
An Operational Semantics for the Execution

of PLEX in a Shared Memory Architecture

Johan Lindhult
Dept. of Computer Science and Electronics, Mälardalen University

P.O. Box 883, SE-721 23 Västerås, SWEDEN
johan.lindhult@mdh.se

April 15, 2008

Abstract

Programming Language for EXchanges, PLEX, is a pseudo-
parallel and event-driven real-time language developed by Eric-
sson. It is designed for, and used in, central parts of the AXE tele-
phone switching system. The language has a signal paradigm as
its top execution level, and it is event-based in the sense that only
events, encoded as signals, can trigger code execution. Due to the
fact that a PLEX program file consists of several independent sub-
programs, in combination with an execution model where new jobs
are spawned and put in queues, we also classify the language as
pseudo-parallel.

In previous works, we have presented a structural operational
semantics for sequential execution of PLEX in the current single-
processor architecture, i.e., a specification/formalization of the be-
havior of PLEX in the system as it is today.

In this report, we extend our previous work by specifying the
semantics for a restricted parallel implementation of the language.

i

Contents

1 Introduction 1

2 Related Work 3

3 AXE and PLEX 4
3.1 The AXE Telephone Exchange System 4
3.2 PLEX: Programming Language for EXchanges 5
3.3 Application Modules . 6
3.4 Signals . 8
3.5 Jobs . 11

4 The Architecture 11

5 Execution Paradigms 12
5.1 Additional Concepts . 12

5.1.1 Job-Trees . 12
5.1.2 Job-Tree Source . 14
5.1.3 An AM Based System 14

5.2 FD: Functional Distribution 15
5.3 CMX: Concurrent Multi-eXecutor 15
5.4 CMX-FD . 16

6 The Semantics 18
6.1 Abstract Syntax . 18
6.2 The State of the System . 22
6.3 The Semantics for the Basic Statements 27
6.4 The Semantics for the Signal Statements 31

6.4.1 A New Buffered Signal 37
6.5 The Semantics for the EXIT Statement 38
6.6 Additional transitions . 39
6.7 Global Transitions . 40

7 Summary 41

8 Acknowledgements 42

1 INTRODUCTION 1

1 Introduction

A large class of computer systems has been designed under the assump-
tion that activities in the system are executed non-preemptively (run to
termination without interruption). Examples of such systems are small
embedded systems that are quite static to their ’nature’, or priority-
based systems where activities on the highest priority are assumed to
be non-interruptible. Although the reasons for non-preemptive execu-
tion may vary, common for the kind of systems we target are the usage
of single-processor architectures; the combination of non-preemptive ex-
ecution and a single-processor architecture automatically protects any
shared data in the system, and time-consuming synchronization can
be avoided. However, new architectures will increasingly be parallel
[SL05]. On a parallel architecture, activities executed on different pro-
cessors may access and update the same data concurrently, and non-
preemptive execution does not protect the shared data any longer. On
the other hand, the very idea of parallel architectures is to increase per-
formance by parallel execution. The question is: how utilize the power of
a parallel processor for a system designed for non-preemptive execution?
A brute force solution is to re-design and re-implement the system, but
especially for legacy systems (which may consist of several million lines
of code) this solution is often infeasible. Automatic (or semi-automatic)
methods for porting the software are therefore highly desired. However,
the correctness of these methods must be ensured, especially if system
failures are costly. To prove the correctness, formal semantics of the
language in question has to be considered.

Our subject of study is the language PLEX, used to program the AXE
telephone exchange system from Ericsson. The AXE system, and the
PLEX language, developed in conjunction, have roots that go back to the
late 1970’s. The language is event-based in the sense that only events,
encoded as signals, can trigger code execution. Signals trigger indepen-
dent activities (denoted jobs), which may access shared data stored in
different shared data areas. Jobs are executed in a priority-based, non-
interruptable (at the same priority level), fashion on a single-processor
architecture, and the language lacks constructs for synchronization.

Until recently, the semantics for PLEX has been defined through
its implementation, but in previous works [Eri03, EL04], we have pre-

1 INTRODUCTION 2

sented a structural operational semantics (in the style used in [NN92])
for sequential execution of PLEX in the current single-processor archi-
tecture. Currently, Ericsson experiments with a shared-memory archi-
tecture equipped with a run-time system that automatically protects
the shared data though a locking scheme. The parallel semantics in
this report models the execution of PLEX on this architecture. The se-
mantics, which extends our previous work, is given in terms of state
transitions.

The experimental architecture (which in the remaining of this report
will be called the ”prototype”) is designed to be ”functionally equivalent”
with the single-processor system, and it executes the existing (sequen-
tial) software without modifications (i.e., without the addition of primi-
tives for synchronization). The approach taken to guarantee this ’equiv-
alence’ is a restricted execution model, which prevents some parts of the
programs to be executed concurrently.

A more aggressive parallelization would release the above restric-
tions and allow several threads to execute multiple instances of the
same code. But parallel execution also means that the language, most
likely, has to be extended with primitives for synchronization to pro-
tect shared data. The problem is the large amount of existing PLEX
code (approximately 20Mlines) which prevents re-writing of the entire
system. To keep the actual number of inserted synchronizations at a
minimum, we need criteria that ensures when parallel execution of the
current software is safe in the sense that functional equivalence is pre-
served. To ensure the correctness of such criteria, and of the program
analysis from which the criteria will be derived, the formal semantics of
this extended languages has to be considered.

The rest of this report is structured in the following way: related
work is covered in the following section (Section 2), and a brief introduc-
tion to the AXE telephone exchange system, as well as to the language
PLEX is given in Section 3. Section 4 describes our target architec-
ture, and Section 5 explains the different execution paradigms as well
as some additional concepts that will be of importance in Section 6, in
which the parallel semantics is presented. The work is summarized in
Section 7.

2 RELATED WORK 3

2 Related Work

PLEX is used in the telecom domain, which has particular demands
(concurrency, extreme reliability and availability, soft real-time require-
ments, etc.). In this domain a number of specialised programming and
specification languages are used, which have been formalized with dif-
ferent techniques. We will mainly relate to these here.

CHILL (the CCITT High Level Language) is an object-oriented lan-
guage with support for concurrency [IT99, Win00]. It was developed
within a denotational framework called the Vienna Development Method
(VDM) [IT82, BJ82], which is a specification method, that goes from ab-
stract notation to formal specification.

The concurrent and functional language ERLANG, developed by Er-
icsson, and used to program the AXD switching system [Däc00], has
been specified by a structural operational semantics as part of a larger
framework for formal reasoning about ERLANG programs [Fre01]. ER-
LANG is parallel by nature, and an experimental, multithreaded ER-
LANG implementation exists on which ERLANG programs can be di-
rectly executed without any modification [Hed98].

Estelle, LOTOS, and SDL are specification languages proposed by,
and used in, the telecom industry [Ard97]. The languages are used to
specify the behavior within, and between, different processes/components,
and they range from a graphical, flow chart-based representation (SDL),
to a more abstract, process algebraic style (LOTOS). The semantics of
the latest version of SDL, SDL-2000, is based on abstract state ma-
chines [GGP03], whereas the semantics for both Estelle, and LOTOS,
is modeled by transition systems where the meaning is given by their
computations [TG97, CS01].

PLEX is an event-based asynchronous language. There are several
event-based languages with a synchronous communication paradigm,
like SIGNAL [BGJ91]. However, their synchronous nature make them
guite different from PLEX, they are in general more declarative in na-
ture, and their existing semantics have a quite different style.

PLEX has unstructured jumps. This makes it awkward to define
a structural operational semantics for PLEX, and compositional rea-
soning becomes harder. However, Saabas and Uustalu [SU05] have re-
cently presented a compositional, natural semantics for a language with

3 AXE AND PLEX 4

jumps. This kind of semantics could probably be used for PLEX as well.

3 AXE and PLEX

In this section we will only give a brief description of the AXE telephone
exchange system, the language PLEX, and application modules (AM’s).
For a more thorough description, we refer to [EL02].

3.1 The AXE Telephone Exchange System

The AXE system, developed in its earliest version in the beginning of
the 1970’s, is structured in a modular and hierarchical way. It consists
of the two main parts: APT and APZ, where the former is the tele-
phony (or switching) part, and the latter is the control part. The original
structure of the system (main parts of it) is shown in Fig 1. Somewhere
around 1994-95, the concept of Application Modularity (AM) was inte-
grated into the system. This is discussed in Section 3.3

System Level 1

System Level 2

SubsystemCPS

AXE

APZ APT

 APT - Telephony/Switching part
 APZ - Control part including central and regional processors

as well as operating system
 CPS - Central Processor Subsystem

.

Figure 1: The (original) hierarchical structure of the AXE system.

The part of the system that is in focus for parallel processing is the
Central Processor Sub-system, which architecture is shown in Fig. 2.
In the current architecture1, the Central Processor Sub-system consists
of a Central Processor (CP) (which in turn consists of a single CPU and
additional software), and a number of Regional Processors (RP’s). Call

1Here, the ”current architecture” denotes the current single-processor architecture,
and not the parallel ”prototype” that will be in focus in the remaining of this report!

3 AXE AND PLEX 5

requests are received by the RP’s, and processed by the CP. The task of
an RP, and of the CP, is described as:

Regional Processor (RP): The main task of a regional processor is to
relieve the central processor by handling small routine jobs like
scanning and filtering.

