

Towards Efficient Software Component Evaluation:
An Examination of Component Selection and Certification

Rikard Land1 ,Alexandre Alvaro2, Ivica Crnkovic1

1Mälardalen University, School of Innovation, Design and Engineering, Sweden
2Federal University of Pernambuco and C.E.S.A.R – Recife Center for Advanced Studies and Systems, Brazil

1{rikard.land, ivica.crnkovic}@mdh.se, 2alexandre.alvaro@cesar.org.br

Abstract
When software systems incorporate existing
software components, there is a need to evaluate
these components. Component evaluation is of two
kinds according to literature: component
certification is performed by an independent actor to
provide a trustworthy assessment of the component’s
properties in general, and component selection is
performed by a system development organization.
While this principle is in general understood, in
practice the certification process is neither
established nor well defined. This paper outlines the
relationship between the evaluations performed
during certification and selection. We start from the
current state of practice and research and a)
propose a component-based life cycle for COTS-
based development and software product line
development, b) identify a number of differences in
process characteristics between the two types of
evaluation, and c) classify concrete quality
properties based on their suitability to be evaluated
during certification (when there is no system
context) and/or during system development.

1. Introduction
Software systems include more and more pre-
existing components, either in the form of
Commercial-Off-The-Shelf (COTS) software or
product lines [5]. One of the most important
conditions for a successful reuse is the fulfillment of
functional and quality requirements and
consequently the known properties of the selected
components. This paper examines the principles of
evaluation of pre-existing components.

Current literature distinguishes two main
approaches to component evaluation: the evaluation
carried out by a system builder when selecting
components [14] and an envisioned component
certification [1]. Figure 1 shows the relevant
organizations and (main) processes involved in the
component business: component development
organizations develop components; system
development organizations evaluate components
with respect to system requirements and (if selected)
use them when building systems; independent
component certification organizations evaluates

components according to standardized procedures,
so that an issued certificate is seen as a quality stamp
which increases the trust in the component.

Component
Repository

Component
Development

Process

Component
Selection
Process

System
Development

Process

System Development OrganizationComponent
Development
Organization

Component Certification
Organization

Component
Certification

Process

Figure 1. The main organizations and life cycle

processes related to component evaluation.

However, by aligning these processes side by side,
new questions arise which have not previously been
answered. What similarities and differences are there
between the evaluations performed during
certification and selection? To what extent can the
same processes and methods be used? (This is
particularly relevant when the processes occur in the
same organization, such as during product line
development.) Which quality properties can and
should be evaluated and assessed in isolation as part
of certification? How can the processes complement
each other, so that the certification results are useful
for system developers when comparing and
evaluating components with their particular context
in mind? How can these processes interact to form
an efficient overall process? This paper addresses
these questions, and the contributions are: first, in
Section 2 we identify principal differences in
process characteristics of the evaluation performed
during component certification and component
selection. Second, in Section 3 we propose a
classification scheme for quality attributes, based on
whether they need to be evaluated with a particular
system in mind, or if they can (to some extent) be
evaluated during certification, i.e. when there is no
system context. Third, in Section 4 we describe in
more detail the overall life cycle with the four

processes of Figure 1, for two different business
contexts: Commercial-Off-The-Shelf (COTS)
software, and product lines [5]. In addition to these
sections referred to above, the rest of Section 1
describes the research method and scope limitation,
Section 5 describes the work related to this study,
and Section 6 concludes the paper.

1.1 Research Method
This paper is the result of several research phases.
We have previously separately studied existing
literature and practice within the areas of component
certification [1] and component selection [14], as
well as the overall component-based life-cycle [8].
In this paper we have combined these results
systematically, as the structure of the paper
indicates. We have compared process characteristics
such as goals, activities, inputs/outputs, roles, etc.,
and also examined existing definitions of quality
characteristics in order to outline which of these can
be evaluated during certification and which need a
specific system context to be meaningfully
evaluated. This paper should be seen as a theoretical
examination and a proposal which will be used as a
foundation for further empirical studies.

