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Abstract

We present in this paper an approach allowing dynamic
reconfiguration in wireless sensor networks (WSNs). This
proposition is based on two complementary works. Firstly
we propose Valentine, a new component-based operating
system (OS) for WSNs, allowing dynamic administration
of components at runtime. This OS will be generated from
the Think framework. Secondly, we discuss and present
a specific mechanism for dynamic reconfiguration in the
constrained context of WSNs.

I. Introduction

In many disaster relief scenario (earthquake, flooding...)
or environmental monitoring applications, it is usually very
difficult to get accurate and up-to-date local information
that would definitely help the organization of rescue and/or
help scientists to collect data. The traditional way of getting
such local information is by means of specialized devices,
called sensors, which are usually connected to a fixed data
acquisition system.

With the recent advances in microelectronics research
these sensors are now able to communicate wirelessly with
other sensors in the range of several meters and have also
embedded processing and storage capabilities, taking place
within the context of the pervasive computing, more known
under the name of ubiquitous computing [14].

However, the integration of such sensors inside the
physical world is not an easy task. New problems are

generated by the severity of the constraints inherent in their
resources like conservation of the memory space or energy
management. Some solutions have already been proposed
to some of these problems. For example, TinyOS [5],
the reference OS, fills very little memory thanks to the
many optimizations such as the use of a component-based
architecture.

On another side, Component-Based Software Enginee-
ring [12] (CBSE), is now recognized for the development
of both flexible and well structured applications, meeting
in particular needs for reconfiguration and administration.
However even if TinyOS presents similar concepts to those
present in CBSE, some important are lacking. In particular,
no support is proposed for dynamically reconfigure an
application which has been identified as fundamental in
autonomic computing [7]. In the CBSE context, dynamic
reconfiguration allows to replace a component by another
in a running application. For example it can be necessary to
substitute a badly implemented component. Such a process
can be performed only if the component is in a stable
state, i.e that it is not used anymore. If it is not the
case, reconfiguration could lead to an irremediable crash of
the system. In the WSN context, dynamic reconfiguration
becomes an important feature for reorganizing a deployed
network or adding new functionalities to several sensors.

Within this context, we propose in this paper to in-
vestigate OS handling dynamic reconfiguration for WSN.
We describe current OS limitations in section II and
we propose in section III the design of a new OS for
WSN with the Think model [13]. Our model for dynamic
reconfiguration in WSN is presented in section IV. Finally,



section V presents some conclusions and directions for
future works.

II. Limits of current operating systems for
dynamic reconfiguration

A. Overview of some existing operating
systems

Initially, propositions for dynamic reconfiguration in
sensor networks were based on a full image update.
TinyOS, the de facto standard for sensor network, gene-
rates a binary image of the entire application. Deluge [6]
is a networked bootloader and dissemination protocol that
process full image upgrades of TinyOS applications. Mate
[9] is a virtual machine architecture for the resource cons-
trained sensor devices allowing to reconfigure programs
running on TinyOS nodes. Nevertheless, it has significant
computational overhead.

Other approaches such as SOS [4] and Contiki [3] are
based on modular binary module. The idea is to sepa-
rate kernel from code modules. The architecture of SOS
consists of dynamically-loaded module and a statically
compiled kernel. Metadatas contains module information
and a linker script is used to place a specific module at
the corresponding place. Contiki is a lightweight OS with
support for dynamic loading and replacement of individual
programs and services. [1] presents a solution based on a
SOS kernel and implements a virtual machine on top of
this kernel.

Nones of these approaches provide the flexibility of
CBSE. We will present on the advantages of CBSE in the
section section III.

B. Limits of TinyOS for dynamic reconfig-
uration

TinyOS addresses the problem of limited memory
thanks to many optimizations as the static allocation of
memory at compile-time. Consequently, dynamic alloca-
tion of resources is not allowed and this is one of the
TinyOS’s limitations. Moreover, [8] points out the diffi-
culty to implement this property on sensors (or motes)
equipped with TinyOS and proposed to use a less restrictive
OS allowing dynamic allocation. Even though a solution
was proposed, it is too heavy to be implemented due
particularly to the use of intermediate components to
manage binding reassignment.