Central Processor (CP): This is the central control unit of the sys-
tem. All complex and non-trivial decisions (such as call process-
ing) are taken in the central processor. This is the place for all
forms of non-routine work.

RP

RP

CPU

CP

AXE

Call request

Figure 2: Current (single-processor) architecture of the Central Processor
Sub-system.

3.2 PLEX: Programming Language for EXchanges

Programming Language for EXchanges, PLEX, is a pseudo-parallel and
event-driven real-time language developed by Ericsson in conjunction
with the first AXE version in the 1970’s. The language is used to pro-
gram the functionality in the Central Processor Sub-system, and be-
sides implementation of new functionality, there is also a large amount
of existing PLEX code to maintain. The language has a signal paradigm
as its top execution level, and it is event-based in the sense that only
events, encoded as signals, can trigger code execution. A typical event is
an incoming call request, see Fig. 2. Apart from an asynchronous com-

3 AXE AND PLEX 6

munication paradigm, PLEX is an imperative language, with assign-
ments, conditionals, goto’s, and a restricted iteration construct (which
only iterates between given start and stop values). It lacks common
statements from other programming languages such as WHILE loops,
negative numeric values and real numbers.

A PLEX program file (called a block) consists of several, independent
sub-programs, together with block wise scoped data, see Fig. 3. The sub-
programs can be executed in any order, and one or several sub-programs
constitutes a Job (which will be further discussed in Section 3.5). Due to
the independent sub-programs, it is more accurate to talk about the exe-
cution of a number of independent and ”parallel” jobs, than of the execu-
tion of the PLEX program file. However, the jobs are not executed truly
in parallel: rather, when spawned, they are buffered (queued), and non-
preemptively executed in FIFO order, see Figs. 6 (b) and 4 (a). Because
of the sequential FIFO order imposed, we term the language as “pseudo-
parallel” since externally triggered jobs could be processed in any order
(due to the order of the external signals). We also note that different
types of jobs are buffered, and executed, on different levels of priority,
and that jobs of the same priority are executed non-preemptively2. User
jobs (or call processing jobs), i.e., handling of telephone calls, are always
executed with high priority, whereas administrative jobs (e.g„ charging)
always are executed with low priority (and never when there are user
jobs to execute).

Blocks can be thought of as objects, and the subprograms are some-
what reminiscent of methods. However, there is no class system in
PLEX, and it is more appropriate to view a block as a kind of software
component whose interface is provided by the entry points to its sub-
programs. Data within blocks is strictly hidden, and there is no other
way to access it than through the sub-programs.

3.3 Application Modules

The AXE Source System is a number of hardware and software re-
sources developed to perform specific functions according to the cus-

2Since jobs on the same priority level executes in a non-preemptive fashion, there
are programmer guidelines that ought to be followed to prevent a job from executing an
un proportional amount of time.

3 AXE AND PLEX 7

 ENTRY POINT
PLEX Code

 EXIT POINT

Code

Code

Code

Code

COMMON
DATA AREA

PLEX program file (Block)

Sub-program

Figure 3: A PLEX program file, called a block, consisting of several sub-
programs.

Timeblock 1 block 3block 2

enter

send

exit enter

send

send

exit enter

enter

send

exit

signal 1

signal 2

signal put in
job queue

signal 5

signal put in
job queue

signal put in
job queue

signal 3

signal 4
exit

Figure 4: The ”pseudo-parallel” execution model of PLEX.

3 AXE AND PLEX 8

tomer’s requirements. It can be thought of as a ”basket” containing
all the functionality available in the AXE system. Over the years, new
source systems has been developed by adding, updating or deleting func-
tions in the original source system. But in the 1980’s, the development
of the AXE system for different markets (US, UK, Sweden, Asia, etc.)
has led to parallel development of the source system since functionality
could not easily be ported between different markets.

The solution to this increasing divergence was the Application Mod-
ularity (AM) concept, which made fast adaption to customer require-
ments possible. The AM concept specifically targeted the following re-
quirements:

• the ability to freely combine applications in the system,

• quick implementation of requirements, and

• the reuse of existing equipment.

The basic idea is to gather related pieces of software into something
called Application Modules (AMs). Different telecom applications, such
as ISDN, PSTN (fixed telephony), and PLMN (Public Land Mobile Net-
work), are then constructed by combining the necessary AMs. The idea
is described in Fig. 5, where it is also shown that different AMs can
be used in more than one application. The related pieces of software,
mentioned above, is the PLEX blocks (Section 3.2), which means that
an AM is constructed by combining the appropriate PLEX blocks, and
the application by combining the appropriate AMs.

The introduction of the AM concept ended the problem with parallel
development of different source systems. Instead, with AMs as building
blocks, the required exchange was constructed by combining the neces-
sary AMs into an exchange with the required functionality (i.e., with
the necessary applications).

3.4 Signals

In Section 1 we said that PLEX is event-based in the sense that only
events, encoded as signals, can trigger code execution. This encoding
of events as signals motivates our statement that PLEX has a signal

3 AXE AND PLEX 9

AXE

APTAPZ

Separate
telecommucination
applications

Aplication Modules (AMs)
shared between different
applications

ISDN PSTN PLMN

AM AMAMAMAMAM

Figure 5: The AM concept incorporated into the AXE system.

paradigm as its top execution level. Signals are externally defined lan-
guage elements for communication between different software units,
and as we said in Section 3.2 this communication is asynchronous.

Every signal that is sent in the system is assigned a priority level,
which is of importance when the signal is to be buffered, and it tells
the ”importance” of the source code that is triggered to execution by the
signal.

Signals are classified/characterized through combinations of differ-
ent properties, and from a semantical point of view, the main distinction
is between direct and buffered signals, Fig. 6. The difference is that
a direct signal continues an ongoing job (discussed in Section 3.5),
whereas a buffered signal spawns off a new job. A direct signal is in
this way similar to a jump (e.g. GOTO), and by using direct signals,
the programmer retains control over the execution. However, direct sig-
nals are normally only allowed to be used in very time-critical program
sequences, such as call set-up routines. Buffered signals, on the other
hand, are put in special (FIFO-)queues (called job buffers) when they
are sent from a job, and when that job terminates, the operating system
will fetch the first inserted buffered signal and start a new job, see Fig.
6. This means that after the sending of the buffered signal, the two, re-
sulting ”execution paths” are independent of each other, but there may
still be a ”sequencing issue”, though, as the jobs have to execute in the
order imposed by the corresponding Job-Tree. We informally define a

3 AXE AND PLEX 10

Job-Tree as the set of jobs originating from the same external signal,
and the subject will be further discussed in Section 5.1.1.

Execution

SEND
Signal-A

Execution
continues

EXIT

Block A

FIFO

Job Buffer

OS

ENTER
Signal-A

Execution

Block B

(1)

(2)
(3)

(4)Execution

SEND
Signal-A

Block A

ENTER
Signal-A

Execution
continues

Block B

(a) (b)

Figure 6: (a): a direct signal, ”similar” to a jump. (b):buffered signals:
Block A sends a buffered signal which is inserted at the end of the job
buffer (1). When Block A terminates, the control is transferred to the
OS (2), which fetches a new signal from the buffer (3) (Note: The signal
fetched at (3) does not have to be the same signal that was inserted at (1)
since the buffers have a FIFO-semantics.) The signal then triggers the
execution of Block B (4).

A second distinction is between single and combined signals. A com-
bined signal starts an activity which returns to the signal sending point
when finished: it could thus be seen as a method or subroutine call. A
single signal does not yield a return, and is thus (if direct) similar to
a GOTO statement, see Fig. 7. Note that a combined signal is always
direct, while the single signal may be buffered.

Unit A Unit B

A Single Signal

Unit A Unit B

Combined Signals

Figure 7: Single and combined signals.

Third, we also distinguish between external, and internal signals,
where the latter is issued from an ongoing job by a SEND statement.
External signals, on the other hand, are the signals that are sent from
an RP to the CP (e.g., as a result of a call request), see Fig. 2.

4 THE ARCHITECTURE 11

A final distinction can also be made between local and non-local sig-
nals, where the former is a signal that is sent between sub-programs in
the same block, and the latter between sub-programs in different blocks.

3.5 Jobs

In Section 3.2, we said that it is more accurate to talk about the execu-
tion of a number of independent and ”parallel” jobs, than of the execu-
tion of the PLEX program file, and in the preceding section we have seen
how jobs communicate and control other jobs through a kind of events
called signals. But what is a Job ?

A job is a continuous sequence of statements executed in the proces-
sor, starting with the execution of an ENTER statement for a buffered
signal and is terminated by the execution of an EXIT statement, and
we say that a job have a Single-Entry-Multiple-Exit semantics, since it
always have a single entry point but it may have multiple exit points.

An ENTER statement for a direct signal does not start a new job,
instead it continues an ongoing job.

A job is not limited to one sub-program, several sub-programs (in
different blocks) may form a job.

4 The Architecture

As we said in Section 1, the parallel semantics in this report models
the execution of PLEX on an experimental parallel architecture, but
before we discuss the underlying execution model that is modeled by the
semantics (which will be done in Section 5.4), we need to say something
about the parallel architecture.