1.2 Scope Limitation
The component-based development processes
(component development, component certification,
system development and component selection) differ
significantly in different organizational and business
settings. Three different types of component-based
development have been described [8]:
• COTS-based development. Organizations

building systems use components available in the
commercial marketplace, and have no direct
influence on the component providers [30].

• Product-line development. A single organization
develops components for internal reuse in several
products [5].

• Architecture-driven component development.
Components are developed as the result of a top-
down system design process and not for reuse, but
the component-based paradigm is adopted e.g. to
enforce modularization and to be able to use the
benefits of standard services of a component
technology.

This paper is only concerned with evaluation of pre-
existing components intended for reuse in systems
partly unknown during the development of the
component. Excluded is thus architecture-driven
development, where evaluation means verification
of correctness with respect to the component
specification.

2. Examination of Process Characteristics
This section first outlines the process characteristics
of the evaluation performed during component
selection and certification based on literature
reviews and an elaboration given the different goals

of COTS-based development and product line
development. Then these processes are compared, in
order to address the questions asked in the
introduction: What similarities and differences are
there between the evaluations performed during
certification and selection? To what extent can the
same processes and methods be used? The whole
section is based on a comparison of our previous
separate surveys of the two fields [1, 14].

2.1 Characteristics of Certification
Typically, the certification concerns the technical
characteristics of the component itself and the
outcome is information about the component. The
input is one single component (not many). The
differences between COTS-based and product-line
development are:
• COTS-based development. The component

vendor orders a component certification, if it is
considered beneficial from a business perspective.
The properties of interest are those which the
component vendor believes will pay back in larger
incomes of their component, by charging a higher
price and/or selling more components thanks to
the quality stamp the certification results represent
(it could also be noted that there may be standards
and regulations mandating certain evaluations).

• Product-line development. All processes occur
within the same organization, but by different
separate sub-organizations. A successful
certification of a component would mean that
some properties are known in general and thus can
be reused with higher confidence in shorter time;
an ideal division between certification and
selection means evaluating enough during
certification to make the overall process most
efficient, but not more.

Figure 2a) shows how the component certification
process takes a component and a set of properties to
evaluate as inputs, and produces information about
the component.

2.2 Characteristics of Component Selection
The evaluation performed during component
selection is made with respect to some goals and
objectives of the envisioned system as well as of
process issues such as acceptable cost and risk.
Variations in these goals affect for example how
many components should be evaluated, how
thoroughly they need to be tested, which properties
should be evaluated, etc.
• COTS-based development. The goal is to select

a component that best meets the requirements and
constraints among many candidates. The process
can be characterized as a gradual filtering [20],
from many potential components to fewer which –
with some confidence – are believed to suit the
system requirements best.

High Level
Evaluation

Information about
n components

Prototyping
Evaluation

iProperties
to evaluate

m < n
components

1 or 0
component

Properties
to evaluate

Evaluation
Properties
to evaluate

i

i

b) Evaluation during COTS selection

High Level
Evaluation

Information about 1
component (with variants)

Prototyping
Evaluation

iProperties
to evaluate

1 or 0 component
(with variants)

1 or 0
component

Properties
to evaluate

i

c) Evaluation during PL component selection

a) Evaluation during certification
1 component

Information about
1 component

Figure 2. The certification and selection

activities. Notation according to SADT [22].

• Product-line development. When developing or
evolving a product in a product line, typically only
one pre-existing component is evaluated, namely
the one developed internally. The goal for this
evaluation is to assess its suitability for a specific
product, and if the component is not sufficient the
outcome is that it needs to be changed before the
system can be built. (In case there is no pre-
existing component a new component
development process is initiated, or possibly a
COTS component or subcontracting could be
considered.)

