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Abstract 
 
Model based analysis has the potential to facilitate 
maintenance of complex real-time systems, as it 
allows for impact analysis with respect to the 
systems’ temporal behavior. Model based analysis of 
temporal behavior of a legacy real-time system has 
also the potential to support migration toward 
component based system. However, since most 
software systems today have been developed in a 
traditional, code oriented manner, sufficiently 
detailed models are typically not available. To apply 
model based analysis on these systems, models have 
to be extracted from their implementation and 
observed run-time behavior. This requires methods 
for model validation. The paper proposes a novel 
method for model validation and presents a 
framework for evaluation of model validation 
methods, which will be used to evaluate the proposed 
method. The method is targeting temporal models 
extracted from complex real-time systems.  
 
1. Introduction 
 
Large industrial software systems often have very 
high costs for maintenance. Such systems are 
generally very complex and have long lifecycles, 
during which they have been developed and 
maintained by many different developers, many no 
longer available. Design documentation is often 
incomplete and out-dated; we refer to systems with 
these characteristics as legacy systems.   
 Maintenance is the major cost during the lifecycle 
of large and complex systems. However in academia 
there has not been much attention to maintenance [9]. 
If a software system becomes hard to maintain due to 
increased complexity, it may be more cost-effective 
to redevelop the software from the beginning, instead 
of maintaining it further. This is not economically 
feasible for large legacy systems, which may contain 
millions of lines of code, involving hundreds of 
person-years in the development process.  
 Maintenance of systems with real-time 
requirements has additional challenges, as the 
changes may violate temporal requirements of the 
system. Examples of complex legacy systems with 
real-time requirements can be found in industrial 
products such as in industrial robotics, telecom 

systems and process automation systems. Often, the 
details of such legacy systems’ timing behavior are 
not known, or it may be quite complex. Thus, the 
smallest increase in execution time can potentially 
cause a system failure. 
 Model based analysis of a legacy real-time system 
has the potential to facilitate migration toward a 
component based real-time system by analyzing the 
timing properties of the legacy code and wrapping it 
into components.  
 Model based analysis can also be used to analyze 
the impact of changes on a system’s temporal 
behavior, before introducing the changes to the 
system; we refer to this as impact analysis [1]. Since 
analysis models of legacy systems usually don’t exist, 
model extraction techniques are necessary to extract 
the analysis models from the observed behavior and 
the implementation of the system. Our aim is to 
extract analysis models from complex real-time 
systems automatically, as far as possible. Andersson 
et al in [1] present a semi-automated method that 
extracts models from complex real-time systems using 
system’s source code and its recorded behavior during 
run-time. Huselius et al proposed a method [7] that 
automatically extracts temporal models from run-time 
recordings of complex real-time systems, containing 
task switch events and inter process communication 
(ipc) events. The recording is used as input to an 
offline tool that generates a model automatically. The 
extracted models are probabilistic [11] because the 
run-time observations can not reflect all details of the 
implementation. A discrete event simulator is used to 
analyze the extracted analysis models, e.g. for impact 
analysis.  
  To convince the system experts to use the 
simulation models, the models should reflect the 
system with a satisfactory level of significance; 
therefore an appropriate validation process should be 
performed before using the models. 
 The contribution of this paper is a novel method 
for validation of simulation models, describing 
temporal behavior of complex real-time systems, by 
comparing recordings from the system to 
corresponding recordings from simulation of the 
extracted model. The paper also presents a framework 
for evaluation of model validation methods, which is 
used to evaluate the proposed model validation 
method. This work was partially supported by the 



Swedish Foundation for Strategic Research (SSF) via 
the strategic research centre (PROGRESS) at 
Mälardalen University. 
 