The execution paradigms that are considered in Section 5.2 - 5.4,
all requires a shared memory architecture with support for Thread-
Level Parallelism (TLP). Examples of such architectures are Symmet-
ric Multiprocessors (SMP), Chip-Multiprocessors (CMP), and Simulta-
neous Multi-Threading processors (SMT), which means that this (i.e.,
the shared memory architecture in Fig. 8) will be the architecture as-
sumed by the semantics in Section 6. The parallel prototype uses a
locking scheme to protect a block from being concurrently accessed by
two different jobs. This introduces the risk of deadlocks. However, the

5 EXECUTION PARADIGMS 12

prototype has a mechanism to resolve this at runtime, and we will not
consider this further in this report!

Shared Memory (SM)

Bus or Crossbar

CPU CPU CPU. . .

Figure 8: The shared memory, multi-processor, architecture that is con-
sidered in this report.

5 Execution Paradigms

Before we explain the different execution models (Section 5.2 - 5.4) that
has been, and are, considered by Ericsson as possible execution paradigms
for parallel execution of PLEX, we will introduce some additional con-
cepts (Section 5.1) that are not found in [EL02, Eri03], and which are
of importance in Section 6 where we present the parallel semantics for
PLEX.

The material in Sections 5.2 - 5.4, are mainly collected from [Kjö03]
and [Kjö04].

5.1 Additional Concepts

We have already mentioned Job-Trees (Section 3.4), as well as Appli-
cation Modules AMs (Section 3.3), and in the following subsections we
will take a closer look at the Job-Tree concept (Section 5.1.1) as well as
a Job-Tree Source (JTS) (Section 5.1.2). We will also discuss how AMs
are combined into a running system (Section 5.1.3).

5.1.1 Job-Trees

In Section 3.5, we said that a job begins with an ENTER statement for
a buffered signal, and ends with an EXIT statement, and we also (in
Section 3.4) informally defined "the set of jobs that originates from the

5 EXECUTION PARADIGMS 13

same external signal" as a Job-Tree. The ’external signal’ is a (buffered)
signal sent from a Job-Tree Source (which is explained in Section 5.1.2),
and the ”root” of the job-tree is the job J1 started by this signal. The
job-tree derived from J1 is the least tree such that3

• J1 is a node in the tree, and

• For every node (job) Ji in the tree that spawns off a new job Jk

(which is done by the sending of a buffered signal, Section 3.4); Jk

is also a node in the tree and there is an edge from Ji to Jk.

This means that a job-tree is the set of jobs, where the first job starts
the others (by sending buffered signals). The job-tree terminates when
all descendant jobs have terminated, i.e., when all jobs in the job-tree
have executed ’their’ EXIT statement without any preceding buffered
signal sending statements. To ’visualize’ the concept of job-trees, we
complement Fig. 4 (showing the execution model of PLEX) with the
corresponding job-tree as can be seen in Fig. 9.

Timeblock 1 block 3block 2

enter

send

exit enter

send

send

exit enter

enter

exit

Signal 2

Signal 2
put in job buffer

Signal 3

Signal 4 exit

Signal 4
put in job buffer

Signal 3
put in job buffer

(a)

external
signal 1

(b)

external
signal 1

J1

J2

J3 J4

Figure 9: (a) The ”pseudo-parallel” execution model of PLEX (repeated
from Fig. 4, together with the corresponding job-tree (b).

Earlier in this report (Section 1) we said that the approach taken to
achieve functional correctness was a restricted execution model which

3Note that we in this section give a general definition of a job-tree in terms of a
graph. In Section 6 we will however use a list to represent a job-tree, since we need to
preserve the order between individual jobs.

5 EXECUTION PARADIGMS 14

prevents some parts of the software to be executed in parallel. Those
parts are jobs from the same job-tree, which are executed in the same
sequential order as in the single-processor architecture. This restric-
tion, and the way it is modeled, is discussed in Section 6.

5.1.2 Job-Tree Source

As we saw in the preceding section, a Job-Tree Source (JTS) is of im-
portance when discussing job-trees since the signals from a JTS starts
a new job-tree. JTS are mainly regional processors (RPs), Time Queues
and Job Tables. Time Queues are special buffers for signals that are
released (i.e., sent) at a specified time, whereas the Job Table is for jobs
executed at short periodic intervals, e.g., incrementing clocks for time
supervision. (For further reading, see [EL02].)

5.1.3 An AM Based System

In Section 3.3, we introduced the AM concept, and before we start de-
scribing the different execution paradigms in the following sections, we
will say something about an AM based system (and we also recall from
Section 3.3 that an AM consists of one, or several, PLEX blocks).

An AM based system, consists of the AMs (which forms the appli-
cations) together with some common resources. The common resources
are collected into something called the Resource Module Platform, or
RMP for short. As can be seen in Fig. 10, communication between
different AMs is performed via something called AM protocol, whereas
communication between an AM and the RMP is performed via ordinary
signals (as described in Section 3.4).

AM AM
AM Protocol

RMP

Ordinary
Signals

Ordinary
Signals

Figure 10: Illustration of An AM based system (from [Kjö04]).

5 EXECUTION PARADIGMS 15

5.2 FD: Functional Distribution

Functional Distribution, or FD for short, is an execution paradigm where
the load sharing among the threads are achieved by pre-allocating each
block to one of the threads, i.e., to distribute the functions. Each block
does only exist in one instance, and once a block is allocated to a specific
thread, it will always be executed by that thread. The term FD-mode
refer to execution according to the FD principles (which is illustrated in
Fig. 11).

In general, software that is to be executed in FD-mode may have to
be treated in certain ways to preserve functional correctness since there
may be situations when a specific (sequential) order, among parts of a
program, is assumed.

Functional Distribution

CP

Block
A

Block
B

Block
C

CP

Block
D

Block
E

Block
F

Block
A

Block
B

Block
C

Block
D

Block
E

Block
F

Single CP

CP

Figure 11: Example (from [Kjö04]) on the FD principles: blocks, that in
the single-pro. case is executed on the same CP, is in FD distributed over
the available resources.

5.3 CMX: Concurrent Multi-eXecutor

In contrast to the FD-mode execution, where each block is pre-allocated
to one of the threads, no block is pre-allocated in CMX-mode. Instead,
each block can be executed by any of the threads (as illustrated in Fig.
12). This means that since any of the threads can execute any block, it
may very well be the case that two threads access the same block con-
currently. To prevent data interference in such situations, lock handling
is used, i.e., if a thread wants to execute a specific block, it must first
acquire the corresponding lock, which on the other hand, may cause

5 EXECUTION PARADIGMS 16

dead-locks if nothing is done to prevent it.

Block
A

Block
B

Block
C

Block
D

Block
E

Block
F

Memory

Thread Thread Thread Thread

Figure 12: The CMX paradigm, where any of the threads can execute
any of the blocks that resides in memory.

5.4 CMX-FD

The current execution model for parallel execution of PLEX, and the
one modeled in Section 6, is CMX-FD. As hinted by the name, CMX-
FD is the combination of the previous described execution paradigms
FD and CMX. A prerequisite for the approach is an AM based system,
but before we discuss the main ideas of the CMX-FD approach, we will
make some additions to the AM concept (and the AM based system) that
we discussed in Section 3.3 (and 5.1.3).

Now that we have discussed both Functional Distribution (FD), Sec-
tion 5.2, and CMX, Section 5.3, we can add to the AM concept that
an AM mainly consists of FD-blocks, together with a minor number of
CMX-blocks, where the first type is allocated according to the FD prin-
ciples, while the second type can be executed by any thread (i.e., accord-
ing to the CMX principles). The same is true for the Resource Module
Platform (RMP), i.e., that it consists of both FD- and CMX-blocks. The
reason behind the different types of blocks is that some blocks (the CMX
blocks) are reachable from different threads via a direct-signal4 inter-
face, which means that a signal to these blocks continues an ongoing job,
and since a job is not allowed to leave the thread that executes it (Sec-
tion 6), it must be possible for any thread to execute these blocks, which
implies the shared memory. It should be stated that the CMX-mode

4These direct signals are in almost every case combined signals. (The different kind
of signals was discussed in Section 3.4.)

5 EXECUTION PARADIGMS 17

would not be necessary if the blocks weren’t reachable from different
threads via direct signals, i.e., if all signals between different blocks
were buffered.

The main idea behind the CMX-FD approach, illustrated in Fig.
13, is simply based on execution of as many blocks as possible in FD-
mode, whereas the remaining blocks are executed in CMX-mode. Like
in the FD-approach (Section 5.2), pre-allocation is used, but in CMX-FD
it is the AMs, or more correct the FD-parts of the AMs, that are pre-
allocated: each AM (i.e., the FD-part) is allocated to a thread according
to a scheme given as initial configuration data (and, two or more AMs
can be allocated to the same thread). The FD-mode blocks will always
be executed by this thread, while we recall that CMX-mode blocks can
be executed by any thread. However, with Home thread for a specific
CMX-block, we denote the thread that its corresponding AM has been
allocated to. This information will be of importance in Section 6.4 when
we specify the semantics for buffered signals.