For both COTS-based development and product line
development, the evaluation can be divided into two
phases: During high-level evaluation only
information about components is used, and during
prototyping evaluation the actual component is a
tested and prototyped [14]. Any certification results
would be an important input to the high-level
evaluation, since this information is considered more
trustworthy than for example the vendor’s marketing
material. Figure 2b) describes the progressive
filtering of COTS components between these two
phases, and Figure 2c) describes how a single
component, with some variants, is evaluated during
product-line development. By specifying properties
to evaluate the concrete evaluation procedures are
determined.

2.3 Fundamental Process Differences
The fundamental principal differences between the
evaluations performed during component selection
and certification are:

Source of properties to evaluate. In the case of
component selection, properties are derived from (or
at least, related to) system requirements, while

properties to be certified are prescribed by the
component vendor and/or standards and regulations.

Availability of component. During component
selection, some evaluation can be done with only
information about a component (including
information about the vendor, etc), while
certification always means evaluation of an actual
component (documentation, examples of use,
source-code in many cases, etc).

Goal of evaluation. During component selection,
evaluation is performed in order to select the best fit
component (among several) for a system, while
component certification is performed in order to
make assertions about certain properties for a
specific component. As a consequence of the
difference in goals, there are several other
differences, as follows:

Level of confidence required. During component
selection, evaluation only needs to last until the
evaluator has enough confidence to make a selection
(i.e. the required rigor of the evaluation is related to
the criticality of the system being built), while for
component certification the confidence needs to
have some objective and comparable meaning.

Flexibility of evaluation. When the goal is to
select the component that best fits a specific system
the evaluation can be very flexible and
opportunistic. This means that at each point in time
one asks whether enough information is gathered to
be able to make the decision to select a component
with enough confidence, or if not what is the most
important property to evaluate next and how. (This
is noticeable in the available selection methods
PECA [6] and PORE [16, 19].) For component
certification, the goal of the evaluation does not
change during the evaluation, so no major changes
in the process are expected during process
execution. In fact, the standardized process is one
part of the strength of an issued certificate.

Outcome. During component selection the most
important result is the decision to use a certain
component or not, while during component
certification, the documentation of the evaluation is
the most important outcome, perhaps in the very
condensed form of a “certificate”.

From this list it follows that from a process point
of view the component evaluation is carried out very
differently. Thus, when defining details of these
processes we expect many things to differ: the
planning of the evaluation, when to stop evaluating,
document templates, roles, etc. However, it is
apparent how they fit together in a sequence through
the information about component, which is the
output of the certification activity and, if existing, is
an important part of the information used as input to
high-level evaluation during component selection
(see Figure 2). It is apparent that the format of this
information is an important area for standardization
in the COTS context. For product-line development

the selection process and certification process should
be defined and improved together, since they are
subordinated the same overall goals of the same
organizations, and changes in one may well affect
the other.

It should also be noted that nothing so far
prevents that the actual methods employed to
evaluate certain component properties could be
identical, such as a specific benchmark performance
test.

3. Examination of Quality Characteristics
This section addresses the question asked in the
introduction “Which quality properties can and
should be evaluated and assessed in isolation as part
of certification?” We have studied the 6 quality
characteristics and 27 sub-characteristics defined by
the ISO/IEC standard 25000 [11]. In addition we
have also studied the IEC standard 61508 [12]
describing functional safety. This section first shows
the different challenges of evaluating different
characteristics, after which a crude classification of
characteristics is presented, based on their suitability
for evaluation during certification and/or selection.

3.1 Example Quality Characteristics
Due to space limitations, we have selected a few
quality characteristics which we consider being of
general interest for many systems and widely
understood, and also useful as pedagogic examples:

Accuracy (a sub-characteristic of functionality)
concerns the software’s ability to provide of right or
agreed results or effects. Accuracy includes number
of significant digits and rounding treatment, which
can be meaningfully evaluated without a system
context, and can thus be part of both component
certification as well as component selection.
Accuracy also includes failure ratio, which measures
the number of erroneous test results in relation to a
set of tests; this includes a subjective selection of
test cases which is less than ideal for component
certification – the selected test cases may or may not
correspond to actual usage.