Besides, in TinyOS, the concept of component dis-
appears when the system image is generated. Thus, to
replace a component, a full image of the system must be
reinstalled.

This underlines another problem of the TinyOS model.
Indeed, in WSN, sensors are used as relay node for data
propagation. However, it is clear that a full system image
is much bigger than a partial one. Therefore, if we assume
the existence of a reconfiguration mechanism for a mote
running TinyOS, this implies to “cut” this system image
into several packets for transmission to the sensor. The
high number of packets puts high load in the network,
thus, consuming more energy.

Nevertheless, TinyOS is based on some efficient fea-
tures for WSN. The first of them is the event-driven
execution model. Indeed, such model is often used in
embedded systems because it allows, firstly, to generate
a little memory footprint and, secondly, to control more
easily the scheduling activities. A second important feature
is the scheduling policies used to allocate a process to the
processor. TinyOS uses a FIFO queue : (i) it is a simple
algorithm to implement ; (ii) activity time of a mote have
to be the shortest and tasks with long duration will be
considered as marginal ; (iii) as we are in a “single-user”
system, a task monopolizing the processor is an acceptable
situation.

III. Toward the Valentine component-based
operating system

We propose to address the problem of dynamic recon-
figuration in WSNs using the Think framework. Think is
a software framework for component-based OS kernels
[13]. We present here the design of such an OS model
for sensors combining both TinyOS well-tried aspects and
dynamic component-based development, through the Think
framework.

A. Design considerations

A sensor has a microprocessor, communication I/O
devices (network, sensor board, serial interface) and mem-
ory. Each OS component will correspond to a hardware
element. Figure 1 shows how these elements are connected
together. Most of our figure are described in UML.

It is necessary to determine the way the OS uses these
components to realize the functionalities of the application.
Thus, in a traditional system the various functionalities
are implemented by lightweight processes, called threads,
which are allocated to the processor by a scheduler. How-
ever using threads for sensor networks seems to be rather
expensive since each sensor must store in memory a copy
of the execution context during all its lifetime. Thus such
mechanisms consume too much memory resources and
is consequently to consider sparingly. Moreover, blocking
mechanisms, such as waiting for a message arrival, will not
be allowed in order to not prevent the execution of other
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Fig. 1. “Componentization” of a sensor in UML

processes. This choice is implemented through a queue
mechanism.

We must determine the better adapted type of OS kernel
in the context of our study. A monolithic kernel is a kernel
architecture where the entire kernel is run in kernel space
in supervisor mode. Obviously, a monolithic kernel is too
bulky to be able to be used on sensors. On the other
hand exokernels are tiny, since the proposed functionalities
are limited to ensure protection and the multiplexing of
resources. Consequently they seem better adapted and the
application will directly get access to the needed hardware
components.

We must now determine how the basic elements
constituting our model1 will interact. Whereas a
component-based model typically consists in a client-
server model, a client interface asks for the execution
of a request, i.e. of a function, on a server interface of
another component, a sensor network is in nature strongly
event-driven. This particularity would be considered and
our OS must integrate both interaction mechanisms.

In order to illustrate importance of the event mechanism
in WSN, the state diagram of a sensor is presented at
the Figure 2. We can see that the WaitEvt and the
WaitNeighbourhood states allow to save energy by
waiting for event. An event is always at the origin of the
activity of the sensor. This figure highlights the coexis-
tence of two behaviors : Waiting for an event and
Activity. During a processing task, like aggregation of
data, an event can occur. For example, the battery can
announce that it is too weak to continue to supply the
sensor. Thus, it must be possible to recover these events to
treat them. Two processes are then needed to manage both
waiting of an event and activities in progress in the sensor.
It involves a second problem: how both event-driven and
component functional aspects (function calls in particular)

1For more details on the model, please consult [11].

could existing together?

B. Analysis of dynamic reconfiguration in
Think

Think [10] proposes a mechanism of dynamic reconfi-
guration based on the concept of controllers such as
presented in the Fractal model [2]. A Fractal component
is formed out of two parts: the non-functional part, called
controller and the functional part, called content. The con-
troller is used to control and manage components. There
is one controller for each kind of control. For example,
the LifeCycleController manages the beginning
and the end of a component, the BindingCintroller
manages the links between components.