AM Protocol

CMX-mode

FD-mode

AM

Block
D

Block
E

Block
F

Ordinary
Signals

Ordinary
Signals

Block
G

Block
H

Block
I

Block
J

Block
K

Block
L

RMP

FD-mode

FD-mode

AM

Block
A

Block
B

Block
C

Figure 13: Illustration of the CMX-FD execution paradigm.

6 THE SEMANTICS 18

6 The Semantics

We begin this section with the abstract syntax for the modeled state-
ments, together with some necessary definitions (Section 6.1), before
specifying the state of the system (Section 6.2), and the parallel seman-
tics (in the remaining sections).

6.1 Abstract Syntax

The semantics for PLEX will be given in terms of a semantics for the
language Core PLEX, which is a simplified version of PLEX intended to
capture its essential properties, namely the asynchronous communica-
tion, and the handling of jobs. Its basis is a simple imperative language
with assignments, conditionals, and unstructured GOTO’s. The language
also has a SEND statement to send direct or buffered signals, and an
EXIT statement to terminate the current job.

Although simplified, it is actually possible (as we will show) to ex-
press many of the omitted PLEX statements in terms of already spec-
ified Core PLEX statements. We may therefore view the modeled lan-
guage as the ”Core” of PLEX.

Notable omissions from the real PLEX language, not modeled in
terms of other Core PLEX statements, are the statements for signal
reception (see below).

For modeling reasons, we have also introduced a statement not present
in real PLEX; the SKIP-statement with its standard semantics

s
SKIP−−−→ s

i.e., the execution of SKIP from an initial state s results in the same
state s.

The abstract syntax for the modeled language is given in Table 1.
Following [NNH05], we are using labeled statements, since we need
labels to model program points to where control can be transferred. We
assume that each label occurs only once which means that the programs
are uniquely labeled, and since this is the case, we can, for a given Core
PLEX program S, define the function Stmt : Lab → Stmt ∪ BExp by
Stmt(l) = S′ (or b) precisely when S contains the statement [S′]l (or
condition [b]l). Since the programs are uniquely labeled, we can also
define the inverse to the function S, like Stmt−1 : Stmt ∪ BExp → Lab

6 THE SEMANTICS 19

n ∈ Num, numerals
x ∈ Var, program variables
l ∈ Lab, labels
a ∈ AExp, arithmetic expressions
b ∈ BExp, boolean expressions
S ∈ Stmt, statements
opa ∈ arithmetic operators
opr ∈ relational operators
a ::= x | n | a1 opa a2

b ::= a1 opr a2

data ::= {Var|Num}k⊥25−k, 1 ≤ k ≤ 25
S ::= [x := a]l | S1; S2 | [GOTO label]l | IF [b]l THEN S1 ELSE S2 |

[SEND signal]l | [SEND signal WITH data]l | [EXIT]l |
[SEND cfsig WAIT FOR cbsig IN label]llabel |
[SEND cfsig WITH data WAIT FOR cbsig IN label]llabel |
[RETURN cbsignal]l | [RETURN cbsignal WITH data]l |
[TRANSFER signal]l | [TRANSFER signal WITH data]l

Table 1: The abstract syntax for Core PLEX.

6 THE SEMANTICS 20

In Section 3.2, we said that the only way to access the code in a
block is through its sub-programs, and since the entry points to the sub-
programs are the signal receiving statements, we will simply regard a
signal as an entry label to a block (and omit the statements for signal
reception). Therefore, we define

ELab ⊆ Lab

as the set of signal labels. We need to distinguish between direct signals,
and buffered signals, and we must also distinguish whether the latter
are internal or external. To that end, we partition ELab into three
disjoint sets Dir, Buf , Ext for the respective labels. Furthermore, we
partition Buf into the disjoint sets LevA, and LevB, in order to capture
the different priorities among the signals. (Recall from Section 3.4 that
every signal is assigned a priority level.)

When defining the state transitions for the semantics, it then helps
to have a flow graph-oriented description which defines successor labels.
Therefore, we define three functions succ, succT , succF from labels to la-
bels. They are defined in the style of [NNH05], through the three func-
tions init : Stmt → Lab, final : Stmt → P (Lab), and Flow : Stmt →
P (Lab × Lab) in Table 2. Additionally, we also need to define the no-
tion of Interflow, IF, in order to define Flow(S) for the combined signal
sending statement.

Definition 1 For any Core PLEX program S, the partial functions succ,
succT , succF : Lab → Lab are defined by:

• succ(l) = l′ if (l, l′) ∈ Flow(S) and (l, l′′) ∈ Flow(S) =⇒ l′′ = l′,
otherwise undefined,

• succT (l) = init(S1) if IF [b]l THEN S1 ELSE S2 is a statement in S,
otherwise undefined,

• succF (l) = init(S2), ditto,

Definition 2 For any Core PLEX program S, Interf low, is defined by:

• IF = { (l, cfsig, l′, label) | S contains [RETURN cbsig]l
′

as well as [SEND cfsig WAIT FOR cbsig IN label]llabel}

6 THE SEMANTICS 21

S init(S) final(S) Flow(S)
[SKIP]l l {l} ∅

[x := a]l l {l} ∅

S1; S2 init(S1) final(S2) flow(S1) ∪ flow(S2) ∪
{(l, init(S2))| l ∈ final(S1)}

[GOTO label]l l ∅ (l, label)

IF [b]l THEN S1 ELSE S2 l f inal(S1) ∪ final(S2) flow(S1) ∪ flow(S2) ∪
{(l, init(S1)), (l, init(S2))}

[SEND signal]l l ∅ (l, signal)
(signal ∈ Dir)

[SEND signal]l l {l} ∅
(signal ∈ Buf)

[SEND cfsig WAIT FOR l ∅ (l, cfsig) ∪ (l′, label)
cbsig IN label]llabel l′ = Lab(RETURN cbsig)

[RETURN cbsignal]l l ∅ {(l, label)|(l′, l′′, l, label) ∈ IF}

[TRANSFER signal]l l ∅ (l, signal)

[EXIT]l l ∅ ∅

Table 2: Definition of init, final, and Flow. Note that since it is irrel-
evant for the definitions of the above functions whether or not a signal
carry any data, we have omitted those cases from the above table.

6 THE SEMANTICS 22

Further on, we recall that the code (and the data) is structured in
blocks (Section 3.2), and we assume that the program under consider-
ation consists of β blocks. We then take each integer 1, . . . , β to be the
identifier for a unique block, and we define two functions

BV : Var → {1, . . . , β}
BL : Lab → {1, . . . , β}

which decide, for each program variable and program part, respectively,
which block it belongs to. BV and BL induce partitionings of Var and
Lab, respectively. Furthermore, we impose the following constraints
to ensure that data accesses do not take place across block borders,
and that program control is not transferred to some other block except
through sending a signal. For all labels l in a Core PLEX program,

Stmt(l)
= SEND signal =⇒ BL(succ(l)) = BL(l), if succ(l) defined
Stmt(l) ∈ BExp =⇒ BL(succT (l)) = BL(succF (l)) = BL(l)
∀x ∈ FV (Stmt(l)).BV (x) = BL(l)

Here, FV (S) is the set of (free) variables in statement S.
Finally, we recall from Section 5.4 that each block is pre-allocated to

one of the threads. For a system with β blocks, and k threads, we define
the function

Alloc : {1, . . . , β} → {1, . . . , k}
which for a given block determines which thread it has been allocated
to. (We will use this information in Section 6.4 when discussing the
semantics for the signal statements.)

6.2 The State of the System

Since the execution of statements are modeled as state transitions, and
we recall (from Section 1) that the state we model is determined by the
current parallel implementation of the real PLEX, as well as by the
underlying architecture/execution model, we devote this section to the
state of the system.

Whereas the sequential semantics only needed to consider ’one’ state5;

〈VSC, σ, JBA, JBB〉
5In [Eri03], we defined the state as the tuple 〈VSC, σ, JBA, JBB, JBC, JBD, JBR〉,

but since we will only consider execution on the traffic handling level (B) in this report,
we omit those parts that don’t effect this level.

6 THE SEMANTICS 23

the parallel semantics will need to consider ’several’ states simultane-
ously; for a system with k threads, each parallel state is a k+1-tuple
〈s1, . . . , sk, sG〉, where each si (i = 1, . . . , k) is a local state and sG is a
global (or shared) state. The states we consider will have the following
appearance:

s1 = 〈VSC1, JBA, JBB1, Locks1,F1, δ1〉
∈ Lab× [(ELab, data)] × [(ELab, data)] × P (LVar) × [[ELab]] × [Lab]

si = 〈VSCi, JBBi, Locksi,Fi, δi〉
∈ Lab× [(ELab, data)] × P (LVar) × [[ELab]] × [Lab], i = {2, . . . , k}

sG = 〈σ, σL〉 ∈ (Var → N) × (LVar → {0, 1})

This models a system where each local state si can be modified only
by thread i, but where the global state can be modified by any of the
threads. The reason for the explicit specification of local state s1 is that
the corresponding thread (T1) is the only thread that are allowed to ex-
ecute jobs of priority A (urgent operating system jobs) as well as of pri-
ority C/D (administrative jobs). Any other thread are only allowed to
execute jobs of priority B (traffic handling). Also note that since the
local part of the state s is associated with the threads, instead of the
processors, we can leave the actual number of processors unspecified,
and neither do we have to consider how many threads each processor
executes. The remaining of this section will be devoted to examine each
of the components in the above state.

