task. Instead, we envision split-
ting the abstract to concrete scale into two distinct levelsof
abstraction. Similarly, in order to address the differences
related to component size, the concrete half is further split
into two levels of granularity. This partitioning of the prob-
lem into three distinct segments is depicted in Figure 2.

Regarding the abstract to concrete scale, the abstract half
represents the formalisms used to capture overall require-
ments, scenarios, etc. It also includes abstract models of
resource usage, functional behaviour and timing.

The component models used for the concrete segments



Figure 2. Proposed component model family.

are concrete in the sense that they allow modelling of con-
crete concerns (e.g., communication ports and concrete re-
source usage) and eventually end up having code implemen-
tation for all primitive components. It is however important
to note that they target a rather large interval of the abstract
to concrete scale, and not just a single point.

The concrete component models support components
also in relatively abstract forms, i.e., where the internal
structure, allocation to physical nodes, etc. is yet to be
determined. It is possible to manipulate such “unfinished”
components in the same way as the concretized ones (i.e.,
storing them in a repository, composing them with other
components, include them in analysis, etc.). Gradually, asa
component is filled with information, including realisation
in terms of source code or an internal structure of subcom-
ponents, it is available to more analyses and eventually to
synthesis.

In order to address the coupling between components
and the target platform, we allow components to express
their partial assumptions about the platform (e.g. the min-
imum available memory, required operating system func-
tionality). However, the detailed specification of the hard-
ware and the platform, as well as the allocation of compo-
nents to physical nodes, are given by separate models con-
nected with deployment — i.e., they are not part of the com-
ponent specification.

Although decoupled from the component model point of

view, the overall development process and tool support shall
allow the design and development of the software function-
ality to be interleaved with decisions regarding the target
platform and component allocation. Such parallel refine-
ment and specification of components, target platform and
allocation is important for analysis which will often have to
use all of them to produce relevant results.

On the granularity scale we divide the concrete half of
the overall component model to two segments (component
models) for “big” and “small” components, respectively.

The big components represent the sub-systems in the ve-
hicular domain. These components are quite large, rela-
tively independent and they are units of distribution and bi-
nary packaging. A sub-system may in our model consist
of other sub-systems, thus forming a hierarchical compo-
nent model. On the top-level a composition of sub-systems
forms a system, which in our case corresponds for example
to all the software running in a car.

The decomposition of a sub-system stops at primitive
sub-system components, which are those realized by legacy
code or modelled by small granularity components. The
small components in vehicular domain serve for modelling
the control logic, such as reading data from a sensor, con-
trolling an actuator, etc. In this respect they provide an ab-
straction of the tasks and control loops typically found in
control systems. During deployment, the small components
are synthesised together to make up the code of the primi-



tive sub-system.
In the realization of the concrete component models we

thus envisage relatively simple component model for the
“big” components with asynchronous message-passing as
the main communication paradigm. For the “small” compo-
nents we envision a component model based on a pipe-and-
filter architectural style with explicit support for modelling
the workflows of control loops.

To demonstrate the proposed component model family
on the running example: The abstract design would spec-
ify the general requirements on functionality, timing and re-
sources of the whole system and of individual subsystems
such as the ABS. Some of these requirements would be for-
mulated in specialised formalisms, for example the desired
behaviour in case of transient faults, or the stability of the
control signal.

The “big” granularity concrete design would, in its most
abstract form, list the main subsystem component and in-
dicate communication among them. This design would
then be gradually concretised by elaborating on the inter-
nal structure, in which the ABS subsystem would be fur-
ther split up into six sub-system components — four of
them modelling sensing the speed of one wheel, one for
controlling the braking and one for monitoring. The de-
veloper would also introduce assumptions about the target
platform, and detail the communication needed to share the
wheel speed and for informing the driver and other subsys-
tems about possible malfunction.

At the “small” granularity level, the ABS sub-systems
would consist of components responsible for interacting
with speed sensors, computing the desired brake force ad-
justment, and so forth.

6 Related work and candidate technologies

In this section, we provide a brief overview on how and
where the most relevant existing technologies for develop-
ing component based systems can fit into the proposed com-
ponent model family for vehicular systems.

For the abstract part of the abstract-to-concrete scale,
general purpose modeling languages such as UML [13]
could be applied, in particular when targeting the whole sys-
tem or big components. Use-case, interaction and deploy-
ment diagrams are suitable for capturing vague information
about early requirements and modelling, but have no clear
mapping to code. Issues related to timing and resource us-
age are addressed by specialized profiles, e.g., MARTE [14]
for modelling real-time and embedded systems.

The detailed control functionality can also be modelled
in some formalism that abstracts from the concrete system
structure. As an example, Simulink [17] from MathWorks
is a tool for modelling dynamic systems in either continuous
or sampled time. These models can be simulated and ana-

lyzed, and there is support for synthesising executable code.
There is however no support for adding concrete informa-
tion about allocation on nodes, structural decomposition or
resources.

A general concern when using established tools and for-
malisms for abstract modelling, is to define the relation be-
tween the concepts at this initial level and the formalisms
used for the concrete modeling. This relation should ideally
allow the designer to move freely back and forth between
the abstraction levels, rather then being a one-way transfor-
mation from abstract to concrete concepts.

On the concrete side of the scale, an interesting represen-
tative of the approaches focusing on the “big” components
is the Automotive Open System Architecture (AUTOSAR)
initiative from the automotive domain [3]. AUTOSAR aims
at defining a standardized platform for automotive systems,
allowing subsystems to be more indendent of the underly-
ing platform and of the way functionality is distributed over
the ECUs. AUTOSAR c omponents communicate transpar-
ently of whether they are located on the same or different
ECUs. The supported communication styles are based on
the client-server and sender-receiver paradigms.

