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Abstract

Real-time systems typically have to satisfy complex re-
quirements, mapped to the task attributes, eventually guar-
anteed by the underlying scheduler. These systems consist
of a mix of hard and soft tasks with varying criticality, as
well as associated fault tolerance requirements. Addition-
ally, the relative criticality of tasks could undergo changes
during the system evolution. Time redundancy techniques
are often preferred in embedded applications and, hence, it
is extremely important to devise appropriate methodologies
for scheduling real-time tasks under failure assumptions.

In this paper, we propose a methodology to provide a
priori guarantees in fixed priority scheduling (FPS) such
that the system will be able to tolerate one error per every
critical task instance. We do so by using Integer Linear Pro-
gramming (ILP) to derive task attributes that guarantee re-
execution of every critical task instance before its deadline,
while keeping the associated costs minimized. We illustrate
the effectiveness of our approach, in comparison with fault
tolerant (FT) adaptations of the well-known rate monotonic
(RM) scheduling, by simulations.

1 Introduction

Most embedded real-time applications typically have to

satisfy complex requirements, mapped to task attributes and

further used by the underlying scheduler in the scheduling

decision. These systems are often characterized by high de-

pendability requirements, where fault tolerance techniques

play a crucial role towards achieving them. Traditionally,

such systems found in, e.g., aerospace, avionics or nuclear

domains, were built with high replication and redundancy,

with the objective to maintain the properties of correctness

and timeliness even under error occurrences. However, in

majority of modern embedded applications, due to space,

weight and cost considerations, it may not be feasible to
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provide space redundancy. Such systems often have to ex-

ploit time redundancy techniques. At the same time, it is

imperative that the exploitation of time redundancy does not

jeopardize the timeliness requirements on critical tasks.

Real-time scheduling theory, and in particular fixed pri-

ority scheduling (FPS), has fairly matured over the past two

decades to be able to analyze complex and realistic sys-

tems [14, 20, 7, 9]. However, the designers are still left

with many practical issues, such as flexibility or fault toler-

ance guarantees, which are not comprehensively addressed

by any single scheduling paradigm. As rightly identified in

[21], co-development/integration of real-time and fault tol-

erance dimensions are extremely important, especially tak-

ing care that, upon interaction, their independent protocols

do not invalidate the pre-conditions of each other.

Incorporating fault tolerance into various real-time

scheduling paradigms has been addressed by several re-

searchers. In [11] and [6], different approaches are pre-

sented to schedule primary and alternate versions of tasks

to provide fault tolerance. Krishna and Shin [8] used a

dynamic programming algorithm to embed backup sched-

ules into the primary schedule. Ramos-Thuel and Stros-

nider [18] used the Transient Server approach to handle

transient errors and investigated the spare capacity to be

given to the server at each priority level. They also studied

the effect of task shedding to the maximum server capac-

ity where task criticality is used for deciding which task to

shed. In [5, 10], the authors presented a method for guaran-

teeing that the real-time tasks will meet the deadlines under

transient faults, by resorting to reserving sufficient slack in

queue-based schedules. Pandya and Malek [16] showed that

single faults with a minimum inter-arrival time of largest

period in the task set can be recovered if the processor uti-

lization is less than or equal to 0.5 under rate monotonic

(RM) scheduling. Burns et. al. [1, 17, 2] provided exact

schedulability tests for fault tolerant task sets under spec-

ified failure hypothesis. These analysis are applicable for

FPS schemes, and, being exact analysis, can guarantee task

sets with even higher utilization than guaranteed by Pandya

and Malek’s test [16]. Lima and Burns [12, 13] extended

this analysis in case of multiple faults, as well as for the



case of increasing the priority of a critical task’s alternate

upon fault occurrences, and in [19] an upper bound for fault-

tolerance in real-time systems based on slack redistribution

is presented. While the above works have advanced the field

of fault tolerant scheduling within specified contexts, each

one has some shortcomings, e.g., restrictive task and fault

models, non-consideration of task criticality, high compu-

tational requirements of complex on-line mechanisms, and

scheduler modifications which may be unacceptable from

an industrial perspective.