• We recall (from the previous section) the unstructured nature of
the language (the use of GOTO’s). For this reason, we have made
the program counter explicit in the state; VSC is a virtual state-
ment counter which points to the current statement to execute,
i.e., VSCi holds the local program counter for thread i.

When VSC receives the value ⊥, we denote a state which does not
map to any statement. The corresponding thread goes idle, and
waits for a new job to execute.

• JBx, where x = {A, B} are sequences of entry (signal) labels to
model the job buffers. We denote the set of finite sequences, with
elements from some set X, by [X], the empty sequence by ε, x : s

denotes the sequence with head x and tail s, and s : x denotes the

6 THE SEMANTICS 24

sequence with the first elements from s and last element x.
The possible transmission of signal data is captured in the job
buffers. We recall, from Table 1, that the signal data is 1 to 25
variables (or constant values) possibly followed by a number of ⊥
(undefined values). The number 25 is equal to the number of phys-
ical registers available.

• the variables in the system are divided into two categories

Var = RM ∪ DS such that RM ∩ DS = ∅

to reflect that some variables (RM) are only used for temporary
storage of data that are local to a job, whereas the other class of
variables (DS) is the shared data that can be accessed by any job
that enters the block. The scope rules for the data implies that the
DS can be further divided into the following disjunct sets

DS = DS1, . . . , DSβ such that DSi ∩ DSj = ∅ for any i
= j

The contents of the memory, is described by the state σ, and a
single variable x by σ(x). To restrict σ to only the temporary vari-
ables (for instance) we will use the notation σ|RM . In some cases a
temporary variable will be treated as containing an ”empty” value,
i.e., its value is unknown and can’t be used. We will denote this
”absence” of a value with ⊥.

The notation σ|RMi �→ data will later in this report be used to de-
note transfer of the signal data into the temporary storage, and it
is used as an abbreviation for

{xα �→ dataα | xα ∈ RMi ∧ 1 ≤ α ≤ 25}

• In Section 4, we said that the parallel ’prototype’ uses a locking
scheme to protect a block from being concurrently accessed by two
different jobs (from different job-trees). Therefore, we introduce
the set LVar, which is a set of β binary lock variables L1, . . . , Lβ,
distinct from any variables in Var. In the ’prototype’, every block
is guarded by one specific lock, but since one lock may guard sev-
eral blocks, Li may equal Lj for some i and j. When a job is about
to execute code in a specific block, it will acquire the associated

6 THE SEMANTICS 25

lock, and during its execution, a job will collect one or several locks.
Thus, in the local state si, Locksi is the set of locks currently ac-
quired by i. Only the thread that holds Lγ can access block γ. For
the global state sG, σL holds the current state of the lock variables:
σL(Lγ) = 1 exactly when Lγ ∈ Locksi for some i.

• Earlier (Section 5.1.1) we said that jobs from the same job-tree are
executed in the same sequential order as in the single-processor
case, which implies that we need to keep track of the different job-
trees. A complicating factor is that at the termination of a job, the
corresponding job-tree might migrate to another thread. To model
this, the job-trees are made explicit in the program state

– F is a list of job-trees, where each job-tree is a list of jobs. For
each job-tree [sig : T] holds that sig always is executed before
any other job in T , as can be seen in Section 6.6. (The creation
of a job-tree is captured in Section 6.6 as well.) The job-trees
in Fi might have been generated at other threads, but will
continue their execution on thread Ti.

The basic elements (signals) are always the same in JBBi and
Fi, but where each JBB is a list of signals, is the correspond-
ing F a list of lists of signals. The purpose is to collect each
job-tree in JBBi in a separate list in Fi.

– The first element of Fi will always be the job-tree currently
executing on thread Ti.

– To denote the removal of job-tree JT from F , we will write
F - JT , and define the operator - on lists in the following way

[] − l = []
l − [] = l

a : l − a : l′ = l − l′

a : l − a′ : l′ = a(l − a′ : l′)
a
= a′

• Finally, when specifying the semantics for a combined signal, we
must ensure that we are able to maintain the proper nesting of
send, and return points (see Section 3.4, and Fig. 7). We there-
fore add the context information δ to each local state. The idea is

6 THE SEMANTICS 26

simply to maintain a list of ’return-labels’ where we ”push” the cur-
rent label when sending the combined forward signal, and ”pop” it
when sending the combined backward signal.

In the following sections, the semantics for Core PLEX is given in
terms of transitions rules from state to state. For each rule we omit
those parts of the state that are not modified by the transition, which
typically means that only the local part si, for some thread i, and the
global part sG are visible in the transition rules. The transitions have
the form

s
S, i−−→ s′

for a transition that affects the local memory of thread i, and where
Stmt(VSCi) = S (except for the rules, modeling the arrival of an external
signal, as well as the rule for starting a new job, whose transitions are
labeled with ε, see Section 6.6). When specifying the semantics, we will
only consider the general case; execution on the Traffic handling level
(priority B). The reason is that these are the jobs that are executed in
parallel.

In an initial start up phase, the state would have the following con-
tents:

s1 = 〈⊥, ε, ε, ∅, ε, ε〉
si = 〈⊥, ε, ∅, ε, ε〉, i = {2, . . . , k}
sG = 〈σ|RM �→ ∅|DS �→ Υ, {Lγ �→ 0 | Lγ ∈ σL}〉

The initial state expresses that the local parts of the state are empty,
i.e., the VSCi does not map to any statement; the temporary storage
(RMi) is empty; the are no signals in the JBBi job-buffer (which we re-
call is modeled as a list of signals); and there are no locks collected (as
indicated by ∅ at the place for Locksi). Job buffer A is empty as well,
and each lock Lγ is available (i.e., no block is locked). The values of the
variables in the Data Store (DS) are provided by the programmer, or
loaded from external storage depending on if the system is re-started
or not, and also on the different types of the variables. We will not dis-
cuss this further (instead we refer to [EL02] where this is discussed in
more detail) more than to say that the variables in the DS always have
some initial values Υ. Fi contains an empty value since no job has been
started yet, and consequently there are no job-trees built either. This
goes for δi as well, i.e., since no jobs has been executed, there are no

6 THE SEMANTICS 27

context information available.

6.3 The Semantics for the Basic Statements

Starting in this section, we will specify the semantics for parallel exe-
cution of Core PLEX in the architecture/execution model that was de-
scribed in Section 4 and 5.4. We begin with what we call the basic
statements, i.e., assignments6, jump-statements, conditionals, and it-
erations, and we continue with the semantics for the signal statements
in Section 6.4.

If nothing else is stated, the transitions will be given for thread Ti

where i = {2, . . . , k}. The corresponding transitions exist for T1 as well.
However, we have chosen not to show them since they are almost iden-
tical (except for JBA in the local state s1).

〈VSCi, JBBi, Locksi, Fi, δi, 〈σ, σL〉〉
x:=a, i−−−−→

〈succ(VSCi), JBBi, Locksi, Fi, δi, 〈σ[x �→ A[[a]]σ], σL〉〉

〈VSCi, JBBi, Locksi, Fi, δi, 〈σ, σL〉〉
x:=a, i−−−−→

〈succ(VSCi), JBBi, Locksi, Fi, δi, 〈σ[x �→ ST [[st]]σ], σL〉〉

We continue with the ”ordinary” IF-THEN-ELSE construct

〈VSCi, JBBi, Locksi, Fi, δi, 〈σ, σL〉〉
IF b THEN S1 ELSE S2, i−−−−−−−−−−−−−−−→

〈succT (VSCi), JBBi, Locksi, Fi, δi, 〈σ, σL〉〉

if B[[b]]σ = tt

6Obviously, in any kind of assignment, the types of the variables need to match each
other. We will assume that this is the case (and rely on that the compiler detects any
kind of violation to this).

6 THE SEMANTICS 28

〈VSCi, JBBi, Locksi, Fi, δi, 〈σ, σL〉〉
IF b THEN S1 ELSE S2, i−−−−−−−−−−−−−−−→

〈succF (VSCi), JBBi, Locksi, Fi, δi, 〈σ, σL〉〉

if B[[b]]σ = ff

We also note that there is a ”shortened” version of the IF-THEN-ELSE

construct; IF b THEN S1. However, this statement can be expressed in
terms of the above specified IF-THEN-ELSE statement if we take

S2 = SKIP

The IF statement are followed by the GOTO statement, which could
be both conditional and unconditional. The semantics for the uncondi-
tional GOTO is specified as

〈VSCi, JBBi, Locksi, Fi, δi, 〈σ, σL〉〉
GOTO label, i−−−−−−−−→

〈succ(VSCi), JBBi, Locksi, Fi, δi, 〈σ, σL〉〉

For the conditional GOTO statement, IF b GOTO label, we note that with

S1 = GOTO label, and S2 = SKIP

this statement, similarly to the above ”shortened” IF-THEN-ELSE con-
struct, can be expressed in terms of the already specified
IF b THEN S1 ELSE S2 statement!

