
Bounding Volume Hierarchies of Slab Cut Balls

Thomas Larsson
Mälardalen University

Sweden

Tomas Akenine-Möller
Lund University

Sweden

June 26, 2008

Abstract

We introduce a bounding volume hierarchy based on the Slab Cut
Ball. This novel type of enclosing volume provides an attractive balance
between tightness of fit, cost of overlap testing, and memory requirement.
The hierarchy construction algorithm includes a new method for the con-
struction of tight bounding volumes in worst case O(n) time, which means
our tree data structure is constructed in O(n log n) time using traditional
top-down building methods. A fast overlap test method between two
slab cut balls is also proposed, requiring as few as 28–99 arithmetic op-
erations, including the transformation cost. Practical collision detection
experiments confirm that our tree data structure is amenable for high per-
formance collision queries. For example, in all the tested benchmarks, our
bounding volume hierarchy consistently gives performance improvements
over both the sphere tree and the OBB tree data structure. In particu-
lar, our method is asymptotically faster than the sphere tree, and it also
outperforms the OBB tree, in close proximity situations.

Keywords: Bounding volumes; Hierarchical data structures; Overlap test-
ing; Collision detection; Rigid bodies; Simulation; Animation

1 Introduction

We introduce the bounding volume hierarchy (BVH) of slab cut balls. The name
Slab Cut Ball (SCB) refers to a new type of bounding volume (BV) defined as
the intersection of a sphere and the space between two parallel planes, also
known as a slab.1 The idea behind the SCB is to combine the best features of
OBBs, spheres, and k-DOPs. From the sphere, extremely efficient coarse tests
are inherited. The ability to represent arbitrarily oriented flat areas tightly is
derived from the OBB. The usage of the slab concept also stems from the k-
DOP, however; we allow the slab to be oriented arbitrarily to improve tightness
of fit. Note that the extents of the slab planes are limited by the sphere, which
means only two circular cross-sections of the sphere are located on the actual
boundary of the SCB volume. An example comparing the shape of the SCB to
the other classical bounding volumes in 2D is shown in Figure 1.

1More generally, a slab is the region between two parallel hyperplanes in R
n.

1

Figure 1: The slab cut ball as a new bounding volume (bottom right) in relation
to its three classical ancestors, i.e., the OBB (bottom left), sphere (top left), and
k-DOP (top right). The combination of a sphere and an arbitrarily oriented slab
provides the means for tightness of fit, efficient overlap tests, and low memory
requirements.

An SCB is represented by a center point and a radius for the sphere. The
slab is represented by a normal, defining the orientation, and two scalar values
defining the width. This means that the SCB improves on both the memory cost
and transformation cost of OBBs. Additionally, the transformation problem of
AABBs and k-DOPs for rigid body motion is avoided, since the slab is oriented
arbitrarily. Other advantages are that the SCB of a point set can be constructed
efficiently, and that overlap tests can be made very fast.

It is evident that bounding volumes are very important in computer graphics
applications. They have found extensive use in, for example, collision detection
(CD) [16, 27, 32, 11, 33, 36, 14], ray tracing [49, 15, 47] and view frustum culling
(VFC) [2, 3]. The most popular types of BVs seem to be the AABB [48, 46,
31, 33], OBB [16, 4, 43], sphere [42, 41, 23, 26, 36, 14], and k-DOP [27, 52, 37].
Other choices include the zonotope [18], pie slice [4], cylinder [5], ellipsoid [35],
VADOP [7], and convex hull [10, 40].

The idea of combining two or more simple shapes to form a new type of
bounding volume has also been considered previously. Examples include the
QuOSPO [19], sphere–AABB intersection volume [25], spherical shell [28], cap-
sule (line swept sphere) [29, 9], and lozenge (rectangular swept sphere) [30, 9].

When compared to all these above mentioned bounding volume types, we
have found the SCB to be an excellent container for rigid bodies (or rigid body

2

parts), since it successfully combines the advantages of OBBs and spheres. The
main feature of the OBB hierarchy is its ability to adapt tightly to the underlying
geometry [16]. By using only a single slab as a part of our volume definition,
the SCB hierarchy also gains a similar ability to fit tightly around the objects,
and moreover at a lower memory cost than for OBB trees.

Furthermore, the sphere is highly attractive because various overlap tests
and distance queries become extremely efficient. Therefore, sphere trees have
been used extensively to accelerate rigid body collision detection [42, 41]. For
example, the time-critical collision detection approach [22, 23, 39], which fits
well together with approximate collision response mechanisms [8, 14], are based
on spheres. Evidently, these approaches can also be used together with our SCB
hierarchies, since a bounding sphere is directly available in each tree node as a
part of the SCB definition. For the SCB volume, the rigid body transformation
cost involves only the transformation of a point (the center of the sphere) and
a normal vector (the orientation of the slab).

As several authors have pointed out, the cost, T , of performing geometric
queries using BVHs can be captured by the following cost function [16, 27, 49]:

T = Nv × Cv + Np × Cp + Nu × Cu (1)

In the context of rigid body collision detection, Nv and Np are the number of
BV-BV and primitive-primitive overlap tests with Cv and Cp costs per test,
respectively. Nu is the number of transformed BVs due to rigid motion of the
bodies, and Cu is the cost of transforming a single BV. As can be seen here,
tight fitting BVs are attractive to lower Nv, which in turn leads to lower Np

and Nu. However, simpler BVs give lower Cv and Cu, but generally yields
a looser fit, thereby increasing the number of tests. This is the well-known
trade-off between tightness of fit and overlap test cost, and we argue that the
SCB volume provides a highly attractive balance between these two seemingly
opposing features.

In the rest of this report, we present the details of our novel type of bounding
volume hierarchy. Our main contributions are as follows: (1) We introduce a
new bounding volume type to improve the performance of BVHs. (2) We pro-
pose an efficient algorithm for computing a tight-fitting SCB enclosing a point
set (or a general polygonal model) in worst-case O(n) time. A fast O(n log n)
top-down BVH construction method is also given. (3) An inexpensive SCB–
SCB intersection test using only 99 arithmetic operations in the worst case is
proposed. (4) Empirical evidence is given to illustrate the efficiency of our BVH,
as compared to other common BVH types, for collision detection or interference
detection between pairs of rigid bodies.

