
Migrating Industrial Systems towards Software Product Lines: Experiences

and Observations through Case Studies

Hongyu Pei Breivold1, Stig Larsson1, Rikard Land2
1ABB Corporate Research, 721 78 Västerås, Sweden

{hongyu.pei-breivold, stig.bm.larsson}@se.abb.com
2Mälardalen University, 721 23 Västerås, Sweden

 rikard.land@mdh.se

Abstract
Software product line engineering has emerged as

one of the dominant paradigms for developing variety

of software products based on a shared platform and

shared software artifacts. An important and

challenging type of software maintenance and

evolution is how to cost-effectively manage the

migration of legacy systems towards product lines.

This paper presents a structured migration method and

describes our experiences in migrating industrial

legacy systems into product lines. In addition, we

present a number of specific recommendations for the

transition process which will be of value to

organizations that are considering a product line

approach to their business. The recommendations

cover four perspectives: business, organization,

product development processes and technology.

1. Introduction

Today, technical, business and environment

requirements change at a tremendous speed [2]. The

ability to launch new products and services with major

enhancements within short timeframe has become

essential for companies to keep up with new business

opportunities. The need for differentiation in the

marketplace, with short time-to-market as part of the

need, has put critical demands on the effectiveness of

software reuse. In this context, software product line

approach has become one of the most established

strategies for achieving large-scale software reuse and

ensuring rapid development of new products [4].

However, product line development seldom starts from

scratch. Instead, it is very often based on existing

legacy implementations [14], as legacy systems

represent substantial corporate knowledge and

investment [26]. These legacy systems are usually

critical to the business in which they operate [20].

Therefore, they are maintained and evolved to fit

existing and expanding markets and customer needs.

However, not much data has been published with

respect to experiences and lessons learned in product

line migration [21]. To enrich the knowledge in this

direction, we describe our experiences and

observations through two industrial case studies, with

respect to (i) migrating legacy systems to product line

architecture, and (ii) observations with respect to

business, organization, process and technology

perspectives during product line transition process. The

contribution of this paper is to provide experiences

through industrial examples in product line migration

that can be shared within the software industry, and can

enable future application and utilization of the product

line concept to be additionally efficient and effective.

The remainder of this paper is structured as follows.

Section 2 describes the research method and the

context of the two industrial cases including the

motivations for product line migration. In section 3, we

present the migration method that we applied in the

transition process and exemplify with one case to

demonstrate the usage of the method. Section 4

discusses our observations and recommendations made

in the two case studies, with respect to business,

organization, development processes and technology

perspectives. Section 5 reviews related work and

section 6 concludes the paper.

2. Research Method

This research is based on two industrial cases. The

first two authors took part in the development of a

product line architecture in both cases. All experiences

are thus first-hand; in addition, other participants in the

cases have provided us with material to make the

conclusions less subjective. The risk of bias has been

further decreased through the involvement of other

researchers in the analysis of the experiences. We

present our experiences from cases in the form of a

general method and generally applicable

recommendations, which we have constructed from

data in the manner of grounded theory research [23]

and will be detailed in conjunction with the case

descriptions. The results should therefore be seen as a

valuable generalization of experiences but not yet

scientifically validated on additional, independent

cases.

The rest of this section presents the cases. Although

the systems belong to different domains – automation

and power technology domains respectively, having

specific focus and facing different issues, the decision

was in both cases to transform the existing systems

towards product line architectures.

2.1 Case 1

The first case is an industrial automation control

system which consists of more than three million lines

of C and C++ code. All the source code is compiled

into a single binary software package, which has grown

in size and complexity as new features and solutions

are added to enhance functionality and to support new

hardware, such as sensors, I/O boards and production

equipment. The software package also consists of

various software applications, aiming for specific tasks

that enable the automation controller to handle various

applications such as painting, welding, gluing, machine

tending and palletizing. However, the software package

is monolithic, i.e. the complete set of functionalities

and services is included in every product even though

not everything is required in each specific application.

As the system is expanding, it has become more

difficult to ensure that the modifications of specific

application software do not affect the quality of other

applications. The original coarse-grained architecture is

depicted in Figure 1.