Next, we have the statement for selection (CASE) which in many
ways are similar to the SWITCH statement in C. The CASE statement
has the general form

CASE expression IS {WHEN choice DO S}+ OTHERWISE DO Sn

where the {WHEN choice DO S}+ part can be repeated any number of
times. When used by the programmer, the statement is written in the
following manner;

6 THE SEMANTICS 29

CASE expression IS WHEN choice1 DO S1

WHEN choice2 DO S2

. . .
OTHERWISE DO Sn

and similarly to the above specified conditional GOTO-, and the short-
ened IF-statements, we can express the CASE statement in terms of the
IF-THEN-ELSE statement in the following way;

IF [expression = choice1]l THEN S1 ELSE S
′
2, where

S
′
2 = IF [expression = choice2]l

′
THEN S2 ELSE S

′
3, and

S
′
n-1 = IF [expression = choicen-1]l

′′
THEN Sn-1 ELSE Sn

The last rules in this section is concerned with the different iteration
statements that are available in PLEX. From [Eri03], we know that
the well known While statement is missing in PLEX. The main reason
is that this construct may give rise to unpredictable execution times,
something that should be avoided in a Real-Time system7. Instead,
PLEX offers three different statements for iteration which are all used
for scanning files or indexed variables between given start and stop val-
ues.

The general form of the first statement, ON, is one of the following

ON pointer/variable FROM expression1 UPTO expression2 DO S

ON pointer/variable FROM expression1 DOWNTO expression2 DO S

where the statement S is executed a number of times (i.e., until expression1

equals expression2). And similar to some of the discussed statements
above, we can express these statements in terms of already specified
statements. With the assumption that i is a variable not already used
by some code, we can re-write the first statement in the following way

7The AXE system has been classified as a soft Real-Time system by Arnström et. al
in [AGG99].

6 THE SEMANTICS 30

i = expression1

LFalse) IF i = expression2 THEN GOTO LTrue

S

i = i+1
GOTO LFalse

LTrue) remaining statements

The re-writing for the second case is analog, simply replace i = i+1 with
i = i-1 in the above code. This re-writing does in fact mimic the behavior
of a standard compiler generating intermediate code for a corresponding
WHILE loop8.

The second iteration statement, FOR ALL, which iterates from expression1

down to expression2 (which can be omitted if it is 0)

FOR ALL pointer/variable FROM expression1 UNTIL expression2 DO S

is expressed in the same way as the ON . . .DOWNTO . . . statement;

i = expression1

LFalse) IF i = expression2 THEN GOTO LTrue

S

i = i-1
GOTO LFalse

LTrue) remaining statements

The last statement for iteration, FOR FIRST, is similar to the FOR

ALL statement, except that the loop is aborted as soon as the conditional
part is fulfilled.

FOR FIRST pointer/variable FROM expression1 UNTIL expression2 WHERE

condition IS CHANGED TO expression3 DO S

The FOR FIRST statement is expressed as:

i = expression1

LStart) IF i = expression2 THEN GOTO LDone

IF variable = expression3 THEN GOTO LNext

i = i-1
GOTO LStart

LNext) S

LDone) remaining statements

8See for instance [ASU86]

6 THE SEMANTICS 31

6.4 The Semantics for the Signal Statements

Before we continue with the semantics for the different signal state-
ments, we recall (from Section 6.1) that we regard a signal as an entry
label to a block, and that we have defined ELab ⊆ Lab as the set of sig-
nal labels. Further more, ELab has been partitioned into the disjoint
sets Dir, Buf , Ext in order to distinguish between direct, buffered, and
external signals.

Regarding the receiver of a specific signal (i.e., the receiving thread),
the following applies9:

Direct signals: since a job is not allowed to leave the thread that
starts executing it (which further motivates our decision to asso-
ciate the local parts of the state s with the threads, and not with
the processors, as we did in Section 6.2), the signal sending state-
ment, and the code that is executed as a result of the signal send-
ing, will always be executed by the same thread.

Buffered signals: for buffered signals the situation is slightly differ-
ent since we have to consider if the receiving block is an FD-mode
or a CMX-mode block. Since FD-mode blocks always are executed
by the thread that they were allocated to (see Section 5.4), a buffered
signal to an FD-mode block will be received by this thread, i.e.,
the signal is placed in the job buffer associated with the thread in
question.

To answer the question of which thread that receives a buffered
signal sent to a specific CMX block, we have to point out that there
are three different types of CMX-mode blocks, where the type of
the block determines where the signal is to be buffered. Which
buffer that is to receive the buffered signal (which also means that
the corresponding thread will execute the block) is given by Table
3, where we also see when information about the Home thread for
a given CMX-mode block (which we discussed in Section 5.4) is of
importance.

9We recall (Section 3.4) that from a semantical point of view, the main distinction is
between direct and buffered signals; a direct signal continues an ongoing job whereas a
buffered one spawns off a new job.

6 THE SEMANTICS 32

Buffered signal sent to: Buffered signal received by:
CMX-mode block, Type-1 buffer associated with the sending

thread

CMX-mode block, Type-2 buffer associated with the Home thread

CMX-mode block, Type-3 buffer associated with thread as speci-
fied by initial configuration data.

Table 3: Receiving buffers for buffered signals to CMX-mode blocks.

As we have seen, a buffered signal will be executed either by the
thread its corresponding block has been allocated to (in case of an
FD-mode block, or a CMX-mode block of Type 2), the thread that
sends the signal (in case of CMX Type 1), or by the thread specified
in the configuration data (CMX Type 3). This means that as soon
as we know the execution mode of the receiving block we will also
know which thread that will execute the buffered signals sent to
that block. Therefore, we define the function

Type : {1, . . . , β} → {FD,CMX1, CMX2, CMX3}

which for a given block determines the execution mode for the
same block.

Now, since we can determine both the execution mode as well as
the thread a given block has been allocated to, we can determine
the receiver of any buffered signal (i.e., the thread that will exe-
cute the signal). To do this, we define the function

Receiver : ELab → {1, . . . , k}

in the following way

Receiver(signal) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Alloc(BL(signal)) if Type(BL(signal))=FD

i if Type(BL(signal))=CMX1

Alloc(BL(signal)) if Type(BL(signal))=CMX2

Υ if Type(BL(signal))=CMX3

where i = id of the sending thread, and Υ = value specified in con-
figuration data.

6 THE SEMANTICS 33

However, we must emphasize that a buffered signal (of priority B)
sent from thread Ti always is buffered in Tis own job buffer, at a
first step, before the signal is moved to a job buffer according to the
above scheme. The reason is the restricted execution model (which
we discussed in Section 5.1.1) where jobs from the same job-tree
are prevented from being executed concurrently. We will later in
this section (in the rules for sending a buffered signal), and in
Section 6.5, see how we deal with the described restrictions.

Finally, the handling of lock variables in the transitions models the lock
handling in the parallel ’prototype’. The transitions for sending a direct
signal attempt to transfer control to a possibly new block, but will not
be enabled unless the corresponding lock is free. In the transition, the
executing thread will then atomically take the lock. For the termination
of a job (EXIT), the transitions are divided in two parts: one transition
for EXIT which releases all the locks held by the thread, and one ’job’-
transition that can succeed when the lock of the block is free. The effect
of this is that locks are successively collected by a job, and then released
all together when the job terminates.

With the above discussion, we are ready to approach the semantics
for the signal sending statements, and we start with the semantics for
the single10 signals

〈VSCi, JBBi, Locksi, Fi, δi, 〈σ, σL〉〉
SEND signal, i−−−−−−−−→

〈signal, JBBi, Locksi ∪ {Lγ}, Fi, δi, 〈σ|RMi �→ ⊥, σL[Lγ �→ 1]〉〉

if signal ∈ Dir, γ = LB(signal), (σL(Lγ) = 0 ∨ Lγ ∈ Locksi)

〈VSCi, JBBi, Locksi, Fi, δi, 〈σ, σL〉〉
SEND signal WITH data, i−−−−−−−−−−−−−−−→

〈signal, JBBi, Locksi ∪ {Lγ}, Fi, δi, 〈σ|RMi �→ data, σL[Lγ �→ 1]〉〉

if signal ∈ Dir, γ = LB(signal), (σL(Lγ) = 0 ∨ Lγ ∈ Locksi)

10The single signals do not, in contrast to the combined signals, require a reply. For
a discussion about the different signal properties, see Section 3.4.

6 THE SEMANTICS 34

Before we continue, we recall (from Section 3.2) that there are dif-
ferent priorities among the jobs, and in Section 6.5 we will discuss how
we have to consider ongoing activities in the system when a new job is
to be started (i.e., when a buffered signal is to be fetched from a buffer).

The following rules deal with the sending of a buffered signal. The
first two cases deals with the sending of a priority A signal, which is
immediately inserted in JBA of s1. (Note that we in this case have
to consider two local states; s1, and si.) The last two cases are the
general cases, i.e., a signal of priority B inserted at JBBi of si (where
i = {2, . . . , k}).

We would also like to stress that the statement for sending a buffered
signal is currently subject to change. The proposed change is discussed
in Section 6.4.1.