1.1 SCB Representation and Memory Cost

We represent the SCB with a ball, B, and a slab, S. The ball is given by a
center point, c, and a radius, r, and the slab by the normal, n, of the slab
planes and the signed distances e and f from c to the planes along the normal
direction. This is illustrated in Figure 2. The area, A, and volume, V , of an
SCB are found by applying the area and volume formulas for sphere segments,
which gives the following equations:

A = 2πr(e− f) + a2π + b2π, (2)

3

�c

e

f

n
r

r

a

b

Figure 2: The SCB is defined by the sphere center c and radius r, the signed
distances e and f to the slab planes measured from c and the normal vector n
of the slab planes.

V =
π

6
e(3r2 + 3a2 + e2) +

π

6
|f |(3r2 + 3b2 + f2). (3)

We can simplify these equations, since the distances a and b are given by the
Pythagorean Theorem as a =

√
r2 − e2 and b =

√
r2 − f2 (see Figure 2). Thus,

A = π
(
2r(e− f) + 2r2 − e2 − f2

)
, (4)

V =
π

3
(
e(3r2 − e2) + |f |(3r2 − f2)

)
. (5)

Regarding the memory cost of the SCB volume, 9 scalar values need to be
stored. This can be compared to other volumes, e.g. the sphere, AABB, OBB,
and 26-DOP, requiring 4, 6, 15, 26 scalar values of storage, respectively. We
note that the BV storage cost may be important not only for saving memory,
but also for improving the cache hit rate during hierarchy traversals. Therefore,
the low memory cost of the SCB is an attractive feature.

If all the values are 4 bytes wide, the storage requirement of an SCB amounts
to 9 × 4 = 36 bytes. However, we note that this can be reduced easily. For
example, instead of storing e and f directly, we can store them as a fraction
of the sphere radius using, for example, two bytes per value. Similarly, the
normal of the slab can be quantized in the BV computation algorithm to make
the components of the normalized normal, nx, ny, and nz, representable as two
bytes per component. In this way, the total memory requirement for an SCB can
be adapted to, for example, 26 bytes. If we want to pack BVH nodes efficiently
with respect to common cache line sizes (32, 64, or 128 bytes), this leaves 6
bytes of extra storage for other necessary node data apart from the actual SCB.

2 Fast SCB Computation

An SCB covering a polygonal model can be computed by using existing al-
gorithms for computing the enclosing ball and the minimum width of a point
set, respectively. Optimal bounding spheres can, for example, be computed

4

ComputeBoundingSCB(P, B, S)

input: A point set P = {p1,p2, ...,pn} with n points
output: A ball B = {c, r)} and slab S = {n, e, f}

1. Compute26DopAndIts26ExtremalPoints(P, D, E)
2. if(n > 26) then
3. B′ ← MinBall(E)
4. B ← UpdateBallToEncloseAllPoints(P, B′)
5. else
6. B ← MinBall(P)
7. S ← InitSlabFromMinimumSlabOf26Dop(c, D)
8. for each point pair (hi, li) ∈ E
9. p← SelectFurthestPointFromLine(hi, li, E)
10. n′ ← (li − hi)× (p− hi)/ ‖ (li − hi)× (p− hi) ‖
11. ComputeSlabWidth(P, c,n′, e′, f ′)
12. if (e′ − f ′ < e− f) then
13. S ← {n′, e′, f ′}

Figure 3: Algorithm for computing an SCB enclosing a point set in worst case
O(n) time.

in expected O(n) time using the randomized algorithm by Welzl [50, 12]. A
reasonable tight sphere can also be computed very efficiently using Ritter’s
method [44]. However, Ritter’s method fails to compute tight-fitting spheres
for some models, in particular models where the optimal enclosing sphere is
uniquely defined by three or four supporting vertices.

The problem of finding the optimal, i.e. the narrowest, slab is often referred
to as computing the minimal width of a point set. There are theoretical solutions
with time complexity O(n3/2+ε) [1]. The earlier Houle-Toussant algorithm has
a worst-case time complexity of O(n2) [21]. However, it seems to be quite usable
in practice as demonstrated by several implementations [45, 13]. Additionally,
Chan proposes (1 + ε)-factor approximation algorithms for the minimal width
problem of a point set [6].

Since our goal is to compute a tight-fitting SCB covering the point set defin-
ing a polygonal model in worst case O(n) time, we propose the BV construction
algorithm shown in pseudocode in Figure 3. The first part of the algorithm com-
putes a 26-DOP represented as a set of intervals, D = {[hi, li]} with i ∈ [0, 12],
while also storing the extremal or supporting vertex pairs E = {[hi, li]} of the
26-DOP, i.e., the vertex pairs in E are the points that span the slab planes of
the 26-DOP (Line 1). Note that a fixed set of 13 normal vectors with integer
coordinates selected from the set {0,±1} are used for faster computation of the
26-DOP (cf. [27]). Thus, at most 26 unique extremal vertices of the model are
selected. In Lines 3–4, we first compute an optimal enclosing sphere covering
E using Gärtner’s minball implementation [12] of Welzl’s algorithm [50]. Then,
the sphere is grown to cover all points P of the model, if needed. However,
when n ≤ 26, we instead compute an optimal enclosing ball directly of the
polygonal model itself (Line 6). Note that this approach improves the tightness
of fit of the spheres significantly compared to, for example, the popular Ritter’s

5

n = 327323 n = 48485 n = 7282 n = 1600
t = 65 ms t = 9.5 ms t = 1.5 ms t = 0.4 ms

Figure 4: Some models with their computed SCBs. The number of vertices of
the models, n, and the SCB computation times, t, are also given.

algorithm [44] in the general case.
The remaining part of the algorithm focuses on finding a tight-fitting slab.