Unlike many previous works, our method guarantees

all primaries’ and all alternates’ feasible execution, up to
100% utilization, in FPS, without any on-line computa-

tional overhead or major modifications to the underlying

scheduler. By doing so, we can successfully recover even

in situations where errors occur at the end of the primary

task executions. Furthermore, we are able to provide guar-

antees in worse error scenarios, e.g., assuming one error
per task instance, as compared to earlier assumptions such

as one error per longest task period. Additionally, in case

the system load permits, non-critical tasks can feasibly co-

exist with critical ones at high priority levels. Our approach

targets systems consisting of a mix of hard and soft real-

time tasks, where missing a hard task deadline could have

a large negative impact on the system, while missing soft

task deadlines could be occasionally admissible. In such

systems, the error recovery has to be performed in a prior-

itized (due to resource constraints) way, depending on the

task criticalities. Moreover, as the relative task criticali-

ties could undergo changes during the evolution/life time

of these systems, the designer might have the tedious task

of making new schedules to reflect such changes. This is es-

pecially relevant in the case of ’system of systems’ or com-

ponent based systems where the integrator needs to make

judicious choices for task priority assigning/fine-tuning for

the subsystem scheduling within the global context.

In our approach, we use the term ‘FT-feasibility’ of a

schedule to indicate whether it is guaranteed to meet the

critical task deadlines under specified error assumptions.

We assume that the fault tolerance strategy employed is the

re-execution of the affected tasks, or execution of alternate

tasks in the event of errors. We analyze the error-induced

additional timing requirements at the task instance level and

derive appropriate task execution windows satisfying these

requirements. Based on these windows, and using ILP, we

calculate FPS attributes to obtain FT-feasible schedules. In

some cases, e.g., when the fault tolerance requirements can

not be expressed directly by FPS attributes, we introduce ar-

tifacts by splitting tasks into instances to obtain a new task

set with consistent FPS attributes. The number of artifacts

is bounded by the total number of instances in the sched-

ule within the hyperperiod (LCM). Our method is guaran-

teed to find a solution, i.e., FT-feasible FPS attributes, un-

der given assumptions, and is optimal in the sense that it

minimizes the number of artifacts, which is the main ele-

ment of cost. In cases the cost may be found too high, e.g.,

due to extremely large task sets, the proposed methodol-

ogy allows the end user to selectively choose between the

level of FT-feasibility and the number of artifacts. This

concept of FT-feasibility could also be effectively used for

selecting most appropriate schedules based on the critical-

ity of a given task set, as against the traditional priority-

based approaches, which are often too pessimistic. In [4], a

method was presented to translate off-line schedules to FPS

attributes, assuming the existence of feasibility windows for

task instances. In this paper, we derive the FT feasibility

windows of the tasks and target FP-based systems directly.

Our methodology is highly applicable in safety criti-

cal RT systems design, in legacy applications (where one

needs to preserve the original scheduler and scheduling pol-

icy), during system evolution (where criticalities and prior-

ities could undergo changes), or during subsystem integra-

tion (as in embedded software present in Electronic Con-

trol Units) in automotive applications. For example, in the

case of two ECUs, developed with pre-assigned priorities

for tasks from specified priority bands, one may want to

fine-tune and get a better schedule considering the global

context during integration. One can envisage many possi-

ble variations to the error model and fault tolerance strate-

gies. Though the present work does not categorically men-

tion each of them, our method is designed in such a way

as to accommodate future anticipated changes in the error

model and fault tolerance strategies.

The remainder of the paper is organized as follows. In

the next section, we present the system characteristics, task

model and error scenarios assumed in this paper, together

with the FT strategy used in our analysis. Section 3 de-

scribes our proposed methodology, illustrated by an exam-

ple in Section 4. We present evaluation results in Section 5

and conclude the paper in Section 6.

2 System and task model

We assume a periodic task set, Γ = {τ1, . . . , τn}, where

each task represents a real-time thread of execution. Each

task τi has a period T (τi) and a known worst case execution

time (WCET) C(τi). We assume that the tasks have dead-

lines (D(τi)) equal to their periods. The task set Γ consists

of critical and non-critical tasks where the task criticality

could be seen as a measure of the impact of its correct (or in-

correct) functioning on the overall system correctness. Each

critical task τi has an alternate task τ̄i, where C(τ̄i) ≤ C(τi)
and D(τ̄i) = D(τi). The alternate can typically be a re-

execution of the same task, a recovery block, an exception

handler or an alternate with imprecise computation.