〈s1, . . . , si, . . . , 〈σ, σL〉〉
SEND signal, i−−−−−−−−→ 〈s′1, . . . , s′i, . . . , 〈σ, σL〉〉

where s1 = 〈VSC1, JBA, JBB1, Locks1, F1, δ1〉
si = 〈VSCi, JBBi, Locksi, Fi, δi〉
s′1 = 〈VSC1, JBA : (signal,⊥), JBB1, Locks1, F1 : [signal], δ1〉
s′i = 〈succ(VSCi), JBBi, Locksi, Fi, δi〉

if signal ∈ Buf , signal ∈ LevA

〈s1, . . . , si, . . . , 〈σ, σL〉〉
SEND signal WITH data, i−−−−−−−−−−−−−−−→ 〈s′1, . . . , s′i, . . . , 〈σ, σL〉〉

where s1 = 〈VSC1, JBA, JBB1, Locks1, F1, δ1〉
si = 〈VSCi, JBBi, Locksi, Fi, δi〉
s′1 = 〈VSC1, JBA : (signal, data), JBB1, Locks1, F1 : [signal], δ1〉
s′i = 〈succ(VSCi), JBBi, Locksi, Fi, δi〉

if signal ∈ Buf , signal ∈ LevA

6 THE SEMANTICS 35

〈VSCi, JBBi, Locksi, [T] : Fi, δi, 〈σ, σL〉〉
SEND signal, i−−−−−−−−→

〈succ(VSCi), JBBi : (signal,⊥), Locksi, [T : signal] : Fi, δi, 〈σ, σL〉〉

if signal ∈ Buf , signal ∈ LevB

〈VSCi, JBBi, Locksi, Fi, δi, 〈σ, σL〉〉
SEND signal WITH data, i−−−−−−−−−−−−−−−→

〈succ(VSCi), JBBi : (signal, data), Locksi, [T : signal] : Fi, δi, 〈σ, σL〉〉

if signal ∈ Buf , signal ∈ LevB

The concept of combined signals is shown in Fig. 14, and we recall
from Section 3.4 that the thing that distinguish a combined signal from
other direct signals11 is that the combined signal always requires an
answer (a reply signal).

Execution
…

SEND Signal-A
(Forward)

Execution halted !

RETRIEVE Signal-A
(Backward)

Block A

RECEIVE Signal-A
(Forward)

Execution

RETURN Signal-A
(Backward)

Block B

Figure 14: The PLEX statements for sending/receiving combined sig-
nals. Note that the signal receiving statements is omitted in Core PLEX
(see Section 6.2).

11A combined signal, as well as a local signal, is always direct!

6 THE SEMANTICS 36

The semantics for the combined signals are as follows

〈VSCi, JBBi, Locksi, Fi, δi, 〈σ, σL〉〉
SEND cfsig WAIT FOR cbsig IN label, i−−−−−−−−−−−−−−−−−−−−−−→

〈cfsig, JBBi, Locksi ∪ {Lγ}, Fi, label : δi, 〈σ|RMi �→ ⊥, σL[Lγ �→ 1]〉〉

if γ = LB(cfsig), (σL(Lγ) = 0 ∨ Lγ ∈ Locksi)

〈VSCi, JBBi, Locksi, Fi, δi, 〈σ, σL〉〉
SEND cfsig WITH data WAIT FOR cbsig IN label, i−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

〈cfsig, JBBi, Locksi ∪ {Lγ}, Fi, label : δi, 〈σ|RMi �→ data, σL[Lγ �→ 1]〉〉

if γ = LB(cfsig), (σL(Lγ) = 0 ∨ Lγ ∈ Locksi)

〈VSCi, JBBi, Locksi, Fi, label : δi, 〈σ, σL〉〉
RETURN cbsig, i−−−−−−−−−→

〈label, JBBi, Locksi, Fi, δi, 〈σ|RMi �→ ⊥, σL〉〉

〈VSCi, JBBi, Locksi, Fi, label : δi, 〈σ, σL〉〉
RETURN cbsig WITH data, i−−−−−−−−−−−−−−−→

〈label, JBBi, Locksi, Fi, δi, 〈σ|RMi �→ data, σL〉〉

We end this section with the semantics for the local signals, and
as was said in Section 3.4, the difference between local and non-local
signals is that the former is sent between entities in the same block,
whereas the latter is sent between entities in different blocks. This
means that no variable values are destroyed by a local signal state-
ment, which is the case with non-local signals (where the variables in
the Register Memory (RM) are destroyed).

〈VSCi, JBBi, Locksi, Fi, δi, 〈σ, σL〉〉
TRANSFER signal, i−−−−−−−−−−−→

〈signal, JBBi, Locksi, Fi, δi, 〈σ, σL〉〉

〈VSCi, JBBi, Locksi, Fi, δi, 〈σ, σL〉〉
TRANSFER signal WITH data, i−−−−−−−−−−−−−−−−−−→

〈signal, JBBi, Locksi, Fi, δi, 〈σ|RMi �→ data \ ⊥, σL〉〉

6 THE SEMANTICS 37

6.4.1 A New Buffered Signal

In conjunction with the semantics for the sending of a buffered signal,
we mentioned (on page 34) that the statement is currently subject to
change. In its current ’version’ the sending of a buffered signal re-
sults in a new job within the same job-tree, whereas with the new, pro-
posed/suggested, extension it should be possible to use a specific key-
word (JOBTREE (?)) with a new job-tree as the result.

This will increase the level of parallelism since there would be no
sequential order to maintain between the job that sends the signal, and
the job that will be the result of the signal. For this reason, this new
buffered signal can be sent directly to its destination (i.e., be put in
the appropriate buffer) instead of being put in the buffer of the send-
ing thread as the ’ordinary’ buffered signal are done (to maintain the
previously described sequential order).

The semantics for the new buffered signal is as follows:

〈VSCi, JBBi, Locksi, Fi, δi, 〈σ, σL〉〉
SEND signal JOBTREE, i−−−−−−−−−−−−−−→

〈succ(VSCi), JBBi : (signal,⊥), Locksi, Fi : [signal], δi, 〈σ, σL〉〉

if signal ∈ Buf , Receiver(signal) = i

〈VSCi, JBBi, Locksi, Fi, δi, 〈σ, σL〉〉
SEND signal JOBTREE WITH data, i−−−−−−−−−−−−−−−−−−−−→

〈succ(VSCi), JBBi : (signal, data), Locksi, Fi : [signal], δi, 〈σ, σL〉〉

if signal ∈ Buf , Receiver(signal) = i

In the following two rules, we must consider two local states (si and sj)
in the case i
= j since they model the case when the buffered signal
is sent directly to its destination. As in the other cases, we show only
those parts of the state 〈s1, . . . , sk, sG〉 that are effected of the transition
(in this case si, and sj).

6 THE SEMANTICS 38

〈. . . , si, , sj , . . . , 〈σ, σL〉〉
SEND signal JOBTREE, i−−−−−−−−−−−−−−→ 〈. . . , s′i, , s′j , . . . , 〈σ, σL〉〉

where si = 〈VSCi, JBBi, Locksi, Fi, δi〉
sj = 〈VSCj, JBBj, Locksj, Fj , δj〉
s′i = 〈succ(VSCi), JBBi, Locksi, Fi, δi〉
s′j = 〈VSCj, JBBj : (signal,⊥), Locksj , Fj : [signal], δj〉

if signal ∈ Buf , Receiver(signal) = j
= i

〈. . . , si, , sj , . . . , 〈σ, σL〉〉
SEND signal JOBTREE WITH data, i−−−−−−−−−−−−−−−−−−−−→ 〈. . . , s′i, , s′j , . . . , 〈σ, σL〉〉

where si = 〈VSCi, JBBi, Locksi, Fi, δi〉
sj = 〈VSCj , JBBj, Locksj , Fj , δj〉
s′i = 〈succ(VSCi), JBBi, Locksi, Fi, δi〉
s′j = 〈VSCj , JBBj : (signal, data), Locksj , Fj : [signal], δj〉

if signal ∈ Buf , Receiver(signal) = j
= i

6.5 The Semantics for the EXIT Statement

As we saw in Section 3.5, the EXIT statement is of importance since it
marks the termination of an ongoing job, but we have also indicated (in
Section 6.4, on page 33) that the effect of executing an EXIT statement
is the start of a new job. However, the semantics for the EXIT statement
below is only concerned with termination of the ongoing job (i.e., releas-
ing of the locks collected by the job). The transition for starting a new
job is postponed to the following section. The reason for this division
is the lock handling mechanism; the transition for the EXIT statement
releases all locks held by the thread, whereas the transition for starting
a new job can succeed when the lock of the block is free, and then lets
the thread acquire the lock. Without this division, other threads would
never be allowed to execute code in the block.

6 THE SEMANTICS 39

The below rules for the EXIT statement models (1) the termination
of the currently executed job-tree, (2) that the job-tree hasn’t terminated
and will continue its execution on Ti, and (3) that the job-tree migrates
to Tj. Note that the last rule (when the job-tree migrates) must consider
two local states; si and sj.