First, we select the slab in the 26-DOP with minimum width as an initial slab
(Line 7), which we then try to improve by considering the normal vectors of
13 large triangles formed by an extremal point pair in E and an additional
point p ∈ E. Here p is always chosen as the point furthest away from the line
through the current point pair (hi, li) (Line 9). Then the normalized normal of
the constructed triangle is computed (Line 10). After this, the resulting slab
width using this normal is computed in Line 11, and finally, the slab is saved,
if it is the narrowest slab found so far (Lines 12–13). Optionally, as a last step
in the algorithm, a user-defined error margin ε may be used to extend the slab
width slightly to avoid underlying primitives to touch the slab planes.

Note that this approach gives close to optimal spheres and a good approxi-
mation of the minimum width slab (in particular for rather flat objects). The
results from using our method to compute the SCBs for some initial test models
we used are shown in Figure 4. The execution times were measured using a
single-threaded C++ implementation of the algorithm running on a computer
with an Intel CPU T2600 2.16 GHz. As can be seen, the time grows linearly with
the number of vertices, as expected. Finally, note that these test models were
randomly rotated before the computation to avoid conveniently aligned models,
e.g. with respect to the fixed normal vectors used in the 26-DOP computation.

3 Hierarchy Construction

The tree building strategy we use is a simple recursive O(n log n) top-down
construction method. It is also a generic construction method in the sense
that it utilizes no knowledge of the actual BV type used in the hierarchy nodes
in the partitioning of the geometric primitives. Furthermore, no restrictive
assumptions about the polygonal input model is made. For instance, a model
represented by a polygon soup without topological information works fine.

The construction proceeds as follows. Starting from the root node enclosing
a complete polygonal model, we recursively split the geometric primitives in two
subsets forming a left and right tree branch. The recursion proceeds until there
is only a single primitive left, in which case a leaf node is created. The split

6

Figure 5: The result of a geometry split operation during hierarchy construction.
The split axis is shown with a dashed line. Note how the SCB volumes are able
to align themselves with the underlying surface, as opposed to the spheres shown
with dotted lines.

heuristic we use is based on the in-place partitioning technique used in quick-
sort [20]. In our case, the pivot element is the split plane dividing the longest
side of the axis-aligned box of the remaining primitives through the centroid of
the box. The primitives are represented using an array of integers, with each
integer being a polygon index. The polygon indices are then rearranged in-place
into a left and right subset using the centroids of the primitives for comparisons
with the pivot element. When the two subsets have been found, a BV of a spec-
ified type is computed for each subset and assigned to the child nodes. Such a
split operation using the SCB as the BV type is exemplified in Figure 5. Note
also that just as quicksort usually sorts remaining short sublists of constant
length using, for example, insertion sort, we too switch to insertion sort in our
partition strategy when there are less than 8 primitives left to partition.

To ensure robustness as well as reasonably balanced hierarchies, however,
we detect whenever the relative proportions of the primitives in their respective
subset are worse than 10% and 90% . In these cases, we redo the split using split
planes through the remaining sides of the box in turn, starting with the second
longest side. Should these split efforts also fail to be reasonably balanced, which
seems to occur rarely in practice, our final choice is the split plane dividing the
longest side of the box through the median of 7 randomly selected triangle
centroids.

3.1 SCB Convergence Rate

As argued by Gottschalk et al. [16], the diameter of the BV is expected to halve
as we descend one level of the hierarchy given that a binary tree is used. If at
the same time the width, or thickness, of the BV is quartered, the convergence
rate is quadratic. This is a very attractive feature of a BV, since it leads
to asymptotically fewer BV–BV tests in collision queries in certain complex
geometric situations, which is referred to as Parallel Close Proximity (PCP),
meaning that every point of a surface is close to some point on the other surface.

7

Figure 6: The pruning power of SCBs versus spheres. Two tessellated sphere
models are shown together with their BVH of SCBs (left) and BVH of spheres
(right). The levels shown are 5, 7, 9, and 11, respectively. As can be seen,
the SCB hierarchy converge much faster to a tighter approximation of the mesh
surface. For example, notice how the size of the gap between the two sphere
models become large rapidly in the SCB case as we go deeper down in the
hierarchies.

8

Such situations occur, for example, in virtual prototyping when fitting machine
parts together.

Although the theoretical analysis by Gottschalk et al. [16] suggests a quadratic
convergence rate for OBBs, it can also be applied for SCBs with diameter d = 2r
and thickness τ = e − f . However, as pointed out, several simplifications are
made in the analysis, such as assuming only nearly flat surfaces (with a smooth
curvature) and ignoring BV packing inefficiencies. The true geometry conver-
gence of a BVH, however, is model-dependent and may vary drastically across
different parts of a model. In general, for closed meshes, the convergence for
OBBs, or SCBs, may be linear in the upper levels of the hierarchy because the
volumes cover mesh surfaces of high curvature, quadratic in subtrees covering
nearly planar surfaces with a smooth curvature, and in the leaf nodes τ can
be zero, or close to zero, for example, where the BV bounds a single polygon,
giving an infinitely large BV aspect ratio improvement.

Therefore, the performance of collision detection algorithms using BVHs are
highly model- and scenario-specific and experimental evaluation is necessary.
However, as is shown by our experimental results in Section 5, the SCB hier-
archies are able to efficiently handle a full range of common situations. These
include models in parallel close proximity, models at deep interpenetration, mod-
els barely touching each other, and models well separated.

�

�

�

�

�

�

Figure 7: The three main types of distance measures used for simple overlap
rejection in the overlap test: (A) Sphere–Sphere, (B) Plane–Sphere, and (C)
Plane–Plane.