2. Model Validation 
 
 Model validation is defined as “The process of 
determining whether a simulation model is an 
accurate representation of the system, for the 
particular objectives of the study” [10]. A model is an 
abstraction of the system, and details may be omitted 
from the model [10], for instance by probabilistic 
modeling. Thus, the results from a simulation of such 
models may not be identical to the recordings of the 
system, e.g., with respect to the exact execution times 
of the tasks. However, this kind of simulation model 
is supposed to be sufficiently accurate 
approximations of the actual system, not an exact 
representation of the system. The goal of a validation 
process is to show that the model reflects the system 
accurately enough to rely on for impact analysis. 
 To perform the model validation process, 
observations from the system and the predictions 
from the simulation model are compared under the 
same experimental conditions. There are various 
methods to do the comparison; these methods are 
either objective or subjective. Subjective methods are 
often used for validation of simulation models; 
examples of subjective methods are Face Validation, 
Graphical Comparisons, Hypothesis Validation, and 
Sensitivity Analysis [4]. They are however highly 
dependent on domain expertise and prone to human 
error. Objective methods use mathematical methods 
to compare the outputs from the real system to the 
outputs from the simulation model, for instance 
statistical tests such as the chi-square test, the 
Kolmogorov-Smirnov test, and the Mann-Whitney 
test [5]. However, statistical test have many 
assumptions which limits their applicability for model 
validation. For instance, the system property in focus 
may not be stationary, i.e., the distributions of output 
data changes over time. Moreover, statistical tests are 
only concerned with distributions and not the order of 
events.  
 A framework for validation of behavioral models 
extracted from complex real-time systems is 
presented in [3]. The authors present their notion of 
model equivalence based on observable property 
equivalence which is used to compare results of a 
model and an actual system. In the framework they 
identify distinct classes of response times or 
execution times from both the model and the system 
that match, and the results of the model and the 
system are compared. However the authors believe 
that for model validation comparing one single 
observation is not enough and multiple observations 
of the system should be used to increase the 
confidence in the extracted models. 
 A method in [6] is presented for automated 
validation of models extracted from real-time 
systems. Model checking is used to investigate if the 

model can generate the same event sequences as the 
recorded event sequences from the system.  
 The same author have also proposed a method to 
evaluate the quality of models extracted from real-
time systems [8]; a method for comparing recorded 
distributions of timing properties, such as task 
response time. Such distributions are typically very 
complex and not suitable for comparison using 
traditional statistical tests targeting model validation.  
 Since our focus is validation of simulation models 
extracted from complex real-time systems, using only 
one method of these methods may not be enough to 
validate a simulation model. However, a collection of 
methods, each of which investigates a different aspect 
of the model, can increase the credibility of the 
model. The methods described in [3, 6, 8] are 
specifically used for validating temporal models 
extracted from legacy real-time systems.  
 
3. Method 
 
 In this section we present a method for validating 
temporal models of real-time systems. The targeted 
properties are resource consumption properties such 
as usage of CPU time and usage of logical resources, 
such as message queues. Relying on one single 
technique for model validation will be risky in the 
sense of accepting an invalid model or to rejecting a 
valid model. Thus, we recommend to use the 
algorithm we present here as a complementary 
method with other appropriate model validation 
methods such as statistical tests and graphical 
methods. 
 In the algorithm, traces of resource consumption 
property, e.g. execution times of a task, from both the 
simulated model and the system are compared. Firstly 
a scenario that contains experimental conditions 
should be defined. The scenario should be the same 
for both the model and the system; because in the 
algorithm it is supposed that traces from both the 
model and the system start from the same state. A 
small deviation between start states may lead to 
wrong results. A solution can be comparing the traces 
from the model and the system immediately after a 
specific event, which is available in both traces and 
marks a suitable state where to begin the comparison, 
e.g. the start of a periodic task with high priority.  
  

 
 

Figure 1: Traces of execution times from model 
and system are divided into time windows 

  
 In the method the traces of the resource 
consumption property, from the model and the system 
are sliced into n equal time windows (Figure 1). The 
precision of the comparison increases as n is 



increased. However the maximum n is a number that 
slices the traces into the smallest time unit of the 
traces. 
 
Definition 1:  v = ValM (i) 
, where v is the value of the property from the model 
within time window i.  
 
 Depending on the resource consumption property, 
the calculation of its value can be different e.g. 
ValM(i) of a message queue can be the maximum 
number of messages during the time-window, while 
ValM(i) for a task’s CPU usage is typically 
percentage of the CPU time used by the task during 
the time-window.  
  
Definition 2:  v = ValS(i) 
, where v is the value of the property from the system 
within time window i. 
 
Definition 3:  
 Difference(i) = |ValM(i) – ValS(i)| 
 
 The function returns the absolute value of the 
difference between property values from the model 
and the system within time window i. 
 