〈VSCi, JBBi, Locksi, [] : Fi, δi, 〈σ, σL〉〉
EXIT, i−−−−→

〈⊥, JBBi, ∅, Fi, δi, 〈σ, σL[Lγ �→ 0, Lγ ∈ Locksi]〉〉

〈VSCi, JBBi, Locksi, [signal : T] : Fi, δi, 〈σ, σL〉〉
EXIT, i−−−−→

〈⊥, JBBi, ∅, [signal : T] : Fi, δi, 〈σ, σL[Lγ �→ 0, Lγ ∈ Locksi]〉〉

if Receiver(signal) = i

〈. . . , si, , sj , . . . , sG〉
EXIT, i−−−−→ 〈. . . , s′i, , s′j , . . . , s′G〉

where si = 〈VSCi, JBBi, Locksi, [signal : T] : Fi, δi〉
sj = 〈VSCj , JBBj, Locksj , Fj , δj〉
sG = 〈σ, σL〉
s′i = 〈⊥, JBBi − {(signal, data) : T }, ∅, Fi, δi〉
s′j = 〈VSCj , JBBj : (signal, data) : T , Locksj, Fj : [signal : T], δj〉
s′G = 〈σ, σL[Lγ �→ 0, Lγ ∈ Locksi]〉

if Receiver(signal) = j
= i

6.6 Additional transitions

The following rule deals with the start of a new job. The transition
succeeds when the lock of the corresponding block is free, and if job
buffer A of local state s1 is empty. The second condition models the fact

6 THE SEMANTICS 40

that jobs on traffic level (priority B) must wait for jobs of priority A. (The
different levels of priority among jobs were discussed in Section 6.2.)

〈⊥, (signal, data) : JBBi, Locksi, Fi, δi, 〈σ, σL〉〉
ε,i−→

〈signal, JBBi, {Lγ}, [T] : Fi − [signal : T], δi, 〈σ|RMi �→ data, σL[Lγ �→ 1]〉〉

if γ = LB(signal), σL(Lγ) = 0, s1(JBA) = ε

The last transitions models the insertion from the environment of an
external signal into a job queue. Note that the external signal can be of
priority A or priority B. In the first case, the external signal is inserted
in JBA of s1. The second case is the general case, i.e., priority B inserted
in JBBi of si (where i = {2, . . . , k}). The rules are always enabled, and
they introduce nondeterminism into the semantics:

〈VSC1, JBA, JBB1, Locks1, F1, δ1, 〈σ, σL〉〉
ε,i−→

〈VSC1, JBA : (signal, data), JBB1, Locks1, F1 : [signal], δ1, 〈σ, σL〉〉

if signal ∈ Ext, signal ∈ LevA

〈VSCi, JBBi, Locksi, Fi, δi, 〈σ, σL〉〉
ε,i−→

〈VSCi, JBBi : (signal, data), Locksi, Fi : [signal], δi, 〈σ, σL〉〉

if signal ∈ Ext, signal ∈ LevB

6.7 Global Transitions

In the previous sections we have defined the meaning of each individual
Core PLEX statement, when executed ’locally’ by thread Ti, as in

s
S, i−−→ s′

However, the description is not complete as long as we don’t consider
the concurrently executing threads.

We recall (from Section 6.2) that the state we consider is defined by
the tuple 〈s1, . . . , sk, sG〉, where each si (i = 1, . . . , k) is a local state and
sG is a global state that can be modified by any of the threads.

7 SUMMARY 41

The following rules, valid for any i where 0 ≤ i ≤ k, specify the
global transitions12

si −→ s′i
〈s1, . . . si, . . . , sk, sG〉 → 〈s1, . . . s′i, . . . , sk, sG〉

si −→ s′i
〈s1, . . . si, . . . , sk, sG〉 → 〈s1, . . . s′i, . . . , sk, s′G〉

The rules state that whenever there is a local transition at thread
Ti, there is a corresponding global transition that only affects the local
part of the state si (first case), or that affects the local, as well as the
global, part of the state (second case).

7 Summary

In previous works, we have presented a small-steps operational seman-
tics for the language PLEX. These works modeled the execution on the
current single-processor architecture. In this report, we extend our pre-
vious works by specifying a restricted parallel semantics for the lan-
guage Core PLEX, which is a simplified version of the real PLEX lan-
guage. The semantics in this report models an attempt to execute exist-
ing PLEX code, without modifications, on a parallel architecture.

The architecture under consideration is a multi-threaded shared-
memory architecture. The parallel architecture, and its execution model,
is designed to be ’functionally equivalent’ with the single-processor sys-
tem. The approach taken to achieve this ’equivalence’ is a restricted
execution model, which (by a locking mechanism) prevents some parts
of the programs to be executed concurrently.

A more aggressive parallelization would allow these activities to ex-
ecute in parallel, but parallel execution most likely means that the lan-
guage has to be extended with primitives for synchronization to protect
the shared data. To keep the actual number of inserted synchroniza-
tions at a minimum, we need criteria that ensures when parallel execu-
tion of the current software is safe in the sense that functional equiva-

12The transitions are of standard form as used for instance in [Win93]

8 ACKNOWLEDGEMENTS 42

lence is preserved. To ensure the correctness of such criteria, the formal
semantics of the language has to be considered.

Future work includes a case study of possible shared memory con-
flicts in the existing PLEX code, as well as deriving criteria for safe
parallel execution.

8 Acknowledgements

This work has been supported by Ericsson AB, and Vinnova through
the ASTEC competence centre. We want to thank Janet Wennersten
and Ole Kjøller at Ericsson AB for technical support and discussions
regarding PLEX and its implementations.

References

[AGG99] A. Arnström, C. Grosz, and A. Guillemot. GRETA: a tool con-
cept for validation and verification of signal based systems
(e.g. written in PLEX). Master’s thesis, Mälardalen Univer-
sity, 1999.

[Ard97] M. A. Ardis. Formal Methods for Telecommunication System
Requirements: A Survey of Standardized Languages. Annals
of Software Engineering, 3:157–187, 1997.

[ASU86] A. V. Aho, R. Sethi, and J. D. Ulman. Compilers Principles,
Techniques and Tools. Addison-Welsey Publishing Company,
1986.

[BGJ91] Albert Benveniste, Paul Le Guernic, and Christian Jacque-
mot. Synchronous programming with events and relations:
the SIGNAL language and its semantics. Science of Computer
Programming, 16(2):103–149, September 1991.

[BJ82] D. Bjørner and C. B. Jones. Formal Specification and Software
Development. Prentice-Hall, 1982.

[CS01] M. Calder and C. Shankland. A Symbolic Semantics and
Bisimulation for Full LOTOS. In Proceedings of the 21st Inter-

REFERENCES 43

national Conferenence on Formal Techniquess for Networked
and Distributed Systems, pages 185–200. IFIP, 2001.

[Däc00] Bjarne Däcker. Concurrent Functional Programming for
Telecommunications: A Case Study of Technology Introduc-
tion. Licentiate thesis, Royal Institute of Technology, KTH,
Sweden, 2000.

[EL02] J. Erikson and B. Lindell. The Execution Model of the
APZ/PLEX - An Informal Description. Technical report,
Mälardalen University, 2002.

[EL04] J. Erikson and B. Lisper. A formal semantics for PLEX. In
Proceedings of the 2nd APPSEM II Workshop, APPSEM’04,
Tallin, 14-16 April 2004.

[Eri03] J. Erikson. A Structural Operational Semantics for PLEX.
MRTC Report ISSN 1404-3041 ISRN MDH-MRTC-166/2004-
1-SE, Mälardalen University, 2003.

[Fre01] L. Fredlund. A Framework for Reasoning About ERLANG
Code. PhD thesis, Royal Institute of Technology, KTH, Swe-
den, 2001.

[GGP03] U. Glässer, R. Gotzhein, and A. Prinz. The Formal Semantics
of SDL-2000: Status and Perspectives. Computer Networks -
The International Journal of Computer and Telecommunica-
tions Networking, 3(42):343–358, June 2003.

[Hed98] Pekka Hedqvist. A parallel and multithreaded ERLANG im-
plementation. Master’s thesis, Computing Science Depart-
ment, Uppsala University, Uppsala, June 1998.

[IT82] ITU-T. CHILL: Formal Definition, 1982. International
Telecommunication Union, Volume 1, Part 1, 2, 3.

[IT99] ITU-T. CHILL: The ITU-T Programming Language, 11 1999.
International Telecommunication Union, Geneva, (Recom-
mendation Z.200).

[Kjö03] O. Kjöller. CMX-FD - A TLP Execution Model with Functional
Distribution. Internal Technical Report, Ericsson AB, 2003.

REFERENCES 44

[Kjö04] O. Kjöller. CMX-FD Configuration. Internal Technical Report,
Ericsson AB, 2004.

[NN92] H. R. Nielson and F. Nielson. Semantics with Applications: A
Formal Introduction. John Wiley & Sons, 1992.

[NNH05] F. Nielson, H. R. Nielson, and C. Hankin. Principles of Pro-
gram Analysis, 2nd Edition. Springer, 2005.

[SL05] Herb Sutter and James Larus. Software and the concurrency
revolution. ACM Queue, 3(7):54–62, September 2005.

[SU05] Ando Saabas and Tarmo Uustalu. A compositional natural se-
mantics and hoare logic for low-level languages. In Proc. 2nd
Workshop on Structural Operational Semantics, SOS 2005,
July 2005.

[TG97] J. Thees and R. Gotzhein. A Formal Syntax and a Formal Se-
mantics for Open Estelle. Technical Report 292/97, University
of Kaiserslautern, 1997.

[Win93] G. Winskel. The Formal Semantics of Programming Lan-
guages: An Introduction. MIT Press, 1993.

[Win00] Jürgen F. H. Winkler. CHILL 2000. Telektronikk, 96(4):70–77,
2000.