Figure 1. Original Conceptual Architecture

The main problem with the software architecture is

the existence of tight coupling between some

components that reside in the different layers. As a

consequence, source code updates have to be done not

only on the application level, but through several

layers, several subsystems and components.

Recompilation of the whole code base is necessary.

This requires that application developers have a

thorough knowledge of the complete source code, and

additionally, it constitutes a bottleneck in the effort to

enable distributed application development. Therefore,

there is a need to transform the existing system into

reusable components that can form the core of the

product-line infrastructure, and separate application-

specific extensions from the base software.

2.2 Case 2

The second case is a power control and protection

system which consists of more than two million lines of

C and C++ code. It is built up from a basic system

which handles communication, I/O and services, and

from application functions that are combined to define

various products. These application functions are built

as components for specific functionality in an IEC

1131 fashion, including functions such as monitoring of

current and voltages, and control of breakers. The

application functions are included in the system builds

through definition files, resulting in a specific binary

software package for each product. Software

development is performed by several different

development teams from two separate business units

and across different geographical locations. The main

problem in this case is not apparently architecture-

related as in the first case. It is more related to the

product development management problems, i.e. the

occurrence of overlapping development functionality,

lack of traceability of product features and decreased

reusability, as the product variants are implemented in

new or version-branched source code files that are

scattered in different parts of the code repository. All

the projects fetch the base software source code from

the repository to start their respective development of

various products. The results of the changed software

artifacts are not integrated back into the repository.

New projects might start and continue from the results

from an earlier project and establish new branches of

configuration management paths. This leads to

additional effort required for maintenance of diverging

software and software testing. Therefore, instead of

making branches of the core assets for each product

variant, there is a need to improve the handling of the

common set of core assets through explicit definition of

commonalities and variabilities, and build a common

platform, from which products can be efficiently

developed and launched to the market.

3. Migration Method

The method we devised and used in the two cases is

illustrated in Figure 2. It starts with a migration

decision, consists of five steps with a proposal for the

new architecture and a plan for the

implementation/transition process. To explain the steps

of the method and demonstrate how the method can be

used, we illustrate using the first case as an example;

however the method as presented here draws on the

experiences from both cases.

Figure 2. Migration Method of Legacy Systems to

Product Lines

3.1 Step 1: Identify requirements on the

software architecture

In this step, requirements essential for a cost-

effective software architecture transition to product line

architecture are extracted. Architecture workshops need

be conducted, where the stakeholders discuss about the

underlying business forces for migration, and identify

architecture requirements and corresponding migration

activities. In order to establish a basis for common

understanding of the architecture requirements among

the stakeholders within the organization, all the

identified requirements need to be prioritized. In the

first case, the main focus is to identify components that

need to be refactored to facilitate a product line

architecture and to define an evolutionary path of the

software system development. The identification and

analysis of the architectural requirements was

performed by the architecture core team consisting of

6-7 persons. We list below the identified main

requirements on the software architecture:

R1. More modularized software architecture.

R2. Reduced complexity of the architecture structures.

R3. The architecture needs to support distributed

development with minimum dependency between the

development sites.

3.2 Step 2: Identify Commonalities and

Variabilities

In this step, common core assets and variabilities to

facilitate product deployment are identified. The

common core asset identification can be based on

either a top-down approach, where the product line

architecture comprises of union of merged product

functionality, or a bottom-up approach where the

product line architecture comprises of the functionality

shared among the products and exclude product-

specific features [4]. There are different ways to

identify commonalities and variabilities, e.g. using

application-requirements matrix, priority-based

analysis and/or checklist-based analysis [18]. The

output is a catalog of shared product line assets

common for all the applications or products, in terms of

requirements, use cases, components and test artifacts.

In the first case, the application-requirements matrix

approach was applied, i.e. the dependency analysis

between applications and base services was performed

to identify commonalities and variabilities. The use of

the matrix proved useful as a tool for the architects.

Table 1 gives an example of the dependency analysis

between specific applications extensions and base

services, where x represents the expected presence of a

dependency and nothing for its absence.