Definition 4:  c = Credit(i, α)  
, where c is either 1 or 0, depending on the following 
conditions: 
 
Credit(i, α) = 1 if  
  Difference(i) ≤ α 
 
Credit(i, α) = 0 if  
  Difference(i) > α ∨  (ValS(i)=0 ∧ ValM(i) = 0)  
 
, where α is the tolerable boundary of difference 
between the execution times in the model and the 
system. 
 
 Since the model is an abstraction of the system 
and the model is probabilistic, the prediction values 
from the model are not expected to be exactly the 
same as the observations from the system, therefore 
the value of α should be provided so that a leeway is 
allowed for the model. The unit of α should be the 
same as the unit of value of the property e.g. if the 
execution times are compared, the unit of α should be 
time unit. The value that is assigned to α depends on 
the level of significance that we expect from the 
model; for smaller value of α, we get more accurate 
results, but the risk for rejecting a valid model 
increases. If the difference between corresponding 
property values within a time window is less than or 
equal to the boundary value, the property value from 
the model within the time window is considered as 
accurate. Thus Credit(i, α) =1 means that the model 
in the time window i has enough accuracy. As the 
number of accurate time windows increases, the 
outputs of the model and the system are considered as 
more similar. 

 The property values of both the model and the 
system within some of the time windows may be 0; 
we refer to these time windows as empty time 
windows. Suppose the trace of execution times from a 
system and the corresponding model would look like 
Figure 2. 
 According to the Figure 2 it is obvious that the 
model does not reflect the system well and therefore 
we would expect the validation method to give the 
model a low credit, but the number of empty windows 
are relatively high and since the Credit (i, α) for 
theses time windows will be 1 (Difference (i)=0). To 
avoid empty windows affecting the result they should 
be removed from the calculation; therefore we should 
assign Credit (i, α) = 0 for the empty windows. 
 

 
 

Figure 2 
  
 Definition 5:   
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 , where n is the total number of the time windows 
and k is the number of empty windows. 
 
 P has a value between 0 and 1. The closer P is to 
1, the better is the model’s approximation of system, 
with respect to the property in focus.  
 
4. Evaluation Framework 
 
 We present a framework to evaluate model 
validation methods, including the method proposed in 
Section 3. This framework evaluates the methods for 
different types of systems with respect to a set of 
changes applied to the model specifications; we refer 
to the change set as change scenarios. The framework 
contains a two dimensional matrix as depicted in 
Figure 3. The matrix will contain the results (P 
values) of evaluation experiments for different types 
of systems and with respect to the change scenarios. 
 

 
 

Figure 3: The Framework Matrix to Evaluate 
Validation Methods 

 



 Example 1 represents the framework including the 
change scenarios [12] and two different types of 
systems: 
 
Example 1:  
  
Change scenarios: 
 
• Case 0: No change at all, 
 
• Case1: Add a “dummy task”, without 
 functionality, but with a short oscillating 
 execution time and low priority, 
 
• Case2: Raise the priority of the dummy task 
 drastically, 
 
• Case3: Increase the period time for the dummy 
 task and extend its execution time. 
 

System Types: 
  
• A task model that contains both periodical and 
 sporadic tasks, where the tasks communicate 
 through message queues.   
• A task model that only contains periodical 
 tasks. 
 

The validation results for each type of system with 
respect to the change scenario will be represented in a 
column of the matrix. Each property that is to be 
included in the model validation process is compared 
in a separate matrix.  

  
5. Example 
 
We have performed an evaluation of our model 
validation method by applying it to a system type 
which contains a task model with both periodical and 
sporadic tasks, where the tasks communicate  through 
message queues. The task model is presented in the 
Table 1. The first output of the simulator was used as 
the output of the system, and then we changed the 
models regarding following change scenarios and 
compared the outputs against the original model to 
investigate the method. 
 
• Case0: No change at all 
 
• Case1: Change the behavior of existing tasks 
 e.g. execution times 

 
• Case2: Change the priority of existing tasks 

 
• Case3: Change the period time of a task 
 
• Case4: Add a new task called dummy with a 
 short oscillating execution time and low  priority 
 
• Case5: Raise the priority of the dummy task 
 drastically 
 

• Case6: Increase the period time for the dummy 
 task and extend its execution time. 
 