Let Γc represent the subset of critical tasks out of the



original task set and Γnc represent the subset of non-critical

tasks, so that Γ = Γc ∪ Γnc. We use Γ̄c to represent the

set of critical task alternates. While our framework permits

varying levels of task criticality, in this paper, to simplify

the illustration, we use binary values for criticalities. For

each task instance τ j
i we define an original feasibility win-

dow delimited by its original earliest start time est(τ j
i ) and

deadline D(τ j
i ) relative to the start of the LCM.

Obviously, the maximum utilization of the original crit-

ical tasks together with their alternates can never exceed

100%. This will imply that, during error recovery, execu-

tion of non-critical tasks cannot be permitted as it may re-

sult in overload conditions. We assume that the scheduler

has adequate support for flagging non-critical tasks as un-

schedulable during such scenarios, in addition to appropri-

ate error detection mechanisms in the operating system.

Our primary concern is providing schedulability guaran-

tees to all critical tasks in fault tolerant real-time systems

which employ time redundancy for error recovery. The ba-

sic assumption is that the effects of a large variety of tran-

sient and intermittent hardware faults can effectively be tol-

erated by a simple re-execution of the affected task, whilst

the effects of software design faults could be tolerated by

executing an alternate action, e.g., recovery blocks or ex-

ception handlers. Both situations could be considered as

execution of another task (either the primary itself or an al-

ternate) with a specified computation time requirement.

We assume that an error can adversely affect only one

task at a time and is detected before the termination of

the current execution of the affected task instance. This

would naturally include error detection before any context

switches due to release of a high priority task. Although

somewhat pessimistic, this assumption is realistic since, in

many implementations, errors are detected by acceptance

tests which are executed at the end of task execution, or

by watchdog timers that interrupt the task once it has ex-

hausted its budgeted worst case execution time. In case

of tasks communicating via shared resources, we assume

that an acceptance test is executed before passing an out-

put value to another task, to avoid error propagations and

subsequent domino effects.

Our proposed approach enables masking of up to one er-
ror per each task instance which is a worse scenario com-

pared to earlier assumptions such as one error per longest

task period, or an explicit minimum inter-arrival time be-

tween consecutive error occurrences.

3 Methodology

3.1 Overview

As the original feasibility windows and original priority

assignment (if any, e.g., in case of a legacy system) may not

express the various FT requirements, our goal is to, first, de-

rive new feasibility windows for each task instance τ j
i ∈ Γ

to reflect the FT requirements. Then, we assign FPS at-

tributes that ensure task executions within their new feasi-

bility windows, thus, fulfilling the FT requirements.

While executing non-critical tasks in the background can

be a safe and straightforward solution, in our approach we

aim to provide non-critical tasks a better service than back-

ground scheduling. Hence, depending on the criticality of

the original tasks, the new feasibility windows we are look-

ing for differ as:

1. Fault Tolerant (FT) feasibility windows for critical

task instances

2. Fault Aware (FA) feasibility windows for non-critical

task instances

While critical task instances need to complete within

their FT feasibility windows to be able to re-execute fea-

sibly upon an error, the derivation of FA feasibility win-

dows has two purposes: 1) to prevent non-critical task in-

stances from interfering with critical ones, i.e., to cause a

critical task instance to miss its deadline, while 2) enabling

the non-critical task execution at high priority levels. Since

the size of the FA feasibility windows depend on the size of

the FT feasibility windows, in our approach we first derive

FT-feasibility windows and then FA feasibility windows.

Then, we assign fixed priorities to ensure the task execu-

tions within their newly derived feasibility windows.

In some cases, however, FPS cannot express all our

assumed FT requirements and error assumptions with the

same priorities for all instances directly. General FT re-

quirements may require that instances of a given set of tasks

need to be executed in different order on different occasions.