Table 1. Analysis Matrix Example for Commonalities and

Variabilities

etc

etc

XXXXPicking, Packing

XXXXPainting

XXXArc welding

device configurationipcerror logalarmApplication Extensions

Services

etc

etc

XXXXPicking, Packing

XXXXPainting

XXXArc welding

device configurationipcerror logalarmApplication Extensions

Services

To perform the dependency analysis, sufficient

overview of product features is required. The

identification of variation points can be based on the

architecture description and design documents, source

code, compiled code, linked code and running code

[24], user documentation and user expectations,

requirement specifications, log files and comments of

changes as well as workshops with concerned

development organizations. Accordingly, modules,

components and functions that are essential for all

applications were identified as candidates for

commonalities, designated as included in the kernel.

Software artifacts that are only mandatory for a small

set of applications were identified as candidates for

variable artifacts, designated as common extensions.

The kernel and common extensions form up the

building blocks for all applications and they can be

packaged into a software development kit (SDK),

which provides necessary tools and documentation for

application development.

3.3 Step 3: Restructure Architecture

In this step, the product line architecture is

constructed. The architecture describes the high level

design for the applications of the intended software

product line. Architecture workshops need to be

conducted, where the architecture core team members

and technical leaders in the development projects reach

a common understanding of how the entire product line

should be structured to fulfill the identified architecture

requirements. In the first case, to cope with R3, the

architecture needs to support distributed development

with minimum dependency between the development

sites, and the architectural problems described in

section 2.1, the strategy of separate concerns was

applied to isolate the effect of changes to parts of the

system [10]. The strategy was to separate the global

functions from the hardware, and separate application-

specific functions from generic and basic functions as

illustrated in Figure 3.

Figure 3. Revised Conceptual Architecture

The identified core assets from the previous step

provide input to the definition of global generic

functions and application-specific functions.

Accordingly, some components need to be adapted and

reorganized to enable the restructuring of the

architecture. Some examples in the first case were the

components for resource allocations within the low-

level Basic Services subsystem, e.g. semaphore ID

management component, and memory allocation

management component. These components needed to

be adapted because functionality needed to be

separated from resource management, to achieve the

build- and development-independency between the

kernel and extensions.

3.4 Step 4: Incorporate Commonality and

Variability

In this step, feasible realization mechanisms and

implementation proposals to facilitate the revised

product line architecture are defined. Potential

refactoring proposals are identified from technical and

business perspectives. Technical assessment takes into

consideration change propagation and the effect of

refactoring, while keeping some important extra-

functional properties such as performance or reliability.

Business assessment includes the estimation of the cost

and effort on implementations. We exemplify with one

component example from the first case– the Inter-

Process Communication (IPC) component that needed

to be refactored. IPC belongs to Basic Services

subsystem and it includes mechanisms that allow

communication between processes, such as remote

procedure calls, message passing and shared data. We

focus on the technical assessment and present the

example in terms of three views - problem, concrete

requirements and implementation proposal.

Problem: All the slot names and slot identities (ID)

used by the kernel and extensions were defined in a C

header file in the system. The developers had to edit

this file to register their slot name and slot ID, and

recompile the system. Afterwards, both the slot name

and slot ID had to be specified in the startup command

file for thread creation. There was no dynamic

allocation of connection slot. The problem was related

to requirement R3.

Concrete implementation requirements: It should be

possible to define and use IPC slots in common

extensions and application extensions without the need

to edit the source code of the base software and

recompile.

Implementation proposal: The slot ID for extension

clients should not be booked in the header file.

Extensions should not hook a static slot ID in the

startup command file. The command attribute dynamic

slot ID should be used instead. The IPC connection

for extension clients will be established dynamically

through the ipc_connect function as shown in Figure

4.

Figure 4. IPC component after refactoring

3.5 Step 5: Evaluate Software Architecture

Quality Attributes

In this step, the impact of implementation proposals

on the quality requirements of the product line

architecture is evaluated. This is needed as the choice

of component refactoring proposals for fulfilling each

requirement might lead both to an improvement of

some quality attributes, and to a degradation of another

quality attribute, which would then require a tradeoff

decision. Various assessment techniques [5] can be

applied, e.g. scenario-based assessment, software

performance assessment and experience-based

assessment. Besides the qualitative evaluation, test

scenarios and prototypes can also be used as additional

ways for evaluating the feasibility and suitability of

implementation proposals. In the first case, the

experience-based assessment and logic reasoning was

applied, and the proposed solutions were evaluated

with respect to quality characteristics that were of

interest to the stakeholders, i.e. analyzability,

changeability, extensibility, testability and real time

performance. Table 2 gives an example of the IPC

component evaluation.