4 A Fast SCB–SCB Overlap Test

The main idea behind the overlap test is to utilize three types of quick rejections,
which boils down to simple separation conditions based on sphere–sphere, plane–
sphere, and plane–plane relative locations, as shown in Figure 7. Denote the
involved SCBs as A0 = {B0, S0} = {c0, r0,n0, e0, f0} and A1 = {B1, S1} =
{c1, r1,n1, e1, f1}. Each SCB is also associated with a rigid body transformation
matrix, which means A0 is transformed by M0, and A1 by M1. We choose to
execute the overlap test by transforming A1 into the local space of A0 using the
transformation

M1→0 = M−1
0 M1 (6)

Note that the calculation of M1→0 is an initial setup cost, which in the case of
hierarchical CD, only needs to be computed once for an entire CD traversal of

9

Overlap(A0, A1)

input: A0 = {c0, r0,n0, e0, f0}, A1 = {c1, r1,n1, e1, f1}, and M1→0

output: The overlap status (true or false) of A0 and A1

1. c′1 ←M1→0 c1 − c0

2. if ‖ c′1 ‖2> (r0 + r1)2 return false
3. d0 ← n0 · c′1
4. if d0 − e0 > r1 or d0 − f0 < −r1 return false
5. n′

1 ←M1→0 n1

6. c′0 ← −c′1
7. d1 ← n′

1 · c′0
8. if d1 − e1 > r0 or d1 − f1 < −r1 return false
9. cα ← n0 · n′

1

10. if cα < −a
11. if d0 > 0
12. if CylInFrontOfSlab(c′1,n

′
1, e1, r1,n0, e0, cα) return false

13. if CylInFrontOfSlab(c′0,n0, e0, r0,n′
1, e1, cα) return false

14. else
15. if CylBehindSlab(c′1,n

′
1, f1, r1,n0, f0, cα) return false

16. if CylBehindSlab(c′0,n0, f0, r0,n′
1, f1, cα) return false

17. else if cα > a
18. if d0 > 0
19. if CylInFrontOfSlab(c′1,n′

1, f1, r1,n0, e0, cα) return false
20. if CylInFrontOfSlab(c′0,n0, f0, r0,n′

1, e1, cα) return false
21. else
22. if CylBehindSlab(c′1,n′

1, e1, r1,n0, f0, cα) return false
23. if CylBehindSlab(c′0,n0, e0, r0,n′

1, f1, cα) return false
24. return true

Figure 8: A fast conservative SCB–SCB overlap test algorithm.

two hierarchies.
The pseudocode given in Figure 8 shows the details of the overlap test. First

the overlap status of the two balls B0 and B1 are tested (Lines 1–2). Then follow
two tests of the type sphere–slab, i.e., the overlap status of B0 and S1 (Lines
3–4) as well as B1 and S0 (Lines 5–8) are examined based on computing simple
sphere–plane distances. Finally, given that the orientations of the slabs are
reasonably aligned, which is tested on Lines 9–10 and 172, a separation test for
the two slabs S0 and S1 is executed (Lines 10–23).

To be able to do this last type of rejection test, the extent of at least one of
the slabs has to be bounded. To bound S1, we use a cylinder C1 with its main
axis aligned with the normal n1, and c1 as the bottom base point. The radius
of the cylinder is simply r1, and the height of the cylinder is either e1 or |f1|,
depending on which side is facing towards the slab S0. A quick rejection can
now be done given that the circular top of the cylinder does not reach the slab
S0. Then follows the corresponding test between the cylinder C0 and slab S1.
Note that there are four different cases for the overlap test between the cylinder

2The constant a used in Lines 10 and 17 was set to 0.7 in our implementation.

10

� c1

r1

n1�
p

e1

�
c
0 n

0

e
0

d

re

α

Figure 9: Rejection test for aligned slab case. A cylinder is derived which is
then tested for separation with the slab of the other volume by considering the
effective radius, re of the cylinder.

task #op #cmp exits
transform point 18 - -
sphere/sphere 10 1 (28, 1)
slab/sphere 7 2 (35, 3)

transform normal 15 - -
sphere/slab 10 2 (60, 5)

slab/cylinder 22 4 (82, 9)
cylinder/slab 17 4 (99, 13)

Table 1: SCB-SCB overlap test cost. The number of simple arithmetic op-
erations (#op) and comparisons (#cmp) per listed task are given. The last
column shows the possible exits or returns with the corresponding accumulated
operation cost.

and the slab depending on which sides of the SCBs are facing towards each
other. Which case to apply is found by the conditional tests on Lines 10, 11,
17, and 18. The calculations needed for the actual cylinder–slab rejection test
are very simple. Let us consider one of the four possible cases. From Figure 9,
we see that

p = c1 + e1n1 (7)
d = p · n0 (8)

re = r1 sinα (9)
cosα = n0 · n1 (10)

Therefore,

re = r1

√
1− cos2 α, (11)

r2
e = r2

1(1− (n0 · n1)2). (12)

Now, given that d > e0 and (d − e0)2 > r2
e , we can conclude that there is no

overlap.
Table 1 gives an overview of the operation cost of the overlap test, which

includes the cost of transforming the second SCB into the local coordinate sys-

11

Model data
Model nv np

Sphere-L1 10242 20480
Sphere-L2 40962 81920
KnotA-L1 1764 3528
KnotB-L1 1836 3672
KnotA-L2 3430 6860
KnotB-L2 3570 7140
KnotA-L3 5488 10976
KnotB-L3 5712 11424

Horse 48485 96966
Hand 327323 654666

Table 2: Data for the triangular meshes used in the benchmarks, where nv and
np are the number of vertices and triangles respectively.

tem of the first SCB. Only simple arithmetic operations (add, sub, mul) and
comparisons are used. Note that early outs are possible after either 28, 35, 60,
and 82 operations. The worst case is 99 operations and 13 comparisons.

This can be compared to the OBB–OBB overlap test by Gottschalk et al.,
which requires 252 simple arithmetic operations and 15 comparisons in the worst
case, including the transformation cost [16]. In the best case, our test requires
28 operations and 1 comparison, compared to 49 operations and 1 comparison
for the OBB test, assuming only the midpoint and one axis is transformed before
the first separating axis test is executed. Note that without the transform cost,
our overlap test only requires 66 arithmetic operations in the worst case, and
10 operations in the best case. For OBBs, the corresponding operation cost is
189 operations in the worst case, and 26 in the best case. See Gottschalk’s PhD
thesis for the details of the OBB–OBB overlap test [17].

A potential drawback of our overlap test is that it is conservative, meaning
that false positives are possible leading to deeper hierarchy traversals before the
overlap status can be answered. Using conservative overlap tests, however, is
a common technique in hierarchical collision detection [46, 27, 32, 34], since it
often speeds up the overlap test significantly, thereby giving an overall perfor-
mance gain. Our experiments confirm that this is indeed the case using our
conservative overlap test, even under really hard circumstances, such as parallel
close proximity situations.

