

Validation of Temporal Simulation Models of Complex Real-Time
Systems

Farhang Nemati, Johan Kraft, and Christer Norström
Mälardalen Real-Time Research Centre, Mälardalen University, Västerås, Sweden

{farhang.nemati, johan.kraft, christer.norstrom}@mdh.se

Abstract

Model based analysis has the potential to facilitate
maintenance of complex real-time systems, as it
allows for impact analysis with respect to the
systems’ temporal behavior. Model based analysis of
temporal behavior of a legacy real-time system has
also the potential to support migration toward
component based system. However, since most
software systems today have been developed in a
traditional, code oriented manner, sufficiently
detailed models are typically not available. To apply
model based analysis on these systems, models have
to be extracted from their implementation and
observed run-time behavior. This requires methods
for model validation. The paper proposes a novel
method for model validation and presents a
framework for evaluation of model validation
methods, which will be used to evaluate the proposed
method. The method is targeting temporal models
extracted from complex real-time systems.

1. Introduction

Large industrial software systems often have very
high costs for maintenance. Such systems are
generally very complex and have long lifecycles,
during which they have been developed and
maintained by many different developers, many no
longer available. Design documentation is often
incomplete and out-dated; we refer to systems with
these characteristics as legacy systems.
 Maintenance is the major cost during the lifecycle
of large and complex systems. However in academia
there has not been much attention to maintenance [9].
If a software system becomes hard to maintain due to
increased complexity, it may be more cost-effective
to redevelop the software from the beginning, instead
of maintaining it further. This is not economically
feasible for large legacy systems, which may contain
millions of lines of code, involving hundreds of
person-years in the development process.
 Maintenance of systems with real-time
requirements has additional challenges, as the
changes may violate temporal requirements of the
system. Examples of complex legacy systems with
real-time requirements can be found in industrial
products such as in industrial robotics, telecom

systems and process automation systems. Often, the
details of such legacy systems’ timing behavior are
not known, or it may be quite complex. Thus, the
smallest increase in execution time can potentially
cause a system failure.
 Model based analysis of a legacy real-time system
has the potential to facilitate migration toward a
component based real-time system by analyzing the
timing properties of the legacy code and wrapping it
into components.
 Model based analysis can also be used to analyze
the impact of changes on a system’s temporal
behavior, before introducing the changes to the
system; we refer to this as impact analysis [1]. Since
analysis models of legacy systems usually don’t exist,
model extraction techniques are necessary to extract
the analysis models from the observed behavior and
the implementation of the system. Our aim is to
extract analysis models from complex real-time
systems automatically, as far as possible. Andersson
et al in [1] present a semi-automated method that
extracts models from complex real-time systems using
system’s source code and its recorded behavior during
run-time. Huselius et al proposed a method [7] that
automatically extracts temporal models from run-time
recordings of complex real-time systems, containing
task switch events and inter process communication
(ipc) events. The recording is used as input to an
offline tool that generates a model automatically. The
extracted models are probabilistic [11] because the
run-time observations can not reflect all details of the
implementation. A discrete event simulator is used to
analyze the extracted analysis models, e.g. for impact
analysis.
 To convince the system experts to use the
simulation models, the models should reflect the
system with a satisfactory level of significance;
therefore an appropriate validation process should be
performed before using the models.
 The contribution of this paper is a novel method
for validation of simulation models, describing
temporal behavior of complex real-time systems, by
comparing recordings from the system to
corresponding recordings from simulation of the
extracted model. The paper also presents a framework
for evaluation of model validation methods, which is
used to evaluate the proposed model validation
method. This work was partially supported by the

Swedish Foundation for Strategic Research (SSF) via
the strategic research centre (PROGRESS) at
Mälardalen University.

2. Model Validation

 Model validation is defined as “The process of
determining whether a simulation model is an
accurate representation of the system, for the
particular objectives of the study” [10]. A model is an
abstraction of the system, and details may be omitted
from the model [10], for instance by probabilistic
modeling. Thus, the results from a simulation of such
models may not be identical to the recordings of the
system, e.g., with respect to the exact execution times
of the tasks. However, this kind of simulation model
is supposed to be sufficiently accurate
approximations of the actual system, not an exact
representation of the system. The goal of a validation
process is to show that the model reflects the system
accurately enough to rely on for impact analysis.
 To perform the model validation process,
observations from the system and the predictions
from the simulation model are compared under the
same experimental conditions. There are various
methods to do the comparison; these methods are
either objective or subjective. Subjective methods are
often used for validation of simulation models;
examples of subjective methods are Face Validation,
Graphical Comparisons, Hypothesis Validation, and
Sensitivity Analysis [4]. They are however highly
dependent on domain expertise and prone to human
error. Objective methods use mathematical methods
to compare the outputs from the real system to the
outputs from the simulation model, for instance
statistical tests such as the chi-square test, the
Kolmogorov-Smirnov test, and the Mann-Whitney
test [5]. However, statistical test have many
assumptions which limits their applicability for model
validation. For instance, the system property in focus
may not be stationary, i.e., the distributions of output
data changes over time. Moreover, statistical tests are
only concerned with distributions and not the order of
events.
 A framework for validation of behavioral models
extracted from complex real-time systems is
presented in [3]. The authors present their notion of
model equivalence based on observable property
equivalence which is used to compare results of a
model and an actual system. In the framework they
identify distinct classes of response times or
execution times from both the model and the system
that match, and the results of the model and the
system are compared. However the authors believe
that for model validation comparing one single
observation is not enough and multiple observations
of the system should be used to increase the
confidence in the extracted models.
 A method in [6] is presented for automated
validation of models extracted from real-time
systems. Model checking is used to investigate if the