Compliance (also a sub-characteristic of
functionality) concerns the software’s adherence to
relevant standards; this can be evaluated during
certification and should be an important part of a
certificate.

Suitability (also a sub-characteristic of
functionality) includes the software’s coverage of
the desired functionality, which can clearly not be
evaluated without a system context, i.e. not be
certified. This is a very important evaluation
criterion during component selection however.

Efficiency (includes time behavior and resource
behavior) varies with the platform chosen (slight
differences in e.g. schedulers, memory managers, or
in general computer architecture may result in very
different runtime characteristics) which makes it
very difficult to provide the type of general

guarantees which one expects from a certificate.
However, it may be possible to package assertions or
test results with information about the test
environment attached, which requires a standardized
format, or even better a standardized environment
would be used. Another possible solution is to
parameterize the results, as has been suggested for
component worst-case execution time where a
partial evaluation without system context is
performed and packaged parameterized on input
ranges [9].

Safety is a system property which depends on the
external environment context [12] and it is not
meaningful to discuss neither the safety of a
component (it is the system as a whole which is safe
or unsafe), nor the safety of software in isolation.
Nevertheless, it is desirable to be able to provide
some type of safety-related guarantees for general
reusable software components. The approaches
adopted by IEC 61508 [12] are to specify (types of)
methods, tools and processes to be used during
development, and we can also note that safety-
related functions are considered (not components).
In addition to these two approaches, it is possible to
discuss verification and certification not of
component safety directly, but of various properties
related to safety. One important example is
reliability with sub-characteristics such as fault
tolerance, recoverability, and availability; the
discussion for these properties is similar as for
accuracy above: they can to some extent be verified
objectively but there is also a system- and usage-
dependent part. A component certificate could
nevertheless in principle be used as a foundation for
further system-specific safety analysis during the
selection process and also for system validation
further downstream. For example, a component
certified to be very reliable could be a potential
candidate.

3.2 Classification of Quality Characteristics
Based on the above examination of concrete quality
characteristics and sub-characteristics, and indicators
of these, we here propose a classification scheme for
the indicators of characteristics:
• Objective. Some properties can be objectively

measured and guaranteed in general, and are thus
suited for certification. This applies to some
indicators of for example accuracy, reliability, and
compliance to standards.

• Usage-dependent. Some properties are closely
tied to the usage of the component, such as
suitability and some indicators of accuracy. Any
evaluation without a system context needs to make
assumptions on usage in order for the evaluation
to be relevant, and the results are only valid within
these assumptions. For example, assumptions
behind test cases must be well motivated and
specified. Ideally such hypothetical usage profiles

would be standardized, thus making it easy to
compare components during high-level evaluation.
With more research and standardization, it could
be possible to package the results parameterized
on usage as we have described for worst-case
execution time [9]; as a minimum the assumptions
must be provided with the results.

• Environment-dependent. Some properties vary
with the technical environment, the most apparent
example probably being efficiency. Certification
would be similar as for usage-dependent
properties in that the assumptions on which the
evaluation is based need to be openly published
with the results, and preferably are standardized.

• System-wide. Some properties cannot even be
fully evaluated with a system context, unless the
whole system is already available. Examples are
safety, which is an inherently system-wide
property, and to some extent efficiency, since e.g.
the execution time of one component may depend
on the execution time of other (seemingly
unrelated) components due to cache behavior and
similar.

4. Life Cycles
This section gives a high-level view of the life
cycles of COTS and product-line products, thus
presenting a more detailed version of Figure 1 in the
light of the discussion in the previous sections.

4.1 The COTS-Based Life Cycle
COTS-based development is based on the idea that
the COTS provider develops components and makes
them available on the market, while product
developers search for them and use them. There is a
clear distinction between component providers and
component users. The component development
process is separated from the system development
process, and they are connected by component
certification and component selection processes.