As an alternative of using an enclosing cylinder as a safe approximation when
calculating the effective radius, re, for the last type of rejection in the overlap
test, the effective radius of the intersection volume itself could be considered.
We note that this would reduce the number of false positives somewhat, but it
would also make the overlap test more computationally expensive.

5 Evaluation

The algorithms presented have been implemented in C++, and compiled using
Microsoft Visual Studio 2005 with the standard release setting. The perfor-
mance measurements were run single-threaded on a laptop machine with an

12

BallTree SCBTree OBBTree
Scene t Nv Np t Nv Np t Nv Np

Spheres-L1 8.0 99733 10585 3.3 21412 2112 4.9 13350 1135
Spheres-L2 16.4 200235 20776 6.5 42295 4419 9.2 24835 2240
Knots-L1 9.7 68543 15503 1.8 13005 63 3.0 8731 0
Knots-L2 12.5 121316 31703 1.7 14189 53 2.4 9047 0
Knots-L3 18.4 175479 49840 1.8 14367 33 2.5 9365 0
Horses 8.6 93193 12709 5.8 39469 4773 8.4 23200 1748
Hands 101.4 1028875 161923 62.1 387257 53083 83.2 239346 17522

Table 3: Comparison of the average CD execution times, t, in ms, the average
number of BV–BV tests, Nv, and the average number of triangle–triangle tests,
Np, for the different types of BVHs and test scenes.

Intel T2600 2.16 GHz CPU and 1 GBytes of RAM.
The collision detection query takes two rigid bodies as input, where each

body is represented by a triangle mesh (or a triangle soup) and a rigid body
transformation matrix. The search for intersecting triangle pairs is performed
by a recursive dual traversal of the BVHs associated with the models. The
pseudocode for such a traversal is given by Gottschalk [17]. In each recursive
step, we descend in the hierarchy where the radius of current bounding volume
is the largest. We have tried other descent rules, based on maximum volume
or area, or using only parts of the area or volume computation. However,
descending in the subtree with the largest radius gave the best overall execution
times in all our experiments. See Ericsson’s book for a further discussion of
descent rules [11].

We have tested our methods on four different benchmark scenarios, which we
refer to as Spheres, Knots, Horses, and Hands. Some sample images from these
scenarios are shown in Figure 10. The first two test scenes are also repeated
using two and three different levels-of-detail (LODs) of the triangular meshes,
respectively. For each scenario, executions times are measured for three different
types of bounding volumes in the hierarchies. The used types are the SCB, ball
(or sphere), and OBB. We call the resulting hierarchy types SCBTree, BallTree,
and OBBTree, respectively. The first two of these types are implemented in
our own system. For the comparisons with the OBBTree, the publicly available
software package RAPID, version 2.01, by Gottschalk is used. Data for the
models used in the experiments are given in Table 2. The results from all the
CD benchmark tests are summarized in Table 3.

The experimental setup for our first scenario called Spheres is described
below. Two finely tessellated spheres with radii of 0.95 and 1.0 are moving
straight through each other. Initially, their center points are located at (−1, 0, 0)
and (1, 0, 0). Then during 500 frames of simulation, the sphere models are
translated in equally sized steps along the x-axis towards each other while also
rotating around their own local center point. In frame 250, their center points
are coincident and there is PCP over the entire mesh surfaces. Note that a very
similar test scenario was used by Gottschalk with the purpose of demonstrating
the superiority of the OBB over simpler BV types in grazing or near grazing
situations [17]. The sphere meshes are initially generated by subdividing an
icosahedron. The scenario is run using two different LODs of the meshes, with

13

Figure 10: Selected images from the four benchmark scenarios Spheres, Knots,
Horses, and Hands. The simplest LOD is shown for the Spheres scene, and the
most complex LOD for the Knots scene.

14

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 500000

 0 50 100 150 200 250 300 350 400 450 500

N
o.

 B
V

/B
V

 te
st

s

frame

Sphere
SCB
OBB

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0 50 100 150 200 250 300 350 400 450 500

tim
e

(s
)

frame

Sphere
SCB
OBB

 0

 50000

 100000

 150000

 200000

 250000

 0 100 200 300 400 500 600 700

N
o.

 B
V

/B
V

 te
st

s

frame

Sphere
SCB
OBB

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

 0.02

 0 100 200 300 400 500 600 700
tim

e
(s

)
frame

Sphere
SCB
OBB

 0

 1e+006

 2e+006

 3e+006

 4e+006

 5e+006

 6e+006

 7e+006

 8e+006

 0 50 100 150 200 250 300

N
o.

 B
V

/B
V

 te
st

s

frame

Sphere
SCB
OBB

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 50 100 150 200 250 300

tim
e

(s
)

frame

Sphere
SCB
OBB

Figure 11: The number of BV/BV tests, Nv (left), and CD time per frame
(right) for the benchmarks Spheres-L1 (top), Horses (middle), and Hands (bot-
tom).

either 20480 or 81920 triangles per sphere model. The average numbers of BV-
BV tests and CD times over all frames are given in Table 3.

Several interesting performance aspects are revealed by plotting Nv and the
CD time for each frame of the simulation. The plots for the simplest LOD are
given in Figure 11. As expected, Nv is large for the BallTree and the perfor-
mance breaks down completely while near or in the PCP situation. Using SCBs
requires approximately twice as many BV/BV tests as OBBs, except while in
PCP (frame 244-256), when all of a sudden SCBs require slightly fewer tests
than OBBs. Over the entire scenario, the SCBTree is faster than the other BV
types. Although the performance profiles of the SCBTree and OBBTree are
quite similar, we note that the OBBTree is actually slower than the BallTree
during frames 20–140 and 360–480. On average, the speed-up for the SCB-
Tree is 2.4 compared to the BallTree, and 1.5 compared to the OBBTree. In
the PCP situation (frame 244-256), the corresponding speed-ups are 29.7 and
1.7. Although the plots are not included here, very similar advantages for the

15

SCBTree can also be seen for the second LOD. For example, in this case the
SCBTree gives a speed-up of 38.6 compared to the BallTree and 1.7 compared
to the OBBTree during the PCP situation (frame 244-256).