Obviously, there exists no valid FPS priority assignment

that can achieve these different orders. Our algorithm de-

tects such situations, and circumvents the problem by split-

ting a task into its instances. Then, the algorithm assigns

different priorities to the newly generated ”artifact” tasks,

the former instances. Key issues in resolving the priority

conflicts are the number of artifact tasks created, and the

number of priority levels. Depending on how the priority

conflict is resolved, the number of resulting tasks may vary,

i.e., based on the size of the periods of the split tasks. Our

algorithm minimizes the number of artifact tasks by using

ILP for solving the priority relations. The major steps of the

proposed methodology are shown in Figure 1.

3.2 Proposed approach

In this section we use a simple example throughout the

description of our approach. Let our task set consist of 2

tasks, A and B, where T (A) = 3, T (B) = 6, C(A) = 2



Derivation of fault-tolerant
feasibility windows for critical tasks

Derivation of fault-aware feasiblity
windows for non-critical tasks

Formulation of optimization problem to 
minimize potential costs

Integer Linear Programming (ILP)

Fault Model

Task Criticalities

Original
Task Attributes

FT feasible
Task attributes

Figure 1. Methodology overview

and C(B) = 2, scheduled according to the RM policy (Fig-

ure 2), where B is the critical task with fault tolerance re-

quirements. Here, the earliest start times and the deadlines

are represented by up- and down arrows respectively. We

assume that a simple re-execution of the affected task is the

fault tolerance strategy.

A

B

A

B

0 6

Figure 2. Original task set

To be able to re-execute B upon an error, B must com-

plete before D(B) − C(B). In this case, B’s new deadline

will be 4. One possibility is to assign B a higher priority

than A. However, by doing so, the first instance of A will

always miss its deadline, even in error-free scenarios (Fig-

ure 3). Moreover, raising the priority of critical tasks may

not always ensure fault tolerance in our assumed error sce-

narios, i.e., one error per task instance, as the processor uti-

lization approaches 100%.

B

A

0 6

deadline m iss!

Figure 3. ’B’ fault tolerant - ’A’ always misses
its deadline

3.2.1 Derivation of FT- and FA feasibility windows

The first part of our approach is the derivation of FT and

FA feasibility windows for critical and non-critical task in-

stances respectively. Our approach first derives FT dead-

lines for the primary versions of the critical task instances

so that, in case of a critical task error, an alternate version

of that instance can be executed before its original dead-

line. Then FA deadlines for the non-critical task instances

are derived so that the provided fault tolerance for the criti-

cal ones is not jeopardized. During these steps the goal is to

keep the FT and FA deadlines as late as possible in order to

maximize the flexibility for the second part of our approach,

which is the FPS attribute assignment using an ILP solver.

Derivation of FT deadlines: The aim of this step is to

reserve sufficient resources for the executions of the crit-

ical task alternates in the schedule. While one can use

any method to achieve that, our goal is to provide guaran-

tees in scenarios where the processor utilization can reach

100%. Thus, we choose the approach proposed by Chetto

and Chetto [3] to calculate the latest possible start of ex-

ecution for critical task alternates. Specifically, we select

the set of critical tasks Γc and their alternates Γ̄c and calcu-

late FT-deadlines for each critical task instance, DFT (τ j
i ),

equal to the latest start time of its alternate τ̄ j
i .In this way we

reserve sufficient resources for each critical task instance al-

ternate, assuming that the cumulative processor utilization

of the primaries and their alternates does not exceed 100%

over LCM. In our example, the FT deadline of B is 4.

Derivation of FA deadlines: We aim to provide FA dead-

lines to non-critical task instances to protect critical ones

from being adversely affected. As a part of recovery ac-

tion upon errors, the underlying fault tolerant on-line mech-

anism checks if there is enough time left for the non-critical

task instances to complete before their new deadlines. If

not, these instances are not executed.

To derive the FA deadlines, we repeat the process as in



FT deadline derivation, on the set of non-critical tasks, Γnc,

but in the remaining slack after the critical task primaries

are scheduled to execute as late as possible. We do so due

to two reasons: we want to prevent non-critical tasks from

delaying the execution of critical primaries beyond their FT

deadlines, and to alow non-critical tasks to be executed at

high priority levels. In our example the derived FT and FA

deadlines are illustrated in Figure 4, where the FA deadlines

for the instances of A are 2 and 6 respectively.