The entire life cycle model is shown in Figure 3;
the model is intended to be general enough to cover
many types of development models, both sequential,
iterative, and evolutionary (the arrows denote data
flow). In the figures we therefore present activities
as (sub)processes which could be carried out in
parallel, in sequence, iteratively in an agile fashion,
etc. Component development includes requirements
engineering for the component, design and
implementation using some architectural standards
and considering some environment constrains. The
component is verified internally and released. The
component is then delivered to the certification
organization. Based on information about a
component such as documents, source code,
tutorials, examples, and so on, and also depending
on the domain, the certification organization
performs a set of activities to verify the component
properties and to issue the certificate. According to
[1], these activities are: data collection (of

information about the software component and the
environment); define, design and plan (that is,
specifying techniques and methods and planning the
evaluation); and evaluation (collecting data and
providing recommendations). According to the
classification scheme presented above, objective
quality characteristics or indicators are suitable for
evaluation. It is also possible to evaluate usage- and
environment-dependent properties with certain
openly published usage profiles and environments
(ideally, these are standardized).

The components are stored in the component
vendor’s internal repository. Some products and
versions may be published (indicated in Figure 3 as
a public repository). Certified versions of a
component can be made public as well as newer, not
yet certified versions. With “making public” we do
not necessarily mean making the component itself
immediately available, but in many cases making the
information about the component public.

System development organizations may now find
components. They are first subject to high-level
evaluation, to which the certification results is an
important input (as described in section 2.3). The
description of objective properties can be easily
compared with the system’s requirements on the
component, and the usage- and environment-
dependent properties could be compared with the
expected usage and environment of the component.
Also evaluated are business considerations such as
available support and vendor reputation. Some
components will then be subject to prototyping
evaluation, where prototypes are created to gather
more detailed data, and with higher confidence,
about the functionality and quality, and identify any
architectural compatibility issues. Any knowledge
gathered during both evaluation phases may be fed
back to the requirements engineering and design
activities, in several iterations if needed. Finally a
component is selected and used when building the
system.
When a component is selected and integrated into
the system, the system development organization
stores the components and evaluation information in
an internal repository to allow future reuse in other
projects. It then enters a mode of maintenance and
evolution the system which may include integrating
newer versions of the component in the future.

In addition to this basic flow between activities,
there are several other loose interconnections (not
shown in the figure). The component requirements
are affected by system requirements, either through
a close business relationship with some system
developer(s), or by following trends in the domain of
the component. And conversely, system
requirements may be influenced by features of
existing components. It could be noted that for
software components, many of these requirements
are closely related to design and system integration,

such as what platform and component technology
the component is designed for.

4.2 The Product-Line Life Cycle
Product line components are intended to be reused in
several systems, to address the needs of the product
development. Since all processes take place within
the same organization they can be better
synchronized and performed more efficiently.

In the product-line life-cycle, shown in Figure 4,
system development can impact component
development much more directly, since system
requirements can be forwarded directly to the
component development. The component selection
process is mainly used to evaluate suitability of the
one and only one component developed internally
for reuse in product line products. Typically external
components should not be integrated into the system
when there is a strategy to use an internal component
for this purpose. As for the internal components,
some may come in variants aimed at different types
of products in the product line, and the selection
process needs to select which of these to use. For
example, there may be a resource efficient variant
with limited functionality intended for low-end
products and a richer variant intended for expensive
products. If desired, the evaluation can be performed
early during component development. Also,
component requirements may be modified during
component development based on changed or added
system requirements; this scenario must be well-
managed though, in order to avoid other problems of
component development (e.g. late delivery) which
may have consequences for other products in the
product line.

The certification process would be carried out
internally by a sub-organization, due to several
reasons: first, with the same overall goals as
component development and system development,
certification would only evaluate properties of
interest to the organization; second, for usage- and
system-dependent characteristics test cases would be
chosen based on the known usage and system
context of the component (e.g. throughput and
latency for a certain common input and envisioned
number of simultaneous users, using the actual
hardware used by products); third, in this way the
organization’s business/technical goals and
knowledge are kept secret; fourth, certification is
made efficient through close contact with the
component development organization, and can use
compatible methods and tools.