In [10], reconfiguration is considered at the component
level. The objectives for this mechanism are genericity and
flexibility in order to support : (i) all existing models of
dynamic reconfiguration ; (ii) no modification of the func-
tional aspect of the components ; and (iii) minimization of
runtime overload memory. Moreover, only the components
that need to be reconfigured have this mechanism.

To carry out these objectives, the description of dynamic
reconfiguration is constrained by both architecture and a
set of rules. Both of them allow to determine whether
reconfiguration is realizable or not as well as the necessary
steps for the component substitution. These two functiona-
lities will be implemented through a controller containing a
representation of the architecture as well as reconfiguration
procedures. This new controller, called ReconfEngine,
is connected to the existing Fractal controllers.

To implement this new controller, a new interface was
defined that describes three operations : request() al-
lowing the initiator of the reconfiguration to submit a new
description of the system configuration ; resume() to
avoid blocking on waiting of a stable state ; cancel() to
cancel the current reconfiguration and to return in the initial



Init

WaitNeighbourhood

WaitEvt

Activity

WaitForActivityEnd

Reconfiguration

<<comment>>
All states, except 
Reconfiguration, belong to 
a Running super-state to 
be able to make the 
Suspend state.

SearchNeighbourhood ComponentReception ComponentInsertion

LinksChangeRemoveOldComponent

Entry/CheckAvailablePower
Entry/CheckAvailableMemory

[nbNeighbour=0]

PacketReception

UpdateNeighbourhood

PacketPreparationProcessing

SendPacket

H

Entry/CheckAvailablePower

Entry/CheckAvailableMemory

Entry/CheckAvailablePower

Transfert

DetectSensor[NotInActivity]

AskProcessing[NotInActivity]

[nbNeighbour = 0]

[Activity]

[NoActivity]

Fig. 2. The states of a sensor

configuration. It implies that the reconfiguration controller
stores the current configuration of the system.

Moreover, the Fractal controller LifeCycleCon-
troller was upgraded with two new methods:
suspend() to place the component and its sub-
components in a stable state and resume() allowing to
cancel the reconfiguration in progress and to restart the
normal activity of the component.

[10] proposes some functionalities in the following way:
1) An initiator asks for a reconfiguration by calling the

function request() of ReconfEngine and pas-
sing the new configuration as argument.

2) ReconfEngine checks if reconfiguration can be
carried out. If not, it rejects it and stops. At this
step, the components and the links having to be
reconfigured are known.

3) ReconfEngine binds to the control interfaces of
the components having to be reconfigured.

4) Then for each component to be reconfigured,
ReconfEngine requires obtaining a stable state by
calling the method suspend().

5) When the stable state is reached, LifeCycleCon-
troller reactivates ReconfEngine by using the
function resume().

6) ReconfEngine finally sets up the new configura-
tion:

a) the new components are loaded in memory,
b) and/or the binds are reconfigured.
c) the states are transferred between the compo-

nents
d) the components which are not used any more

are unloaded from memory.
7) Reconfiguration is thus finished and the new config-

uration is saved.
Before reconfiguring the application, components must

be in a stable state. [10] proposed to determine a stable

state for a component using the same mechanism of inter-
ception that those used in Julia2 : it consists in interposing
proxies between the external and internal interfaces of a
component in order to count the incoming and outgoing
calls to this component. When the counter reaches zero,
there is no more process in progress in the component,
so there is no more activity. The component is in a stable
state. This approach has performance problems since each
proxy takes up additional memory capacity. It also prevents
the use of by-pass techniques which make it possible to
directly call an interface of a sub-component thanks to
a reference to it. Without this optimization, such a call
requires three memory indirections.

In conclusion, the model for dynamic reconfiguration
proposed for Think in [10] is too generic to satisfy the
inherent constraints of sensor networks. A modification of
this proposal is thus necessary.

IV. A model for dynamic reconfiguration

In this section, we present our proposition to integrate
dynamic reconfiguration into WSN.

In order to solve the problem presented in section III-
A regarding the capability to merge both event-driven
and component functional aspects policies, each compo-
nent requires an “event handler” for processing incoming
events. That implies to have a new structure of component,
presented in Figure 3.