A

B

A

0 6

FA deadlines

FT deadline

Figure 4. FT and FA deadlines

In some cases, we may fail finding valid FA deadlines

for some non-critical task instances. We say that a FA dead-

line, DFA(τ j
i ), is not valid if DFA(τ j

i )−est(τ j
i ) < C(τ j

i ).
This scenario could occur since the task set consists now of

tasks with deadlines less than periods. In these cases, we

keep the original deadline, and make sure that the priority

assignment mechanism will assign the non-critical task a

background priority, i.e., lower than any other critical task,

and any other non-critical task with a valid FA deadline.

3.2.2 FPS attribute assignment

We analyze the task set with new deadlines and identify pri-

ority relations for each point in time tk at which at least

one task instance is released. We derive priority inequali-

ties between instances to ensure their execution within their

derived FT- and FA feasibility windows. By solving the in-

equalities, our method outputs a set of tasks, ΓFPS , with

FPS attributes.

Our task model consists now of four types of task in-

stances: critical task instances consisting of primaries Γc

and alternates Γ̄c, and non-critical task instances with and

without valid FA deadlines, Γnc = ΓFA
nc ∪ Γnon FA

nc . Ev-

ery tk ∈ [0, LCM) such that tk equals the release time of

at least one task instance, we consider a subset Γtk
⊆ Γ

consisting of:

1. {current instances}tk
- instances τ j

i of tasks τi, re-

leased at the time tk: est(τ j
i ) = tk

2. {interfering instances}tk
- instances τ q

s of task τs

released before tk but potentially executing after tk:

est(τ q
s ) < tk < D(τ q

s ), where

D(τ q
s ) =

⎧⎪⎪⎨
⎪⎪⎩

DFT (τ q
s ), if τ q

s ∈ Γc

DFT (τ q
s ), if τ q

s ∈ Γ̄c

DFA(τ q
s ), if τ q

s ∈ ΓFA
nc

D(τ q
s ), if τ q

s ∈ Γnon FA
nc

We derive priority relations within each subset Γtk
based

on the derived FT and FA deadlines, i.e., the instance with

the shortest relative deadline will get the highest priority in

each inequality:

∀tk,∀τ j
i , τ q

s ∈ Γtk
, where i �= s:

1. if τ j
i , τ q

s ∈ Γc ∪ ΓFA
nc , or if τ j

i , τ q
s ∈ Γnon FA

nc

P (τ j
i ) > P (τ q

s ), where D(τ j
i ) < D(τ q

s )

2. if τ j
i ∈ Γc ∪ ΓFA

nc and τ q
s ∈ Γnon FA

nc

P (τ j
i ) > P (τ q

s )

In tie situations, e.g., when the instances τ j
i and τ q

s have

same deadlines, we prioritize the one with the earliest start

time. In cases where even the earliest start times are equal,

we derive the priority inequalities consistently.

Our goal is to provide tasks with fixed offsets and fixed

priorities. When we solve the derived priority inequalities,

however, it may happen that different instances of the same

task need to be assigned different priorities. These cases

cannot be expressed directly with fixed priorities and are

the sources for priority assignment conflicts. We solve the

issue by splitting the tasks with inconsistent priority assign-

ments into a number of new periodic tasks with different

priorities. The new task’s instances comprise all instances

of the original tasks. We use ILP to find the priorities and

the splits that yield the smallest number of FT FPS tasks.

3.2.3 ILP formulation

The goal of the attribute assignment problem is to find the

minimum number of tasks together with their priorities, that

fulfill the priority relations derived so far. As mentioned

above, each task of the task set is either one of the original

tasks or an artifact task created from one of the instances of

an original task selected for splitting.

We use ILP since we are only interested in integral pri-

ority assignments. In the ILP problem the goal function G
to be minimized computes the number of tasks to be used in

the FPS scheduler.

G = N +
N∑

i=1

(ki − 1) ∗ bi +
N∑

i=1

ki∑
j=1

b̄j
i

where N is the number of original tasks, ki is the number

of instances of τi over LCM, bi is a binary integral variable



that indicates if τi needs to be split into its instances and

b̄j
i is a binary variable that indicates if the alternate of the

critical task instance τ j
i can be executed at the same priority

as its primary.