Table 2. Architectural Consequence Evaluation

 Consequences of changing the

Inter-Process Communication

Analyzability Degraded due to decreased possibility of

static analysis because of dynamic definitions

Changeability Improved due to the dynamism which makes

it easier to introduce and deploy new slots

Extensibility Improved due to encapsulation of IPC

facilities and dynamic deployment

Testability No impact

Real time

performance

Improved as resource limitation issue is

handled through dynamic IPC connection

Degraded due to introduced dynamism the

system performance could be slightly reduced

The revised IPC component provides efficient

resource booking for inter-process communication and

enables encapsulation of IPC facilities. Accordingly,

distributed development of extensions utilizing IPC

functionality is facilitated. The use of dynamic IPC

connections handles resource limitations, since limited

IPC resources are used only when the processes are

communicating. However, the use of IPC mechanisms

requires resources, which are limited on a real-time

operating system. Therefore, the overhead due to

resource description processing may be an offset

against efficiency [19], since the overall performance

may be degraded if the cost of creating and destroying

IPC connections is too high.

4. Observations and Recommendations

Applying a software product line approach to legacy

systems requires that care is taken to ensure that critical

aspects are considered for a smooth and successful

product line migration. The application of the

migration method provided a structured way to cover

these critical aspects and handle the product line

transition. Through applying the method in our

industrial cases, observations have been made with

respect to business, organization, development process

and technology when adopting a product line approach.

We also use the experiences from the case studies to

recommend practices that proved particularly useful.

4.1 Business

We list below observations and recommendations that

concern business perspective.

- Observation: Different triggers for decisions to

adopt a product line approach exist. Business

objectives motivate architecture and process changes

[15]. The triggers for these changes might appear

different although the decision to have product line

approach was the same for both case studies. The

trigger in the first case was to improve software quality

and enable distributed product development. In the

second case, the main trigger was to build a common

platform that can be shared between two business units

and enable component reusability. Our conclusion is

that the concept of product lines can be a solution to

different types of business goals.

- Recommendation: Improve risk management

through constant progress measuring. Product line

migration concerns a collection of factors [7], such as

resources involved, management support and

involvement, level of product line expertise, and

priority balancing among various projects. A careful

and comprehensive risk assessment is therefore

necessary. Through the case studies, we observed the

benefit of setting up reasonable, achievable, and

measurable targets to constantly monitor the progress.

For instance, in the first case study, a metric was the

number of exposed public interfaces. Constant

monitoring of this metric was conducted on a regular

interval. It was helpful in measuring progresses and

provided signal indication on analyzing the reason for

trend of increasing number of interfaces when this

happened. This in turn provided a source of input to

risk judgments.

4.2 Organization

According to [4], product line development can be

organized in two ways: (i) in a separate product line

team – one team develops the core assets while other

teams develop products; or (ii) within the product team

– the development team is responsible for both product

and core asset development. Both organization

structures were reflected in the two case studies and we

observed advantages and disadvantages with both

structures. In the first case study, there was one core

asset development team centralized at one site and

product development teams were geographically

distributed. A risk identified for this organizational

structure was that the core assets development might

not be aligned with the product development schedule.

In the second case study, the development of common

platform components was part of the concrete product

development projects. The development teams were

also geographically distributed in several countries.

Much focus was on product development, especially

when there was a tight schedule on product deliveries.

Enhancements and adaptations of platform components

were executed in the context of the related product

development projects. Accordingly, a risk was reduced

reusability of core assets. Another risk was parallel or

duplicate development of functions, especially when

there are several product development projects running

in parallel. However, there is no clear answer on which

organization structure is better [6].

- Recommendation: Product managers for different

products using the product line architecture should

synchronize needs. Our experience in handling the

risk in the first type of organization structure was that

the product managers need to synchronize to achieve a

common understanding of the priorities of product

requirements. Synchronization among various product

development teams was also required.

- Recommendation: Define roles, responsibilities

and ways to share technology assets. The risks for

the second type of organization structure was handled

through the definition of repository handling strategies,

clear ownership of the core assets and clear division of

responsibilities for the core asset development.