However, all this may possibly compromise
objectivity. If this is perceived as a risk, a product
line organization may let some components be
certified by an external organization (there may also
be regulations requiring this). We can conclude that
product line organizations may be more efficient,
accurate, and useful than certification of COTS, but

less independent; a certification of a component may
be seen as a standard verification of the component.

If a more precise evaluation of some properties is
required during the component selection
(prototyping evaluation), this task should be given to
the component certification sub-organization, which
afterwards stores the new test cases (and their
results). In this way, certification within a product
line organization can be characterized as:
• More customized to the specific needs of the

organization, compared to COTS certification by a
third party. This effectively means that the
distinction between system-independent and
system-specific evaluation in practice disappears.

Figure 3. The COTS-based life cycle.

Req.
Engineering

Design

Impl.

Verification Release

Component
Development Process Req.

Engineering

Design

Impl. &
Integration

Verification
Release

Maintenance
& Evolution

Prototyping
Evaluation

Selection

Component
Selection
Process

System Development
Process

Product Line Organization

High-level
Evaluation

Component Certification Process

Data
Collection

Define,
Design

and Plan
Evaluation

Repository

Figure 4. The product line life cycle.

• More dynamic than for COTS certification, since
new needs may arise during system development
and component selection which requires new
evaluations to be performed, which then becomes
part of the standard certification procedure in the
future. This means that a component variant which
previously was certified may at some later point in
time no longer fulfill the certification criteria.

5. Related Work
To our knowledge, there are no publications
combining the current knowledge of component
selection and component certification as an
integrated part of component-based development
(CBD) process. Several authors discuss the lifecycle
process divided into (i) component development, (ii)
component selection and (iii) system development
processes [3, 8, 15, 16, 19], but component
certification is treated implicitly or not at all. There
is some literature that relates component-based
development processes to a certification process. In
[27] the cooperation between component
development and component certification are
considered, and in [26] it is discussed whether a
certification process is an (un)necessary part of
component-based development. We relate these four
processes in order to provide a cooperative process
that work together in order to provide quality aspects
around the component’s and system’s development
activities.

SEI organized a workshop in 1997, where many
of the principles of component selection were first
documented [20], such as the typical progressive
filtering of components which occurs during the
evaluation, a principle which has been further
elaborated in many of the published methods (see
e.g. [6, 13]). Another principle is that of puzzle
assembly [20], i.e. the evaluation of combinations of
components together (see e.g. [4, 23]). Several
methods suggest a close interaction between
requirements engineering and component selection
[3, 5, 15, 16, 19]. Taken together, the available
literature points to four types of criteria to be
evaluated: functionality, non-functional (quality)
attributes, architectural compatibility, and business
considerations such as vendor reputation and
available support. We use the simple process model
of [14] in this paper, which is a consolidation of
existing selection methods to date. For a more
lengthy discussion of existing literature on
component selection we refer to our survey [14].

The idea of component certification is to ensure
that software components conform to well-defined
standards; based on this certification, trusted
assemblies of components can be constructed [7].
There has been a line of research building on
modeling of e.g. reliability [21, 32], and testing
approaches such as a combination of black-box
testing and fault injection [28], and a method for

systematically increasing dependability scores by
performing additional test activities [29]. A related
approach is to supply tests in a standardized,
portable format and let the integrator determine the
quality and suitability of purchased software [18].
Meyer coined the term “low road” to signify
research aiming at the definition of a component
quality model to enable certification of existing
components; the “high road” involves research
aiming at production of components with fully
proved correctness properties [17]. This second line
of research is pursued by the SEI and its Predictable
Assembly from Certifiable Components (PACC)
initiative, where the goal is to enable certification by
building theories and technologies which enable
prediction of component assemblies based on known
component properties [10, 24, 31], so that
certification results can become the desired type of
guarantee. Some literature outlines a component
certification process [1, 7, 27] and in this paper we
use the model presented in [1]. For a more extensive
summary of component certification refer to our
survey [1].