In the second scenario, two intertwined knot models are rotated together
during 500 frames of animation in such a way that their relative distance to
each other remains the same. Since the two knots are close to each other along
a three-dimensional curve, we refer to the geometric situation for Curve Close
Proximity (CCP). We repeat the experiment using three different LODs, and
as expected both the SCBTree and the OBBTree are asymptotically faster than
the BallTree. The speed-ups over the BallTree when using the SCBTree are
5.4, 7.4, and 10.2 over the three LODs. For the OBBTree the corresponding
speed-ups are 3.2, 5.2, and 7.4. As can be seen, the SCBTree is faster than the
OBBTree over all LODs.

The third scenario includes two rotating horse models that are slowly mov-
ing apart from each other. The rotation is varied around all three principal
coordinate axes by incrementing Euler rotation angles so that a variety of dif-
ferent relative poses between the models are tested. The scenario involves no
close proximity situation (PCP or CCP), which would give an apparent advan-
tage to the tighter bounding volume types. The average collision detection time
per frame is 8.6 ms using the BallTree and 8.4 ms using the OBBTree. Again,
the SCBTree is faster than the other methods. It spends 5.8 ms per frame on
average, giving speed-ups of 1.5 and 1.4, respectively. See Figure 11 for a plot
of Nv and the CD time per frame.

In the fourth benchmark, a skeleton hand falls down through another skele-
ton hand. A substantial number of intersections occur, because of the high
polygon count of the hand model. There is no case of close proximity situation
(PCP or CCP) occurring in the scenario. The average CD time per frame is
101 ms using the BallTree and 83 ms using the OBBTree. Again, the SCBTree,
which only required 62 ms CD time per frame, is faster than the other methods.
Plots with per frame data are given in Figure 11.

Finally, note that the sphere volumes used in the BallTree nodes in our
experiments are as tight as the spheres produced by our SCB construction al-
gorithm, since they are constructed using the first part of the algorithm (line
1–6) in Figure 3. When we re-run the experiments after using Ritter’s sphere
construction method instead when building the BallTree, the execution time in-
creased by 18, 2, 12, and 10 percent in the benchmarks Spheres, Knots, Horses,
and Hands, respectively.

6 Discussion

While SCBs are able to tightly approximate many simple shapes, there are
exceptions, such as long thin objects like a pencil or the spade shown in Figure 4.
On the other hand, OBBs also show poor fitting in relation to certain simple
shapes where SCBs excel, such as rather flat circular objects like plates or
frisbees.

Still, objects with long thin triangles, which arise in for example sparsely
tessellated cones or cylinders, seem to be the main problem for SCBs. It would
be easy to design a scenario where the advantage of OBBs for meshes with such
long thin triangles would shine through. In this study, we have assumed that the

16

input meshes are finely tessellated, which means that the SCBs can adapt to the
surface of the mesh tightly over surface areas with a smooth curvature. However,
we see several possible solutions to the problems with long thin triangles.

One approach would be to allow several SCBs to tile themselves over a single
polygon which would avoid too loose-fitting volumes. This solution has been
suggested previously for sphere trees [36]. Unfortunately, this approach would
somewhat defeat our goal of low memory consumption. Another way to handle
the problem would be to use a hybrid hierarchy type in which both SCBs and
OBBs are used to make it possible to approximate the long thin triangles with
OBBs. However, this would make the implementation more complex and the
memory requirement per node would differ depending of the type of volume
used.

A third solution would be to extend the SCB to use a sphere cut by 0–k
optional slabs (0–2 slabs seem best). Clearly two slabs would be enough to give
our volume the same kind of tightness of fit as for OBBs even for long thin
objects. The value of k would be chosen individually per node during hierarchy
construction to reach a specified quality metric. However, this would increase
the storage cost, transformation cost, and overlap test cost (whenever k > 1).
Furthermore, the memory size of the SCB would vary from volume to volume
in the tree nodes. This would make cache efficient layout of the hierarchies in
arrays more complex.

A variation of this solution would be to select k number of slabs from a
set of fixed orientations in model local space. Then during rigid body motion
the slabs could still be rotated freely with the model. However, this would still
increase the storage cost, but not as much as when arbitrary slab orientations
are used. Unfortunately, in this case the volume would lose its ability to closely
approximate even flat parts of the underlying meshes with severe performance
implications in PCP situations.

Finally, rather than including a second arbitrarily oriented slab in the SCB,
a somewhat similar effect can perhaps be achieved by orienting the slabs in
parent/child nodes carefully in relation to each other when dealing with polygons
with a problematic size and shape. In fact, it might always be a good idea
to consider the orientation of the slab in the parent node when defining the
slab orientations in the child nodes. This means that the minimal width, or
narrowest, slab is not always the best choice. Controlling the relative orientation
of the slabs between parent and child nodes for long thin objects in an intelligent
way is left here as future work.

7 Conclusions and Future Work

With its low memory requirements, efficient overlap test, and the ability to
rapidly converge into tight-fitting bounding volumes over smooth surface areas,
we have good reasons to believe that the SCB is an attractive type of volume
for BVHs. This has been confirmed by the results from our collision detection
experiments between complex polygonal models which showed that the SCB-
Tree gave a clear performance advantage over a wide range of scenarios. In
particular, these results also indicate that the SCBTree is asymptotically faster
than the BallTree, as well as being faster than the OBBTree, in PCP situations.
Furthermore, since our approach can be regarded as an extension of ball trees,

17

which are widely used in areas such as computer graphics, computational ge-
ometry, robotics, and visualization, there is a large number of applications that
could potentially benefit from our approach.

In the future, we would like to examine the suitability of the SCB hierarchy
for accelerating other types of geometric queries such as distance queries, ray
tracing, view frustum culling, and occlusion culling. Also, generalization of the
SCBTree to support efficient queries for some types of deformable bodies seems
interesting.