model can generate the same event sequences as the
recorded event sequences from the system.
 The same author have also proposed a method to
evaluate the quality of models extracted from real-
time systems [8]; a method for comparing recorded
distributions of timing properties, such as task
response time. Such distributions are typically very
complex and not suitable for comparison using
traditional statistical tests targeting model validation.
 Since our focus is validation of simulation models
extracted from complex real-time systems, using only
one method of these methods may not be enough to
validate a simulation model. However, a collection of
methods, each of which investigates a different aspect
of the model, can increase the credibility of the
model. The methods described in [3, 6, 8] are
specifically used for validating temporal models
extracted from legacy real-time systems.

3. Method

 In this section we present a method for validating
temporal models of real-time systems. The targeted
properties are resource consumption properties such
as usage of CPU time and usage of logical resources,
such as message queues. Relying on one single
technique for model validation will be risky in the
sense of accepting an invalid model or to rejecting a
valid model. Thus, we recommend to use the
algorithm we present here as a complementary
method with other appropriate model validation
methods such as statistical tests and graphical
methods.
 In the algorithm, traces of resource consumption
property, e.g. execution times of a task, from both the
simulated model and the system are compared. Firstly
a scenario that contains experimental conditions
should be defined. The scenario should be the same
for both the model and the system; because in the
algorithm it is supposed that traces from both the
model and the system start from the same state. A
small deviation between start states may lead to
wrong results. A solution can be comparing the traces
from the model and the system immediately after a
specific event, which is available in both traces and
marks a suitable state where to begin the comparison,
e.g. the start of a periodic task with high priority.

Figure 1: Traces of execution times from model
and system are divided into time windows

 In the method the traces of the resource
consumption property, from the model and the system
are sliced into n equal time windows (Figure 1). The
precision of the comparison increases as n is

increased. However the maximum n is a number that
slices the traces into the smallest time unit of the
traces.

Definition 1: v = ValM (i)
, where v is the value of the property from the model
within time window i.

 Depending on the resource consumption property,
the calculation of its value can be different e.g.
ValM(i) of a message queue can be the maximum
number of messages during the time-window, while
ValM(i) for a task’s CPU usage is typically
percentage of the CPU time used by the task during
the time-window.

Definition 2: v = ValS(i)
, where v is the value of the property from the system
within time window i.

Definition 3:
 Difference(i) = |ValM(i) – ValS(i)|

 The function returns the absolute value of the
difference between property values from the model
and the system within time window i.

Definition 4: c = Credit(i, α)
, where c is either 1 or 0, depending on the following
conditions:

Credit(i, α) = 1 if
 Difference(i) ≤ α

Credit(i, α) = 0 if
 Difference(i) > α ∨ (ValS(i)=0 ∧ ValM(i) = 0)

, where α is the tolerable boundary of difference
between the execution times in the model and the
system.

 Since the model is an abstraction of the system
and the model is probabilistic, the prediction values
from the model are not expected to be exactly the
same as the observations from the system, therefore
the value of α should be provided so that a leeway is
allowed for the model. The unit of α should be the
same as the unit of value of the property e.g. if the
execution times are compared, the unit of α should be
time unit. The value that is assigned to α depends on
the level of significance that we expect from the
model; for smaller value of α, we get more accurate
results, but the risk for rejecting a valid model
increases. If the difference between corresponding
property values within a time window is less than or
equal to the boundary value, the property value from
the model within the time window is considered as
accurate. Thus Credit(i, α) =1 means that the model
in the time window i has enough accuracy. As the
number of accurate time windows increases, the
outputs of the model and the system are considered as
more similar.

 The property values of both the model and the
system within some of the time windows may be 0;
we refer to these time windows as empty time
windows. Suppose the trace of execution times from a
system and the corresponding model would look like
Figure 2.
 According to the Figure 2 it is obvious that the
model does not reflect the system well and therefore
we would expect the validation method to give the
model a low credit, but the number of empty windows
are relatively high and since the Credit (i, α) for
theses time windows will be 1 (Difference (i)=0). To
avoid empty windows affecting the result they should
be removed from the calculation; therefore we should
assign Credit (i, α) = 0 for the empty windows.