Communication and synchronization between the

development teams play a substantial role. For

instance, in the second case study, there was a white

paper defining the ownership and responsibility areas

of existing core assets. Meanwhile, communication

channels were open for emerging new functionality and

software assets.

4.3 Process

We list below observations and recommendations

concerning the process perspective. Additional aspects

from case 1 can be found in [15], e.g. regarding

configuration management and build processes.

- Recommendation: Perform the migration to

product lines through incremental transitions.

Despite of the assumption that it requires an upfront

investment of 2 to 3 products worth of development

effort in order to see return on these investments [7], it

is generally required to minimize the upfront

investment and to facilitate quick incorporation of

product line technology into an organization [26]. In

this sense, we assume that incremental transition

strategy is a preferred choice to fulfill this requirement

without disrupting the ongoing projects. For instance,

in the first case study, the criteria for requirement

prioritization were set up as: (i) enable building of

existing types of extensions after refactoring and

architecture restructuring; and (ii) enable new

extensions and simplify interfaces that are difficult to

understand and may have negative effects on

implementing new extensions. Based on these criteria,

architectural requirements and components that needed

to be refactored could be categorized into different

priorities. In addition, one requirement during the

component refactoring process in the case studies was

to preserve the external behavior of the system despite

the number of changes to the code. Accordingly, a

sequence of incremental code transformation steps was

identified, performed and verified before being

integrated.

- Recommendation: Ensure communication between

technology core team and implementation team. The

vision of migrating legacy systems towards product

lines comes quite often from analysis results of a

technology core team consisting of very few people.

The technology core team needs to communicate the

vision on a regular basis with implementation teams, in

order to introduce a common understanding and

acceptance of what should be accomplished with the

transition. The outcome of this is an organization that is

informed and prepared for the product line transition

process.

4.4 Technology

We list below observations and recommendations

that concern technology perspective.

- Recommendation: Use tool support for

dependency analysis. Software complexity is due to

the inherent complexity in the problem domain and

defects in software design [6], e.g. insufficient

modularization, which in turn leads to decreased

analyzability and changeability. Although the domains

of the two cases were very different, the

components/modules were not prepared for direct

migration in any of the cases. Some components

needed to be adapted and reorganized to enable the

product line transition. Through the refactoring

process, we noticed that coupling and interface

definition were two common issues that needed to be

handled. We also experienced the need to reduce inter-

module dependencies [17], since excessive inter-

module dependences in software can make modules

hard to develop and maintain. For instance, in the first

case, the refactoring solutions were sometimes

straightforward and we knew how to refactor with only

local impact. When the implementation was uncertain

and might affect several subsystems or modules,

prototypes were made in order to investigate the

feasibility of potential solutions as well as the

estimation of implementation workload. In this sense, it

would be helpful to have good tool support to facilitate

quantitative dependency analysis and impact estimation

on workload when making architectural changes.

- Recommendation: Use architecture documentation

to improve architectural integrity and consistency.

We found out from the two case studies that a strategy

for communicating architectural decisions was to

appoint members of the core architecture team as

technical leaders in the development projects. Although

helpful to certain extent, this strategy did not

completely prevent developers from insufficient

understanding and/or misunderstanding of the initial

architectural decisions. This may result in uninformed

violation of architectural conformance and lead to

architecture quality degradation in the long run. In

addition, variation points change during the software

life cycle. It is essential to document these changes

with respect to what does vary, why it varies and how it

varies [18], and to record rationale for each design

decision, strategy and architectural solution.

- Recommendation: Carefully define variation

points and realization mechanisms. Having pre-

determined variation points makes it relatively easy to

introduce changes during software evolution [12].

Variation points help to keep the impact of changes

small by enforcing separation of concerns among

variants. Missing identification of variation points and

realization mechanisms in the beginning might lead to

extra implementation efforts later. For instance, in the

second case, operation data could be transferred over a

number of communication protocols, such as IEC

61850, IEC 60870, LON, DNP, and Modbus.

However, the mechanism to facilitate this variability

was missing. This resulted in extra efforts for adding

new communication protocols and additional amount

of rework for modifying existing ones.