With regard to the granularity, most contemporary com-
ponent models — including COM [15], CORBA [4] and
Enterprise JavaBeans [11] — fall into the segment of “big”
concrete components. However, these models consider
components only as concrete binary units, thus addressing
only the most concrete point at the end of the abstract-
to-concrete scale. Also, inadequate timing predictability
and the additional computing and memory resources con-
sumed by the run-time component framework make them
less suitable for development of embedded real-time sys-
tems. Recently, approaches to extend and adapt these com-
ponent models to better suit this domain have been pro-
posed [9, 16].

Most component models that specifically target embed-
ded systems focus primarily on “small” granularity com-
ponents. Examples include Philips’ Koala component
model for consumer electronics [18], the Rubus compo-
nent model [2] for distributed embedded control systems
with mixed real-time and non-real-time functions, the com-
ponent model for industrial field devices developed in the
PECOS project [12] and SaveCCM [1] for embedded con-
trol applications in the automotive domain.

Compared to many general purpose component mod-
els, these are still abstract in the sense that components
are design time entities rather than executable units, and
a dedicated synthesis step is assumed in which the com-
ponent based design is transformed into an executable sys-
tem. However, compared to pure abstract modeling of func-
tionality, the components here represent concrete units that
are realized by individual pieces of source code and usu-
ally provide some concrete information about resource us-



age and timing.
Interesting is also the approach of COMDES II [8],

where a two-level model is employed to address the vary-
ing concerns at different levels of granularity. At the system
level, a distributed system is modeled as a network of com-
municating actors, and at the lower level the functionality
of individual actors is further specified by interconnected
function blocks.

7 Conclusion

In this paper we have aimed at establishing concepts, re-
quirements and a component model family for a CBD pro-
cess in vehicular embedded systems. Compared to existing
approaches, we have put emphasis on supporting compo-
nents throughout the whole development phase (from early
design to deployment). We have demonstrated specifics of
vehicular embedded systems on the ABS example. Then
we have discussed the requirements on the CBD and out-
lined the family of component models supporting this CBD.
Eventually, we have discussed existing approaches to the
development of vehicular embedded systems and matched
them to the proposed conceptual component family.

As what regards to the on-going work, we work on con-
cretizing the proposed component models and on imple-
menting support for them in an integrated development en-
vironment. The development environment should integrate
component modeling with related analysis tools and with
deployment (i.e. synthesis to executable code).

Acknowledgement

This work was partially supported by the Swedish Foun-
dation for Strategic Research via the strategic research cen-
tre PROGRESS.

References

[1] M. Åkerholm, J. Carlson, J. Fredriksson, H. Hansson,
J. Håkansson, A. Möller, P. Pettersson, and M. Tivoli. The
SAVE approach to component-based development of vehic-
ular systems.Journal of Systems and Software, 80(5):655–
667, May 2007.

[2] Arcticus Systems. Rubus Software Components. Available
from www.arcticus-systems.com.

[3] AUTOSAR Development Partnership. Technical Overview
V2.2.1, Feb. 2008. Available fromwww.autosar.org.

[4] F. Bolton. Pure CORBA. Sams, 2001.
[5] M. Broy. Challenges in automotive software engineering. In

ICSE ’06: Proceedings of the 28th international conference
on Software engineering, pages 33–42. ACM, 2006.

[6] I. Crnkovic and M. Larsson.Building Reliable Component-
Based Software Systems. Artech House, Inc., Norwood,
MA, USA, 2002.

[7] H. Fennel et al. Achievements and exploitation of the AU-
TOSAR development partnership. Presented at Conver-
gence 2006, Detroit, MI, USA, Oct. 2006. Available from
www.autosar.org.

[8] X. Ke, K. Sierszecki, and C. Angelov. COMDES-II: A
Component-Based Framework for Generative Development
of Distributed Real-Time Control Systems. InRTCSA ’07:
Proceedings of the 13th IEEE International Conference on
Embedded and Real-Time Computing Systems and Applica-
tions, pages 199–208. IEEE Computer Society, 2007.

[9] F. Lüders. An Evolutionary Approach to Software Com-
ponents in Embedded Real-Time Systems. PhD thesis,
Mälardalen University, December 2006.

[10] H. Maaskant. A Robust Component Model for Consumer
Electronic Products, volume 3 ofPhilips Research, pages
167–192. Springer, 2005.

[11] R. Monson-Haefel. Enterprise JavaBeans. O’Reilly and
Associates, 2001.

[12] O. Nierstrasz, G. Arévalo, S. Ducasse, R. Wuyts, A. P.
Black, P. O. Müller, C. Zeidler, T. Genssler, and R. van den
Born. A component model for field devices. InProceedings
of the First International IFIP/ACM Working Conference on
Component Deployment, pages 200–209. Springer-Verlag,
2002.

[13] Object Management Group. UML 2.0 Superstructure Spec-
ification, The OMG Final Adopted Specification, 2003.

[14] Object Management Group. A UML Profile for MARTE,
Beta 1, August 2007. Document number: ptc/07-08-04.

[15] D. Rogerson.Inside COM. Microsoft Press, 1997.
[16] D. C. Schmidt and F. Kuhns. An Overview of the Real-Time

CORBA Specification.Computer, 33(6):56–63, 2000.
[17] Simulink, MathWorks.www.mathworks.com, accessed

March 2008.
[18] R. van Ommering, F. van der Linden, and J. Kramer. The

Koala component model for consumer electronics software.
In IEEE Computer, pages 78–85. IEEE, March 2000.