Figure 2

 Definition 5:

P(α, n) =
kn

iCredit
n

i

−

∑
=1

) ,(α

 , where n is the total number of the time windows
and k is the number of empty windows.

 P has a value between 0 and 1. The closer P is to
1, the better is the model’s approximation of system,
with respect to the property in focus.

4. Evaluation Framework

 We present a framework to evaluate model
validation methods, including the method proposed in
Section 3. This framework evaluates the methods for
different types of systems with respect to a set of
changes applied to the model specifications; we refer
to the change set as change scenarios. The framework
contains a two dimensional matrix as depicted in
Figure 3. The matrix will contain the results (P
values) of evaluation experiments for different types
of systems and with respect to the change scenarios.

Figure 3: The Framework Matrix to Evaluate
Validation Methods

 Example 1 represents the framework including the
change scenarios [12] and two different types of
systems:

Example 1:

Change scenarios:

• Case 0: No change at all,

• Case1: Add a “dummy task”, without
 functionality, but with a short oscillating
 execution time and low priority,

• Case2: Raise the priority of the dummy task
 drastically,

• Case3: Increase the period time for the dummy
 task and extend its execution time.

System Types:

• A task model that contains both periodical and
 sporadic tasks, where the tasks communicate
 through message queues.
• A task model that only contains periodical
 tasks.

The validation results for each type of system with
respect to the change scenario will be represented in a
column of the matrix. Each property that is to be
included in the model validation process is compared
in a separate matrix.

5. Example

We have performed an evaluation of our model
validation method by applying it to a system type
which contains a task model with both periodical and
sporadic tasks, where the tasks communicate through
message queues. The task model is presented in the
Table 1. The first output of the simulator was used as
the output of the system, and then we changed the
models regarding following change scenarios and
compared the outputs against the original model to
investigate the method.

• Case0: No change at all

• Case1: Change the behavior of existing tasks
 e.g. execution times

• Case2: Change the priority of existing tasks

• Case3: Change the period time of a task

• Case4: Add a new task called dummy with a
 short oscillating execution time and low priority

• Case5: Raise the priority of the dummy task
 drastically

• Case6: Increase the period time for the dummy
 task and extend its execution time.

Table 1: The Model

Task Priority Period
(ms)

PLAN_TASK 5 40
CTRL_TASK 4 or 2 10 or 20
DRIVE_TASK 1 2
IO_TASK 3 5

The specifications of the model are as following:

• A task may trigger other tasks by using
 message queues,

• A task may be triggered by timers, events, or a
 combination of both,

• Depending on the state of the system, the
 temporal behavior of a task may change,

• Semaphores may block the tasks,

• Scheduling priority and period of the tasks may
 change,

• A task with a lower priority value is more
 significant (has a higher priority).

 Execution times, communications, and other
behaviors that affect timing behavior are described in
the model.

5.1. Results

To implement the method we presented in the Section
3 we have developed a tool that compares the original
model to the model regarding each change scenario,
and outputs the respective P values. The number of
time windows was 1000 and α was initiated to 5
milliseconds. For the evaluation we compared the
execution time traces of CTRL_TASK task. The
results are presented in the Table 2.

• Case1: P value is very low since IO_TASK
 has a higher priority than CTRL_TASK and
 changing the execution time of IO_TASK
 affects the execution times of CTRL_TASK

• Case2: When the priority of PLAN_TASK is
 decreased, P value shows that execution times
 trace of CTRL_TASK is not affected because the
 priority of PLAN_TASK is lower than the priority
 of CTRL_TASK, but when the priority of
 PLAN_TASK is set to a higher priority than the
 priority of CTRL_TASK, P value is very low
 showing that its execution times trace is affected
 quit much.

• Case3: P value shows that the execution times
 trace of CTRL_TASK is not affected by
 increasing the period of PLAN_TASK with a
 lower priority than CTRL_TASK, but the trace is
 affected drastically by increasing the period of
 DRIVE_TASK which has a higher priority than
 CTRL_TASK.

• Case 4: Adding a task (DUMMY_TASK) with
 a lower priority than CTRL_TASK doesn’t
 influence execution times trace of CTRL_TASK.

• Case5: Increasing the priority of
 DUMMY_TASK to a value higher than the
 priority of CTRL_TASK influences the
 execution times trace of CTRL_TASK as P
 value shows.

• Case6: The results in the Case 6 show that
 increasing the period of DUMMY_TASK and
 extending its execution times don’t affect the
 execution times trace of CTRL_TASK as long
 as its priority is lower than the priority of
 CTRL_TASK, but when its priority is more than
 the priority of CTRL_TASK the changes
 influence the trace.