The implementation of the “event handler” as a sub-
component could facilitate later modifications of the sys-
tem since only the handler, and the optional links between
the listened events and the handler, will be modified if new

2Julia is the reference implementation of the Fractal component model
in Java. See http://fractal.objectweb.org/julia for more
details
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events must be considered or if the existing set of managed
event must be modified.

Our proposition is that our OS will be based on
an event-driven model functioning in the following
way : lower level components announce events to the
higher level components which are able to treat them.
Higher level components can ask lower level components
for occurring tasks through function calls. In the same
way, components in the same level also communicate by
function calls. Figure 4 shows this mechanism.

The previously chosen scheduler, a FIFO queue, im-
poses that all tasks are treated in order of arrival. Thus,
an event arrival does not imply its immediate execution. A
solution to this problem in the use of a “priority queue”
in which events will have a priority higher than function
calls. In this case, when an event occurs, the scheduler will
place it at the head of the queue or, after other tasks having
the same priority.
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In summary, we do not use a “traditional” model of
OS but an event-driven model of execution. This model
authorizes dynamic allocations of component thus allowing

advanced mechanisms such as dynamic reconfiguration.
The behavior of our OS is illustrated in the Figure 5 and
could be described as following :

1) Initialisation of the system.
2) Wait for event.
3) Arrival of an event causes an activity. The system is

held nevertheless on the “waiting of event” state.
4) The system can be stopped by user intervention and

if the user reactivates it, it restarts in the state where
it had stopped.

By referring on this event-driven model, searching of a
stable state is an expensive operation. In our system, at a
given moment, only one task is running. That implies that
when it finishes, the system is stable. Thus it carries out
the next task in the scheduler or it recovers on waiting for
event. Moreover, if one sees reconfiguration as an event, it
is possible to assign to it a higher priority compared to the
other tasks and thus to allow that the next task selected by
the scheduler is reconfiguration. Suppression of the stable
state is possible by the operating mode of sensors. Indeed,
it is recommended that the sensor performs its task as soon
as possible and recovers on standby in order to save the
consumption of the resources. Thus, a sensor must spend
most of its time on standby. Moreover, a constraint of
our model is to prohibit blocking functions. One can thus
consider that if the reconfiguration event occurs during the
execution of a task, this one will take a relatively short
time to finish and the reconfiguration will be able to take
place.

We must compare the cost of waiting for the activity
end with the cost of searching for a stable state for
each component. Nevertheless, elements can be brought
to prove the interest of this solution. Firstly, the by-pass
technique, which constitutes one of the optimizations used
by Think, can be preserved. Secondly, it is not neces-
sary anymore to interpose proxies to count the incoming
and outgoing calls of a component and the extension of
LifeCycleController can also be removed. Thus,
it is possible to save memory compared to the solution
proposed in [10].

The second modification that we can consider re-
lates to the tests determining if reconfiguration can be
carried out. Considering the little capacity of memory
available, it does not appear necessary to preserve this
mechanism on sensors because it requires to store not
only the description of the architecture but also the rules
authorizing the transformation of this architecture. It is
however possible to store only the rules allowing the
transformations. Indeed, thanks to the Fractal model, some
means of component introspection are introduced through
controllers, in particular the ContentController, the
BindingController and the Component. It is then
possible to obtain the overall structure but this mechanism
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increases the processor use. The time of establishment
of a new architecture will be inevitably function of the
architectural complexity of the sensor as for example in
the presence of sub-components.

We thus recommend a delocalization of the whole
mechanism. A sink node or a base station, having less
rigorous constraints, could carry out this functionality. It
could be constructed from a more powerful mote. Thus
within the context of a reconfiguration, the base station
for example would process in the following way :

1) Locally, it contains description of the sensor archi-
tecture as well as rules of applicable reconfiguration.
It allows it to test if reconfiguration is feasible, and
to establish the procedure to modify the sensor.

2) Once the reconfiguration procedure established
(which link(s) to modify, which component(s) to
remove, which component(s) to add, . . . ), the base
station checks the component(s) presence on the
sensor.

a) If the component(s) to add are already
presents on the sensor, it transmits only to
ReconfEngine the reconfiguration request
with the procedure,

b) else, it transmits new component too or, if a
closer sensor contains it, localization of this one
in order to obtain a copy from it.