The constraints of the ILP problem reflect the restrictions

on the task priorities as imposed by the scheduling prob-

lem. To account for the case of priority conflicts, i.e., when

tasks have to be split, the constraints between the original

tasks, including task re-executions, are extended to include

the constraints of the artifact tasks. Thus each priority rela-

tion P (τ j
i ) > P (τ q

p ) between two tasks is translated into an

ILP constraint:

pi + pj
i > pp + pq

p,

where the variables pi and pp stand for the priorities of the

FPS tasks representing the original tasks or alternates τi and

τp, respectively, and pj
i , pq

p stand for the priorities of the

artifact tasks τ j
i and τ q

p (in case it is necessary to split the

original tasks or to run an alternate at a different priority).

Although this may look like a constraint between four tasks

(τi, τ j
i , τp, τ q

p ) it is in fact a constraint between two tasks

– for each task only its original (τi resp. τp) or its artifact

tasks (τ j
i resp. τ q

p ) can exist in the FPS schedule. In case the

priority relation involves task re-executions, e g., P (τ̄ j
i ) >

P (τ q
p ) the translated constraint is:

p̄j
i > pp + pq

p,

where τ̄ j
i represents the alternate execution of τ j

i . Our goal

is to be able to re-execute a task instance without changing

its priority.

A further set of constraints for each task τi ensures that

only either the original tasks or their instances (artifact) are

assigned valid priorities (greater than 0) by the ILP solver.

All other priorities are set to zero.

pi ≤ (1 − bi) ∗ M

∀j : pj
i ≤ bi ∗ M

While both primaries and alternates can coexist at different

valid priorities, the last set of constraints aims to yield same

priorities for both of them. Otherwise, the alternate will be

assigned a different priority than its primary.

(pi + pj
i ) − b̄j

i ≤ b̄j
i ∗ M

In these constraints M is a large number, larger than the

total number of instances and alternates in the original task

set. The variable bi for task τi, which also occurs in the

goal function, indicates if τi has to be split, i.e., bi allows

only a task or its artifact tasks to be assigned valid priorities.

On the other hand, the variable b̄j
i ia a binary variable that

indicates if the alternate of τ j
i , i.e., τ̄ j

i , can be scheduled

at the same priority as its primary. Since the goal function

associates a penalty for each bi and b̄j
i that has to be set

to 1, the ILP problem indeed searches for a solution that

produces a minimum number of task splits. The constraints

on the binary variables complete the ILP constraints:

∀i, j : bi, b̄
j
i ≤ 1

The solution of the ILP problem yields the total number of

tasks as the result of the goal function. The values of the

variables represent a priority assignment for tasks and arti-

fact tasks that satisfies the priority relations of the schedul-

ing problem.

3.2.4 Periods and offsets

Once the task priorities (P (τi)) have been assigned by the

ILP-solver, we can now focus on the assignment of periods

(T (τi)) and offsets (O(τi)). Based on the information pro-

vided by the solver, we assign periods and offsets to each

task in order to ensure their run time execution under FPS

within their respective FT/FA feasibility windows:

for 1 ≤ i ≤ nr of tasks in ΓFPS

T (τi) =
LCM

nr of instances(τi)
O(τi) = est(τ1

i ))

The final set of tasks executing under FPS is presented in

Figure 5. A1 has the highest priority and A2 the lowest. In

Figure 5 (a), the tasks execute the worst case scenario, i.e.,

task execution equal to WCET and errors occurring at the

end of the executions. In this case, A2 will be shed by the

scheduler due to the system overload. However, at run-time,

tasks will most likely execute for less than their WCET’s. In

such scenarios, B can feasibly re-execute as well as the non

critical tasks A1 and A2 can complete before their deadlines

(Figure 5 (b)).

A1 A1A1

B

A1

B BB

A2

(a) executions equal to WCET (b) executions less than WCET

Figure 5. FT feasible taskset

4 Example

We illustrate our method by an example. Let us assume

we have a task set schedulable by RM as described in Table



1 and Figure 6.