Improving the hierarchy construction method would also be worthwhile. So
far, we have only used a simple generic top-down tree construction method to
build the BVHs. By designing specialized tree building heuristics taking the
actual size and orientation of the SCB volumes into consideration during the
tree creation process, for example, when the split axis is selected in a top-
down tree building approach, or when grouping nodes together in a bottom-up
tree building approach, we expect that hierarchies of higher quality can be
created (cf. [38]). Improved construction also involves efficient handling of large
polygons, or long thin polygons, which are for example common in tesselations
of some simple shapes such as cones or cylinders. By improving the quality
of the constructed hierarchies, Nv and Np in Equation 1 will be lowered even
further.

We also see several other opportunities to lower the memory consumption
of our hierarchies than those outlined in Section 1.1. The simplest approaches
include storing m polygons per leaf node instead of one, and/or switching to
multiway trees with for example tertiary, quaternary, or even octonary tree
nodes. For example, if a complete binary tree data structure is replaced by
a complete octonary tree data structure, the number of internal nodes is re-
duced by a factor of seven. More aggressive memory saving can be achieved
by storing the parameters defining the child volumes in relation to the param-
eters of their parents. Additionally, note that optimizing for speed on specific
hardware involves fitting as many BVs as possible in a cache line/block. On a
higher algorithmic level, it also involves designing cache aware or cache oblivious
data structures and algorithms (see e.g. [51, 24]). Finally, multi-core CPUs and
parallel programming methods can be utilized to give our methods a further
performance boost.

Acknowledgments: Special thanks to Björn Lisper for constructive comments
on a draft version of this report.

References

[1] Pankaj K. Agarwal and Micha Sharir. Efficient randomized algorithms for
some geometric optimization problems. Discrete & Computational Geom-
etry, 16(4):317–337, 1996.

[2] Ulf Assarsson and Tomas Möller. Optimized view frustum culling algo-
rithms. Technical report, No. 99-3, Department of Computer Engineering,
Chalmers University of Technology, March 1999.

[3] Ulf Assarsson and Tomas Möller. Optimized view frustum culling algo-
rithms for bounding boxes. journal of graphics tools, 5(1):9–22, 2000.

18

[4] Gill Barequet, Bernard Chazelle, Leonidas J. Guibas, Joseph S. B. Mitchell,
and Ayellet Tal. BOXTREE: A hierarchical representation for surfaces in
3D. Computer Graphics Forum, 15(3):387–396, 1996.

[5] Sergey Bereg. Cylindrical hierarchy for deforming necklaces. International
Journal of Computational Geometry & Applications, 14(1-2):3–17, 2004.

[6] Timothy M. Chan. Approximating the diameter, width, smallest enclosing
cylinder, and minimum-width annulus. In SCG ’00: Proceedings of the
16th Annual Symposium on Computational Geometry, pages 300–309, New
York, NY, USA, 2000. ACM Press.

[7] Daniel S. Coming and Oliver G. Staadt. Velocity-aligned discrete oriented
polytopes for dynamic collision detection. IEEE Transactions on Visual-
ization and Computer Graphics, 14(1):1–12, 2008.

[8] John Dingliana and Carol O’Sullivan. Graceful degradation of collision han-
dling in physically based animation. Computer Graphics Forum, 19(3):239–
248, 2000.

[9] David H. Eberly. 3D Game Engine Design: A Practical Approach to Real-
Time Computer Graphics. Morgan Kaufmann, 2001.

[10] Stephan A. Ehmann and Ming C. Lin. Accurate and fast proximity queries
between polyhedra using convex surface decomposition. Computer Graph-
ics Forum,, 20(3):500–510, September 2001.

[11] Christer Ericsson. Real-Time Collision Detection. Morgan Kaufmann,
2005.

[12] Bernd Gärtner. Fast and robust smallest enclosing balls. In ESA ’99:
Proceedings of the 7th Annual European Symposium on Algorithms, pages
325–338, London, UK, 1999. Springer-Verlag.

[13] Bernd Gärtner and Thomas Herrmann. Computing the width of a point
set in 3-space. In Thirteenth Canadian Conference on Computational Ge-
ometry, pages 101–103, August 2001.

[14] Thanh Giang and Carol O’Sullivan. Approximate collision response using
closest feature maps. Computer & Graphics, 30(2):423–431, 2006.

[15] A. Glassner. An Introduction to Ray Tracing. Academic Press, 1989.

[16] S. Gottschalk, M. C. Lin, and D. Manocha. OBBTree: A hierarchical
structure for rapid interference detection. In SIGGRAPH ’96: Proceed-
ings of the 23rd Annual Conference on Computer Graphics and Interactive
Techniques, pages 171–180, New York, NY, USA, 1996. ACM Press.

[17] Stefan Gottschalk. Collision Queries using Oriented Bounding Boxes. PhD
thesis, 2000.

[18] Leonidas J. Guibas, An Nguyen, and Li Zhang. Zonotopes as bounding
volumes. In SODA ’03: Proceedings of the 14th Annual ACM-SIAM Sym-
posium on Discrete Algorithms, pages 803–812, Philadelphia, PA, USA,
2003. Society for Industrial and Applied Mathematics.

19

[19] Taosong He. Fast collision detection using QuOSPO trees. In SI3D ’99:
Proceedings of the 1999 Symposium on Interactive 3D Graphics, pages 55–
62, New York, NY, USA, 1999. ACM Press.

[20] C. A. R. Hoare. Quicksort. The Computer Journal, 5(1):10–15, 1962.

[21] M. E. Houle and G. T. Toussaint. Computing the width of a set. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 10(5):761–765,
1988.

[22] Philip M. Hubbard. Interactive collision detection. In IEEE Symposium
on Research Frontiers in Virtual Reality, pages 24–31, 1993.

[23] Philip M. Hubbard. Approximating polyhedra with spheres for time-critical
collision detection. ACM Transactions on Graphics (TOG), 15(3):179–210,
1996.

[24] Dave Kasik. Efficient data reduction and cache-coherent techniques to-
ward real-time performance. In SIGGRAPH ’07: ACM SIGGRAPH 2007
courses, New York, NY, USA, 2007. ACM.