On the other hand, we need to consider the impact

with respect to the software system’s behavior, quality

and any possible tradeoffs when we introduce any

variation point and realization mechanism. For

instance, the choice of binding mechanisms and

binding time has consequences for flexibility and other

concerns [8]. In the second case, the original

architecture applied ‘reduce computational overhead’

principle, which resulted in inclusion of several

application functional components in the base software

and making direct calls to them instead of using an

intermediary layer. The reason for this was mainly

performance related. This became a performance

versus modifiability tradeoff point.

- Recommendation: Use the described method

iteratively to handle software evolution. Software

evolves as well as businesses and environments. It is

therefore necessary to iterate over the five steps during

the software lifecycle when certain decisions need to be

made, e.g. to determine if any new features added to a

product should be incorporated into the product line

architecture or restricted to the particular product.

5. Related Work

Software product line has emerged as one of the

dominating paradigms for cost-effectively developing

software products. A great amount of research has been

done in this area. Bosch [5] proposes methods for

designing software architecture, in particular product

line architecture. Pohl et al. [18] elaborated two key

principles behind software product-line engineering: (i)

separation of software development in domain and

application engineering, and (ii) explicit definition and

management of variability of the product line across all

development artifacts. A four-dimensional software

product family engineering evaluation model is

described in [27] to determine the status of software

family engineering concerning business, architecture,

organization and process. Our observations are

classified into similar dimensions.

Faust et al [9] presented metrics for genericity

relayering, and migrated multiple instances of a single

information system to a product line. The idea of

constructing a federated architecture was similar to the

way that we have performed in our case studies.

Bayer et al [1] presents the RE_MODEL method to

integrate reengineering and product line activities to

achieve a transition into a product line architecture. A

key element in the method is the blackboard, a work

space which is shared for both activities that are done

in parallel. This is similar to the way that we have

performed in our case studies, with a common

repository for all information, both for reengineering

activities and for product line activities.

A case where a component was refactored to fit into

a product line context was presented by Kolb et al in

[12] and [13]. The PuLSE
TM

method was used to

systematically analyze the component and to improve

its reusability as well as maintainability. The focus was

on one component enabling reuse of that component.

The usage of PuLSE in an embedded environment was

described in [21], where the method’s technical

components addressed the different phases of product

line development. Our approach focuses on the

migration process when the migration decision has

been made. In [25], the FODA method [11] was used

for domain engineering whereas we applied product

modeling in our method. In order to evaluate the

potential of creating a product line from existing

products, MAP (Mining Architectures for Product

Lines) was described in [22], which focuses on the

feasibility evaluation process of the organization’s

decision to move towards a product line. Options

Analysis for Reengineering [3] is another method for

mining existing components for a product line. [16]

describes combining reference architecture and

configuration architecture to describe legacy product

family architecture and manage its evolution.

6. Conclusions and Future Work

In this paper, we presented our product line

migration method which was devised through our

participation in two industrial migration projects.

Throughout the use of the method, the architecture

requirements and corresponding design decisions for

the transition towards product line architecture become

more explicit, better founded and documented. The

resulting documentation of refactoring proposals was in

the cases widely accepted by the stakeholders involved

in the migration process. Our experiences shows the

importance of synchronizing needs, defining roles,

communication between core team and implementation

team for architectural integrity, and using proper tools

for dependency analysis. Also, the business and process

contexts require the transition to be incremental, and

the architecture therefore needs to support this through

explicit definition of implementation proposals.

Our plans are to apply the migration method in new

cases and in new domains, and collect additional

experiences in product line migration.

This work was partially supported by the Swedish

Foundation for Strategic Research (SSF) via the

strategic research centre PROGRESS and by the KK-

foundation (KKS) through the SAVE-IT project.

References

[1] J. Bayer, J.-F. Girard, M. Wûrthner, J.-M. DeBaud, and

M. Apel, "Transitioning legacy assets to a product line

architecture," Proc. of the 7th European Software

Engineering Conference. Toulouse, France: Springer,1999.

[2] K. Bennett and V. Rajlich, Software Maintenance and

Evolution: a Roadmap. 2000.

[3] J. Bergey, L. O'Brien, and D. Smith. "Using options

analysis for reengineering (OAR) for mining components for

a product line", Proc. of Second Software Product Line

Conference, volume 2379, pp. 316-327. Springer, 2002.