6. Conclusion
We have presented an overall view of the processes
involved in the component-based life cycle, with a
focus on the component evaluation performed
during component selection and component
certification. Our analysis reveals a number of
fundamental differences between the two types of
evaluations. Some of the differences are related to
the process: the properties to evaluate come from
different sources, the actual component is not
initially used in the selection process, and the goals,
flexibility allowed, level of confidence required, and
type of outcome are all different. When examining
concrete quality properties to be evaluated, we have
identified four classes of properties: objective
properties that can be guaranteed in general, usage-
dependent and environment-dependent properties
(which can be partly evaluated without a system
context), and system-wide properties. Thus,
certification can never cover everything which is
important for a system developer, but if introduced it
has the potential to improve the overall efficiency of
component evaluation. In order to achieve this, a
proper division of the evaluation must be found, and
also issues of standardization, costs, and liability
must be solved. Further research in component
certification needs to consider how the evaluation
results can be used by systems builders.

The research presented in this paper is limited to
a theoretical examination, which contributes to an
understanding of these processes, and will be used in
our ongoing studies of component-based processes
and reuse. This includes industrial collaborations

and empirical studies, at the C.E.S.A.R. center1 in
Brazil, where we are part of a large effort to
establish component certification [1, 2], and the
PROGRESS centre2 in Sweden.

Acknowledgements
This work was partially supported by the Swedish
Foundation for Strategic Research (SSF) via the
strategic research centre PROGRESS.

References
[1] A. Alvaro, E.S. Almeida and S.R.L. Meira, “Software
Component Certification: A Survey”, The 31st Euromicro
Conference on Software Engineering and Advanced
Applications (SEAA), Component-Based Software
Engineering (CBSE) Track, Porto, IEEE, 2005.
[2] A. Alvaro, E.S. Almeida and S.R.L. Meira,
“Component Quality Assurance: Towards a Software
Component Certification Process”, International
Conference on Information Reuse and Integration (IRI),
Las Vegas, USA, IEEE, 2007.
[3] C. Alves, J. Castro, “CRE: a systematic method for
COTS components Selection”, XV Brazilian Symposium
on Software Engineering (SBES), Rio de Janeiro, 2001.
[4] J. Bhuta, B. Boehm, “A Method for Compatible
COTS Component Selection”, 4th International
Conference on COTS-Based Software Systems, LNCS
3412, Springer, 2005.
[5] P. Clements and L. Northrop, Software Product
Lines: Practices and Patterns, Addison Wesley, 2001.
[6] S. Comella-Dorda, J. Dean, E. Morris, and P.
Oberndorf, “A Process for COTS Software Product
Evaluation”, 1st International Conference on COTS-Based
Software System (ICCBSS), LNCS 2255, pp. 4-6, 2002.
[7] B. Councill, “Third-Party Certification and Its
Required Elements”, 4th Workshop on Component-Based
Software Engineering (CBSE), Canada, IEEE, 2001.
[8] I. Crnkovic, M. Chaudron and S. Larsson,
“Component-Based Development Process and Component
Lifecycle”, International Conference on Software
Engineering Advances (ICSEA), IEEE, 2006.
[9] J. Fredriksson, R. Land, “Reusable Component
Analysis for Component-Based Embedded Real-Time
Systems”, 29th International Conference on Information
Technology Interfaces (ITI), Cavtat, Croatia, IEEE, 2007.
[10] S. A. Hissam, G. A. Moreno, J. Stafford and K.C.
Wallnau, “Enabling Predictable Assembly”, Journal of
Systems and Software, 65(3), pp. 185-198, Elsevier, 2003.
[11] ISO/IEC 25000, Software engineering – Software
product quality requirements and evaluation (SQuaRE),
Guide to SQuaRE, International Standard Organization,
July, 2005.
[12] IEEE 61508, Functional safety of E/E/PE safety-
related systems, International Electrotechnical
Commission (IEC), 1998.
[13] J. Kontio, OTSO: A Systematic Process for Reusable
Software Component Selection, University of Maryland,
CS-TR-3478, UMIACS-TR-95-63, 1995.
[14] R. Land, L. Blankers, M. Chaudron, I. Crnkovic,
“COTS Selection Best Practices in Literature and in
Industry”, In 10th International Conference on Software
Reuse, Beijing, China, Springer, 2008.