[25] Norio Katayama and Shin’ichi Satoh. The SR-tree: An index structure for
high-dimensional nearest neighbor queries. In SIGMOD ’97: Proceedings
of the 1997 ACM SIGMOD International Conference on Management of
Data, pages 369–380, New York, NY, USA, 1997. ACM Press.

[26] Ladislav Kavan and Jiri Zara. Fast collision detection for skeletally de-
formable models. Computer Graphics Forum, 24(3):363–372, 2005.

[27] J.T. Klosowski, M. Held, J.S.B. Mitchell, H. Sowizral, and K. Zikan. Ef-
ficient collision detection using bounding volume hierarchies of k-DOPs.
IEEE Transactions on Visualization and Computer Graphics, 4(1):21–36,
1998.

[28] Shankar Krishnan, Amol Pattekar, Ming C. Lin, and Dinesh Manocha.
Spherical shell: A higher order bounding bolume for fast proximity queries.
In WAFR ’98: Proceedings of the 3rd Workshop on the Algorithmic Foun-
dations of Robotics, pages 177–190, Natick, MA, USA, 1998. A. K. Peters,
Ltd.

[29] Eric Larsen, Stefan Gottschalk, Ming C. Lin, and Dinesh Manocha. Fast
proximity queries with swept sphere volumes. Technical report, Department
of Computer Science, University of North Carolina at Chapel Hill, 1999.

[30] Eric Larsen, Stefan Gottschalk, Ming C. Lin, and Dinesh Manocha. Fast
distance queries with rectangular swept sphere volumes. In Proceedings of
IEEE International Conference on Robotics and Automation, pages 3719–
3726, 2000.

[31] Thomas Larsson and Tomas Akenine-Möller. Collision detection for con-
tinuously deforming bodies. In Eurographics Conference, pages 325–333,
September 2001.

20

[32] Thomas Larsson and Tomas Akenine-Möller. Efficient collision detection
for models deformed by morphing. The Visual Computer, 19(2-3):164–174,
2003.

[33] Thomas Larsson and Tomas Akenine-Möller. A dynamic bounding vol-
ume hierarchy for generalized collision detection. Computer & Graphics,
30(2):451–460, 2006.

[34] Thomas Larsson, Tomas Akenine-Möller, and Eric Lenguel. On faster
sphere–box overlap testing. journal of graphics tools, 12(1):3–8, 2007.

[35] Shengjun Liu, Charlie C. L. Wang, Kin-Chuen Hui, Xiaogang Jin, and
Hanli Zhao. Ellipsoid-tree construction for solid objects. In SPM ’07:
Proceedings of the 2007 ACM Symposium on Solid and Physical Modeling,
pages 303–308, New York, NY, USA, 2007. ACM.

[36] Cesar Mendoza and Carol O’Sullivan. Interruptible collision detection for
deformable objects. Computer & Graphics, 30(2):432–438, 2006.

[37] J. Mezger, S. Kimmerle, and O. Etzmuss. Hierarchical techniques in colli-
sion detection for cloth animation. Journal of WSCG, 11:322–329, 2003.

[38] Stephen M. Omohundro. Five balltree construction algorithms. Technical
Report 89-063, International Computer Science Institute, Berkeley, Cali-
fornia, November 1989.

[39] Carol O’Sullivan and John Dingliana. Real-time collision detection and
response using sphere-trees. In Spring Conference on Computer Graphics
(SCCG’99), pages 83–92, 1999.

[40] Miguel A. Otaduy and Ming C. Lin. CLODs: Dual hierarchies for multires-
olution collision detection. In SGP ’03: Proceedings of the 2003 Eurograph-
ics/ACM SIGGRAPH Symposium on Geometry Processing, pages 94–101,
Aire-la-Ville, Switzerland, Switzerland, 2003. Eurographics Association.

[41] I. J. Palmer and R. L. Grimsdale. Collision detection for animation using
sphere-trees. Computer Graphics Forum, 14(2):105–116, 1995.

[42] S. Quinlan. Efficient distance computation between non-convex objects.
In Proceedings of the IEEE International Conference on Robotics and Au-
tomation, pages 3324–3329, 1994.

[43] S. Redon, A. Kheddary, and S. Coquillart. Fast continuous collision de-
tection between rigid bodies. Computer Graphics Forum, 21(3):279–288,
September 2002.

[44] J. Ritter. An efficient bounding sphere. In A. Glassner, editor, Graphics
Gems, pages 301–303. Academic Press, 1990.

[45] J. Schwerdt, M. Smid, J. Majhi, and R. Janardan. Computing the width
of a three-dimensional point set: An experimental study. Journal of Ex-
perimental Algorithmics, 4, 1999.

[46] Gino van den Bergen. Efficient collision detection of complex deformable
models using AABB trees. journal of graphics tools, 2(4):1–14, 1997.

21

[47] Ingo Wald, Solomon Boulos, and Peter Shirley. Ray tracing deformable
scenes using dynamic bounding volume hierarchies. ACM Transactions on
Graphics, 26(1), 2007.

[48] Robert Webb and Mike Gigante. Using dynamic bounding volume hierar-
chies to improve efficiency of rigid body simulations. In Proceedings of the
10th International Conference of the Computer Graphics Society on Visual
Computing : Integrating Computer Graphics with Computer Vision, pages
825–842. Springer-Verlag New York, Inc., 1992.

[49] Hank Weghorst, Gary Hooper, and Donald P. Greenberg. Improved compu-
tational methods for ray tracing. ACM Transaction on Graphics, 3(1):52–
69, 1984.

[50] Emo Welzl. Smallest enclosing disks (balls and ellipsoids). In H. Maurer,
editor, New Results and Trends in Computer Science, Lecture Notes in
Computer Science 555, pages 359–370. Springer, 1991.

[51] Sung-Eui Yoon and Dinesh Manocha. Cache-Efficient Layouts of Bounding
Volume Hierarchies. Computer Graphics Forum, 25(3):507–516, 2006.

[52] G. Zachmann. Rapid collision detection by dynamically aligned DOP-trees.
In Proceedings of the IEEE Virtual Reality Annual International Sympo-
sium, pages 90–97, March 1998.

22