Task T C P Criticality

A 3 1 3 (highest) 0 (non-critical)

B 4 1 2 1

C 12 3 1 1

Table 1. Original task set

A

B B

0

B

4 12

C C

0

C

12

8

3 6 9 12

A A A

Figure 6. Original RM schedule

Let us now assume B and C are the critical tasks. In this

example, RM priority assignment cannot guarantee fault

tolerance on every critical task instance, e.g., if all instances

of B are hit by faults and need to be re-executed, the primary

version of C will always miss its deadline (Figure 7).

B

4 12

12

8

B B

A

3 6 9 12

A A A

C

0

0

0

B B

deadline miss!

B

Figure 7. RM schedule in presence of errors -
C misses its deadline

In our method, we derive FPS attributes to guarantee

fault tolerance on each critical task instance by first deriving

FT feasibility windows for the critical tasks. We do so by

calculating the latest possible start of execution for critical

tasks and alternates (Figure 8). As previously mentioned,

the earliest start times and the deadlines are represented by

up- and down arrows respectively. The dashed blocks rep-

resent the re-execution of the critical tasks instances. Ac-

cordingly, the FT feasibility windows for the critical tasks

are presented in Figure 9.

B B B

4 12

C C C

12

8

B B B

0

0

Figure 8. Latest possible executions for criti-
cal tasks and alternates

B

0 4 11

C

0

8

B B

5

71

Figure 9. FT feasibility windows for critical
tasks (B and C)

At this point, we derive FA feasibility windows for non-

critical task instances (in our case, for the instances of A),

by scheduling them as late as possible [3], together with

the critical ones and associated FT feasibility windows. The

resulting FA feasibility windows are shown in Figure 10.
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Figure 10. FA feasibility windows for the non-
critical task (A)

Based on the derived FT and FA feasibility windows for

the critical and non-critical tasks respectively, we analyze

the sets of current and interfering instances for each release

time in the task set and we derive priority relations between

the instances as described in Section 3.2.2. The resulting

priority inequalities are presented in Table 2.

Next, we formulate the optimization problem. The terms
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tk

inequalities

0 A1, B1, B
1
, C1, C

1
None P (B1) > P (A1)

P (B
1
) > P (C1)

P (A1) > P (C1)
3 A2 C1 P (C1) > P (A2)
4 B2, B

2
A2, C1, C

1
P (C1) > P (A2)
P (A2) > P (B2)
P (B2) > P (C

1
)

P (B
2
) > P (C

1
)

6 A3 B2, B
2
C

1
P (B2) > P (A3)
P (B2) > P (C

1
)

P (B
2
) > P (C

1
)

8 B3, B
3

A3, C
1

P (A3) > P (B3)
P (C

1
) > P (B3)

P (C
1
) > P (B

3
)

9 A4 B3, B
3
, C

1
P (B3) > P (A4)
P (C1) > P (B3)
P (C1) > P (B

3
)

Table 2. Derivation of inequalities

in the ILP goal function, i.e.,

G = N +
N∑

i=1

(ki − 1) ∗ bi +
N∑

i=1

ki∑
j=1

b̄j
i

are:

N = 3
N∑

i=1

(ki − 1) ∗ bi = 3 ∗ bA + 2 ∗ bB + 0 ∗ bC , and

N∑
i=1

ki∑
j=1

b̄j
i = b̄1

B + b̄2
B + b̄3

B + b̄1
C

subject to the constraints derived from the priority inequal-

ities. For example, P (B1) > P (A1) is translated into the

constraint C1:

C1 : pB + p1
B > pA + p1

A

The LP solver provides a set of fault tolerant tasks suit-

able for FPS to which we assign periods and offsets, as de-

scribed in section 3.2.4 (Table 3).

In our example, since the utilization is already 100%

even in error-free scenarios, the LP solver yields a solu-

tion consisting of 9 tasks, i.e., 8 from the original tasks in-

stances, and one additional consisting of the alternate task

belonging to C that has to be executed at a lower priority

than C. The FPS schedule is shown in figure 11 in the sce-

nario where every critical task instance is re-executing due

to errors. Note that, in this scenario, the non-critical tasks

A1-A4 are not executed by the scheduler due to the over-

load situation. However, one can see that in an error-free

τi T C O D P criticality

A1 12 1 0 2 7 0

A2 12 1 3 6 5 0

A3 12 1 6 9 2 0

A4 12 1 9 12 0 0

B1 12 1 0 1 8 (highest) 1

B2 12 1 4 7 4 1

B3 12 1 8 11 1 1

C 12 3 0 5 6 1

C 12 3 0 10 3 1

Table 3. Fault-tolerant FPS Tasks

scenario, the non critical tasks will be executed at higher

priorities than the critical ones (e.g., A1 has the next high-

est priority). The resulting task set is directly schedulable
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Figure 11. Derived FPS schedule under worst
case error occurrences