Table 2: The Results

Change
Scenarios

Changes P (5, 1000)

Case0 - 1
Case1 IO_TASK:

Before: C=23
Changed: C=46

0.38

Case2 PLAN_TASK:
P=6

PLAN_TASK:
P=2

1

0.18

Case3 PLAN_TASK:
T=80

DRIVE_TASK:
T=10

1

0.03

Case4

DUMMY_TASK:
P=6, T=5, C=25 or 50

1

Case5

DUMMY_TASK:
P=1, T=5, C=25 or 50

0.37

Case6

DUMMY_TASK:
P=1, T=10, C=50 or
100

DUMMY_TASK:
P=6, T=10, C=50 or
100

0.40

1

6. Conclusions and Future Work

 In this paper we have presented a method to
validate simulation models extracted from complex

real-time systems. The method compares two
recordings, one from the real system and one from a
simulation model, with respect to resource
consumption. The method can be used as a
complementary method with appropriate statistical
tests and subjective methods for model validation.
 We have presented a framework to evaluate the
proposed method. The framework evaluates the
method for different types of systems with respect to a
set of changes, representing common types of
changes.
 For our future work we plan to identify several
different types of systems to evaluate the proposed
method and using the presented framework. In the
future work we also plan to develop a framework for
validation of simulation models extracted from
complex real-time systems. The framework will
contain our proposed method and other applicable
methods such as statistical tests (e.g. Kolmogorov-
Smirnov test) and subjective methods (e.g. Graphical
Comparisons).

References

[1] J. Andersson, J. Huselius, C. Norström, and A.
 Wall. Extracting Simulation Models from
 Complex Embedded Real-Time Systems. In
 Proceedings of the 2006 International Conference
 on Software Engineering Advances ICSEA'06,
 IEEE, Tahiti, French Polynesia, October 2006.
[2] J. Andersson, A. Wall, and C. Norström.
 Decreasing Maintenance Costs by Introducing
 Formal Analysis of Real-Time Behavior in
 Industrial Settings. In Proceedings of the 1st
 International Symposium on Leveraging
 Applications of Formal Methods, October
 2004.
[3] J. Andersson, A. Wall and C. Norström.
 Validating Temporal Behavior Models of
 Complex Real-Time Systems. In Proceedings of
 the 4th Conference on Software Engineering
 Research and Practice in Sweden (SERPS'04),
 Linköping, Sweden, September 2004.
[4] O. Balci. How to Assess the Acceptability and
 Credibility of Simulation Results. In
 Proceedings of the 21st Conference on Winter
 Simulation, pages 62-71, Washington, D.C.,
 United States, 1989.
[5] A. V. Gafarian and J. E. Walsh. Statistical
 Approach for Validating Simulation Models by
 Comparison with Operational Systems. In
 Proceedings of the 4th International Conference
 on Operations Research, pages 702-705, New
 York, United States, 1969.
[6] J. Huselius, J. Andersson, H. Hansson, and S.
 Punnekkat. Automatic Generation and Validation
 of Models of Legacy Software. In Proceedings of
 the 12th IEEE International Conference on
 Embedded and Real-Time Computing Systems
 and Applications (RTCSA), pages 342-349,
 Sydney, Australia, August 2006.
[7] J. Huselius, J. Andersson. Model Synthesis for
 Real-Time Systems. In Proceedings of the 9th

 European Conference on Software Maintenance
 and Reengineering, pages 52–60, March 2005.
[8] J. Huselius, J. Kraft, H. Hansson, and S.
 Punnekkat. Evaluating the Quality of Models
 Extracted from Embedded Real-Time Software.
 In Proceedings of the 14th Annual IEEE
 International Conference and Workshop on the
 Engineering of Computer Based Systems,
 pages 577-585, IEEE, Tucson, USA, March
 2007.
[9] J. Huselius. Reverse Engineering of Legacy
 Real-Time Systems: An Automated Approach
 Based on Execution-Time Recording. PhD
 Thesis, Mälardalen University Press, June
 2007.
[10] A. M. Law. How to Build Valid and Credible
 Simulation Models. In Proceedings of the 38th
 Conference on Winter Simulation, pages 58-66,
 Monterey, California, United States, 2006.
[11] A. Wall, J. Andersson, and C. Norström.
 Probabilistic Simulation-based Analysis of
 Complex Real-Time Systems. In proceedings of
 the 6th IEEE International Symposium on Object-
 oriented Real-time distributed Computing, IEEE
 Computer Society, Hakodate, Hokkaido, Japan,
 May 2003.
[12] A. Wall. Architectural Modeling and Analysis
 of Complex Real-Time Systems. PhD Thesis,
 Mälardalen University Press, September 2003.