V. Conclusions and future work

In this paper, we discussed about dynamic reconfigura-
tion in the field of WSN. This property is very important
for the next generation of applications which would run
on WSN. We explained that the component paradigm
and middleware supporting it are the best support for
deploying modern applications but are still not supported
by WSN. We highlighted that existing OS for WSN are
not adapted. Particulary TinyOS because the component
based architecture is broken by its specific optimization.
We proposed to create a new specialized OS for WSN,
called Valentine, based on the CBSE results, and using
Think, a powerful generator of OS. Finally, we discussed
about the characteristics of this new OS in order to provide
a support for dynamic reconfiguration and we proposed a
specific model for dynamic reconfiguration.

Our work is actually in development phase. We found

some problems in Think to generate an OS for the proces-
sors used in WSN. We are working on these limitations.
To finalize this work, the next step will concern the eval-
uation of our work in terms of performance and resource
consumption.

References

[1] Rahul Balani, ChihChieh Han, Ram Kumar Rengaswamy, and
Ilias Tsigkogiannis. Multilevel software reconfiguration for sen-
sor networks. ACM Conference on Embedded Systems Software
(EMSOFT), October 2006.

[2] Eric Bruneton, Thierry Coupaye, Matthieu Leclercq, Vivien Quéma,
and Jean-Bernard Stefani. The Fractal Component Model and its
Support in Java. Software Practice and Experience, special issue on
Experiences with Auto-adaptive and Reconfigurable Systems, 36(11-
12):1257–1284, September 2006.

[3] Adam Dunkels, Björn Grönvall, and Thiemo Voigt. Contiki -
a lightweight and flexible operating system for tiny networked
sensors. In Proceedings of the First IEEE Workshop on Embedded
Networked Sensors (Emnets-I), Tampa, Florida, USA, November
2004.

[4] Chih-Chieh Han, Ram Kumar, Roy Shea, Eddie Kohler, and Mani
Srivastava. A dynamic operating system for sensor nodes. In
Proceedings of the 3rd international conference on Mobile systems,
applications, and services, Seattle, Washington, USA, 2005.

[5] Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar, David Culler,
and Kristofer Pister. System architecture directions for network
sensors. In Proceedings of Ninth International Conference ASPLOS,
Cambridge, MA, USA, November 2000.

[6] Jonathan W. Hui and David Culler. The dynamic behavior of
a data dissemination protocol for network programming at scale.
In Proceedings of the 2nd international conference on Embedded
networked sensor systems, pages 81–94, Baltimore, MD, USA,
2004.

[7] Jeffrey Kephart and David Chess. The vision of autonomic com-
puting. IEEE Computer, 36(1):41–50, January 2003.

[8] Sachin Kogekar, Sandeep Neema, Brandon Eames, Xenofon Kout-
soukos, Akos Ledeczi, and Miklos Maroti. Constraint-guided
dynamic reconfiguration in sensor networks. In Proceedings of ISPN
04, Berkeley, CA, USA, April 2004.

[9] Philip Levis and David Culler. Maté: a tiny virtual machine
for sensor networks. In Proceedings of the 10th international
conference on Architectural support for programming languages
and operating systems, pages 85–95, San Jose, California, 2002.

[10] Juraj Polakovic. Dynamische rekonfiguration in think. Master’s
thesis, Universität Karlsruhe, June 2004. Master report.

[11] Séverine Sentilles. Architecture logicielle pour capteurs sans-fil en
réseau. Master report, University of Pau, Pau, France, June 2006.
http://www.univ-pau.fr/ belloir/DOC/Sentilles-Rapport_final.pdf.

[12] Clemens Szyperski, Dominik Gruntz, and Stephan Murer. Com-
ponent Software – Beyond Object-Oriented Programming. ACM
Press. Addison-Wesley, New York, NY, 2nd edition, 2002.

[13] The Think Project. Think home page, 2006. http://think.
objectweb.org/.

[14] Mark Weiser. Some Computer Science Issues in Ubiquitous Com-
puting. Communications of the ACM, 36(7):75 – 84, July 1993.