1 http://www.cesar.org.br/english/
2 http://www.mrtc.mdh.se/progress/

[15] Lawlis et al, “A Formal Process for Evaluating COTS
Software Products”, IEEE Computer, vol 34, no 5, 2001.
[16] N. A. Maiden, C. Ncube, “Acquiring COTS Software
Selection Requirements”, Software, 15(2), pp. 46–56,
1998.
[17] B. Meyer, “The Grand Challenge of Trusted
Components”, The 25th IEEE International Conference on
Software Engineering (ICSE), USA, pp. 660–667, 2003.
[18] J. Morris, G. Lee, K. Parker, G.A. Bundell and C.P.
Lam, “Software Component Certification”, Computer,
34(9), pp. 30-36, IEEE, 2001.
[19] C. Ncube and N.A.M. Maiden, “PORE: Procurement-
Oriented Requirements Engineering Method for the
Component-Based Systems Engineering Development
Paradigm”, 2nd International Workshop on Component-
Based Software Engineering, Los Angeles, USA, 1999.
[20] P. Oberndorf, L. Brownsword, E. Morris, C. Sledge,
Workshop on COTS-Based Systems, CMU/SEI-97-SR-
019, Software Engineering Institute, 1997
[21] J. Poore, H. Mills and D. Mutchler, “Planning and
Certifying Software System Reliability”, Computer, 10(1),
pp. 88-99, IEEE, 1993.
[22] D. T. Ross, “Structured Analysis (SA): A language
for communicating Ideas”, IEEE Transaction on Software
Engineering, 3(1), pp. 6-15, January, 1977.
[23] G. Ruhe, “Intelligent Support for Selection of COTS
Products”, Web-Services, and Database Systems: NODe,
Web- and Database-Related Workshops, Erfurt, Germany,
LNCS 2593, Springer, 2003.
[24] H. Schmidt, “Trustworthy components:
compositionality and prediction”, Journal of Systems and
Software, 65(3), pp. 215-225, Elsevier, 2003.
[25] Seacord, R., Bass, M., “Building Systems from Off-
the-Shelf Components”, Software Architecture in Practice
Second Edition, Addison Wesley, 2003.
[26] J. Stafford and K.C. Wallnau, “Is Third Party
Certification Necessary?”, The 4th Workshop on
Component-Based Software Engineering (CBSE), Lecture
Notes in Computer Science (LNCS) Springer-Verlag,
Canada, 2001.
[27] M. Tziakouris, A. S. Andreou, “A quality framework
for developing and evaluating original software
components”, Information and Software Technology,
49(2), pp. 122-141, 2007.
[28] J. M. Voas, “Certifying Off-the-Shelf Software
Components”, Computer, 31(6), pp. 53-59, IEEE, 1998.
[29] J. M. Voas and J. Payne, “Dependability Certification
of Software Components”, Journal of Systems and
Software, 52(2-3), pp. 165-172, Elsevier, 2000.
[30] K. Wallnau, S. Hissam, R. Seacord, Building Systems
from Commercial Components, Addison Wesley, 2002.
[31] K. C. Wallnau, Volume III: A Technology for
Predictable Assembly from Certifiable Components,
Technical Report CMU/SEI-2003-TR-009, Software
Engineering Institute, 2003.
[32] C. Wohlin, B. Regnell, “Reliability Certification of
Software Components”, 5th International Conference on
Software Reuse (ICSR), pp. 56-65, IEEE, 1998.