Table 1: The Model 
 

Task Priority Period 
(ms) 

PLAN_TASK 5 40 
CTRL_TASK 4 or 2 10 or 20
DRIVE_TASK 1 2 
IO_TASK 3 5 

 
The specifications of the model are as following: 
 
• A task may trigger other tasks by using 
 message queues, 
 
• A task may be triggered by timers, events, or a 
 combination of both, 

 
• Depending on the state of the system, the 
 temporal behavior of a task may change, 

 
• Semaphores may block the tasks,  

 
• Scheduling priority and period of the tasks may 
 change, 

 
• A task with a lower priority value is more 
 significant (has a higher priority). 

 
 Execution times, communications, and other 
behaviors that affect timing behavior are described in 
the model.  
 
5.1. Results 
 
To implement the method we presented in the Section 
3 we have developed a tool that compares the original 
model to the model regarding each change scenario, 
and outputs the respective P values. The number of 
time windows was 1000 and α was initiated to 5 
milliseconds. For the evaluation we compared the 
execution time traces of CTRL_TASK task. The 
results are presented in the Table 2. 
 
• Case1: P value is very low since  IO_TASK  
 has a higher priority than CTRL_TASK and 
 changing  the execution  time of IO_TASK 
 affects the execution times of CTRL_TASK 

 
• Case2: When the priority of PLAN_TASK  is 
 decreased, P value shows that execution  times 
 trace of CTRL_TASK is not affected  because the 
 priority of PLAN_TASK is  lower than the priority 
 of CTRL_TASK, but  when the priority of 
 PLAN_TASK is set to a higher priority than  the 
 priority of CTRL_TASK, P value is very low 
 showing that its execution times trace is affected 
 quit much.   
 



• Case3: P value shows that the execution times 
 trace of CTRL_TASK is not affected by 
 increasing the period of PLAN_TASK with a 
 lower priority than CTRL_TASK, but the  trace is 
 affected drastically by increasing the  period of 
 DRIVE_TASK which has a higher  priority than 
 CTRL_TASK. 
 
• Case 4: Adding a task (DUMMY_TASK)  with 
 a lower priority than CTRL_TASK doesn’t 
 influence execution times trace of  CTRL_TASK. 
 
• Case5: Increasing the priority of 
 DUMMY_TASK to a value higher than the 
 priority of CTRL_TASK influences the 
 execution times trace of CTRL_TASK as P 
 value shows. 
 
• Case6: The results in the Case 6 show that 
 increasing the period of DUMMY_TASK  and 
 extending its execution times don’t affect the 
 execution times trace of  CTRL_TASK as long 
 as its priority is lower than the priority of 
 CTRL_TASK, but when its priority is more  than 
 the priority of  CTRL_TASK the  changes 
 influence the  trace.   
 

Table 2: The Results 
 

Change 
Scenarios 

Changes  P (5, 1000)

Case0 - 1 
Case1 IO_TASK: 

Before: C=23 
Changed: C=46  

0.38 

Case2 PLAN_TASK: 
P=6 
 
PLAN_TASK: 
P=2 

1 
 
 
0.18 

Case3 PLAN_TASK: 
T=80 
 
DRIVE_TASK: 
T=10 

1 
 
 
0.03 

Case4 
 

DUMMY_TASK:  
P=6, T=5, C=25 or 50 

1 

Case5 
 

DUMMY_TASK:  
P=1, T=5, C=25 or 50 

0.37 

Case6  
 

DUMMY_TASK:  
P=1, T=10, C=50 or 
100 
 
DUMMY_TASK:  
P=6, T=10, C=50 or 
100 

0.40 
 
 
 
1 

  
 
 
6. Conclusions and Future Work 
  
 In this paper we have presented a method to 
validate simulation models extracted from complex 

real-time systems. The method compares two 
recordings, one from the real system and one from a 
simulation model, with respect to resource 
consumption. The method can be used as a 
complementary method with appropriate statistical 
tests and subjective methods for model validation. 
 We have presented a framework to evaluate the 
proposed method. The framework evaluates the 
method for different types of systems with respect to a 
set of changes, representing common types of 
changes.  
 For our future work we plan to identify several 
different types of systems to evaluate the proposed 
method and using the presented framework. In the 
future work we also plan to develop a framework for 
validation of simulation models extracted from 
complex real-time systems. The framework will 
contain our proposed method and other applicable 
methods such as statistical tests (e.g. Kolmogorov-
Smirnov test) and subjective methods (e.g. Graphical 
Comparisons).   
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