[4] A. Birk, G. Heller, I. John, K. Schmid et al. "Product

Line Engineering: The State of the Practice," IEEE Software,

2003.

[5] J. Bosch, Design and use of software architectures:

adopting and evolving a product-line approach: ACM

Press/Addison-Wesley Publishing Co., 2000.

[6] J. Bosch, "Product-Line Architectures in Industry: A

Case Study", ICSE 1999.

[7] P. Clements and L. Northrop, Software Product Lines:

Practices and Patterns. Addison-Wesley Professional. 2001.

[8] J. Coplien, Multi-Paradigm Design for C++, Addison-

Wesley, Boston, Massachusetts, 1998.

[9] D. Faust and C. Verhoef. "Software product line

migration and deployment", Journal of Software Practice and

Experiences, 33(10):933955, Aug. 2003.

[10] C.Hofmeister, R. Nord and D. Soni, Applied Software

Architecture. Addison-Wesley. 2000.

[11] K. C. Kang et al, "Feature-Oriented Domain Analysis

(FODA) Feasibility Study", Technical Report CMU/SEI-90-

TR-21, SEI, Carnegie Mellon University, 1990.

[12] R. Kolb, D. Muthig, T. Patzke, and K. Yamauchi, "A

Case Study in Refactoring a Legacy Component for Reuse in

a Product Line," Proceedings of ICSM '05, 2005.

[13] R. Kolb, D. Muthig, T. Patzke, and K. Yamauchi,

"Refactoring a legacy component for reuse in a software

product line: a case study," Journal of Software Maintenance

and Evolution: Research and Practice, vol. 18, pp. 109-132,

2006.

[14] G. Kotonya and J. Hutchinson, "A Component-based

Process for Modelling and Evolving Legacy Systems",

Software Process: Improvement and Practice, 13(2), pp. 113-

125, 2008.

[15] S. Larsson, A. Wall, and P. Wallin, "Assessing the

Influence on Processes when Evolving the Software

Architecture," proc. IWPSE 2007, Dubrovnik, Croatia, 2007.

[16] A. Maccari and C. Riva. "Architectural evolution of

legacy product families", Proc. of the Fourth International

Workshop on Product Family Engineering , 2001.

[17] D.L. Parnas, “Designing Software for Ease of Extension

and Contraction”, Transaction on Software Engineering, SE-

5(2), 1979.

[18] K. Pohl, G. Böckle, and F. J. v. d. Linden, Software

Product Line Engineering: Foundations, Principles and

Techniques: Springer, 2005.

[19] G. Quecke, W. Ziegler, "Mesch - an approach to

resource management in a distributed environment",

Proceedings of the First IEEE/ACM International Workshop

on Grid Computing. Springer-Verlag, pp. 47–54. 2000.

[20] J. Ransom, I. Sommerville, and I. Warren, "A Method

for Assessing Legacy Systems for Evolution," presented at

Reengineering Forum '98, Florence, Italy, 1998.

[21] K. Schmid, I. John, R. Kolb and G. Meier, "Introducing

the PuLSE Approach to an Embedded System Population at

Testo AG", ICSE 2005.

[22] C. Stoermer and L. O'Brien. "MAP - mining

architectures for product line evaluations", Proceedings of

WICSA'01, pages 35-44. IEEE Computer Society Press,

Aug. 2001.

[23] A. Strauss and J. M. Corbin, Basics of Qualitative

Research: Techniques and Procedures for Developing

Grounded Theory (2nd edition), ISBN 0803959400, Sage

Publications, 1998.

[24] M. Svahnberg, J. V. Gurp, and J. Bosch, "On the Notion

of Variability in Software Product Lines," Proceedings of

WICSA'01), Amsterdam, The Netherlands, 2001.

[25] S. Thiel, S. Ferber et al. "A Case Study in Applying a

Product Line Approach for Cae Periphery Supervision

Systems", Proc. In-Vehicle Software, SP-1587, pp. 43-55,

2001.

[26] S. Tilley, "The Net Effects of Product Lines," in SEI

Interactive, 1999.

[27] F. van der Linden,J. Bosch, E. Kamsties, K. Kansala, H.

Obbink, "Software Product Family Evaluation",proceedings

of SPLC 2004.