by the original scheduler while the critical tasks can toler-

ate one error per instance. Our method enables the non-

critical tasks to be executed at higher priorities than critical

ones, within their derived FA-feasibility windows, without

jeopardizing the FT-feasibility of the critical tasks. In case

of a critical task failure, however, non-critical tasks will be

suspended by the underlying scheduler until the errorneous

task has been re-executed.
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Figure 12. Simulation results

5 Evaluation

In this section, we evaluate the performance of our

method in comparison with the FT adaptation of RM

scheduling policy upon occurrence of errors, where the er-

roneous tasks are re-executed by the scheduler. We define

our primary success criteria as the percentage of critical task

re-executions that complete before their deadlines. Meeting

the deadlines of non-critical task instances is assumed to be

the secondary success criteria. However, in our method we

may have to shed non-critical tasks in the favor of critical

task re-executions upon failures.

We conducted a number of simulations on synthetic task

sets, since the lack of a priori knowledge about when the

errors occur and the resulting task interactions would make

the comparison procedure rather complex to be performed

mathematically. We performed the simulations in the worst

case scenario where every critical task instance is hit by a
fault, which is detected at the end of its execution.

We generated 2000 task sets, where the total number of

tasks in every task set is 10 and the number of critical tasks

is varying randomly from 1 to 10. The total utilization of

the task sets varied between 0.5 and 1. After calculating

the LCM, task periods were randomly chosen among the

divisors of LCM. Randomization was realized by Mersenne

Twister pseudorandom number generator with 32-bit word

length [15]. Total processor utilizations of the task sets were

kept within intervals of 0.1 for every group of 500 task sets

starting from the range 0.6-0.7. Within each group, proces-

sor utilizations of the critical tasks were also kept within

intervals of 0.1 for every sub-group of 100 task sets varying

between the range 0-0.1 and 0.4-0.5. The average execution

time of our implementation to create FT feasible task at-

tributes was around 100 milliseconds on a 1GHz PC, when

a task set generated as described above was used as input.

Figures 5(a) to 5(d) show the average percentage of suc-

cessfully met deadlines with respect to critical task utiliza-

tion. Each figure shows a different range of total CPU uti-

lization starting in the range 0.6-0.7. As the CPU utilization

increases, the success of our method increases as well, al-

though with the cost of missing more non-critical deadlines.

In the processor utilization range 0.6-0.7, our method



starts to give better results than RM when critical task uti-

lization is above 0.3 (Figure 5(a)). In the range 0.8-0.9 this

threshold decreases to 0.2 (Figure 5(c)). When the proces-

sor utilization is between 0.9 and 1 (Figure 5(d)), critical

task instances scheduled by RM start to miss their deadlines

even when critical task utilization was very low.

In our evaluation we were able to find a feasible solution

in all cases, and the results clearly show that our method

guarantees the re-execution of every critical task instance

before its deadline in the worst case scenario where every

critical task instance is hit by an error.

6 Conclusions and future work

In this paper, we presented a methodology which allows

the system designer to schedule a set of real-time tasks with

mixed criticalities and fault tolerance requirements, in the

context of fixed priority based, real-time systems.

Specifically, we proposed a method to analyze a task

set, with given criticalities, and derive FPS attributes which

guarantee every critical task instance to be re-executed

upon an error before its deadline, provided the combined

utilization of primaries and alternates is less than or equal

to 100%. Additionally, our approach enables the execution

of non-critical tasks at priority levels higher than the critical

ones, in an error-aware manner, thus providing a better ser-

vice than, e.g., background scheduling, to non-critical tasks.

Our ongoing work aims to incorporate more complex er-

ror models, as well as to formalize an FT-feasibility index

which can distinguish different schedules in terms of feasi-

bility and associated costs to help the designer in choosing

the optimal schedule.
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