
Analyzing Software Evolvability of an Industrial Automation Control

System: A Case Study

Hongyu Pei Breivold1, Ivica Crnkovic2, Rikard Land2, Magnus Larsson1
1ABB Corporate Research, Industrial Software Systems, 721 78 Västerås, Sweden

{hongyu.pei-breivold, magnus.larsson}@se.abb.com
2Mälardalen University, 721 23 Västerås, Sweden

{ivica.crnkovic, rikard.land}@mdh.se

Abstract
Evolution of software systems is characterized by

inevitable changes of software and increasing software

complexity, which in turn may lead to huge

maintenance and development costs. For long-lived

systems, there is a need to address evolvability (i.e. a

system’s ability to easily accommodate changes)

explicitly in the requirements and early design phases,

and maintain it during the entire lifecycle. This paper

describes our work in analyzing and improving the

evolvability of an industrial automation control system,

and presents 1) evolvability subcharacteristics based

on the problems in the case and available literature; 2)

a structured method for analyzing evolvability at the

architectural level - the ARchitecture Evolvability

Analysis (AREA) method. This paper includes also the

main analysis results and our observations during the

evolvability analysis process in the case study. The

evolvability subcharacteristics and the method should

be generally applicable, and they are being validated

within another domain at the time of writing.

1. Introduction

Studies indicate that more than 50% of the total life

cycle cost is spent after the initial development [18].

Therefore, it becomes essential to cost-effectively carry

out software evolution. In order to prolong the

productive life of a software system, the need to

explicitly address software evolvability is becoming

recognized [6]. There are examples of industrial

systems with a lifetime of 20-30 years. These systems

are subject to and may undergo a substantial amount of

evolutionary changes, e.g. shifting business and

organizational goals, software technology changes,

software systems merge due to organizational changes

[16], demands for distributed development, system

migration to product line architecture, etc. The

evolution problems we have observed came from

various cases in industrial context, where evolvability

was identified as a very important quality attribute that

must be maintained. In order to preserve and improve

evolvability, we need to (i) analyze the system with

respect to evolvability; and (ii) perform architectural

transformation. It is generally acknowledged that the

software’s architecture holds a key to the possibility to

implement changes in an efficient manner [1].

Therefore, in this paper, we analyze evolvability at the

architecture level and identify the evolvability

subcharacteristics of interest in an industrial case study,

where a large automation control system at ABB was

evolved from a monolithic architecture towards a

product line. We present our experiences of the

development of the product line architecture in the

form of a general method, which we have constructed

from data in the manner of grounded theory research

[25]. In addition, the risk of bias has been further

decreased through the involvement of other researchers

in the analysis of the experiences.

The remainder of this paper is structured as follows.

Section 2 describes the context of the case study.

Section 3 presents our architecture evolvability analysis

method - AREA. Section 4 presents the case study, in

which the method was applied to analyze, evaluate and

improve the software architecture of the automation

controller software system. Section 5 discusses the

experiences we gained through the case study. Section

6 reviews related work. Section 7 concludes the paper.

2. Context of the Case

This section presents the case to motivate

evolvability analysis and describe seven evolvability

subcharacteristics from the case perspective.

2.1 Motivating Evolvability Analysis

The case study was based on a large automation

control system at ABB and focused on the latest

generation of the controller. The controller software

consists of more than three million lines of code written

in C/C++ and uses a complex threading model, with

support for a variety of different applications and

devices. It has grown in size and complexity, as new

features and solutions have been added to enhance

functionality and to support new hardware, such as

devices, I/O boards and production equipment. Such a

complex system is difficult to maintain. It is also

important and considerably more difficult to evolve.

Due to different measures such as organizational and

lifecycle process improvements, the system keeps the

maintainability, but the evolvability becomes more

difficult since the increased complexity in turn leads to

decreased flexibility, resulting in problems to add new

features. Consequently, it becomes costly to adapt to

new market demands and penetrate new markets.

Our particular system is delivered as a single

monolithic software package, which consists of various

software applications developed by distributed

development teams. These applications aim for specific

tasks in painting, welding, gluing, machine tending and

palletizing, etc. To keep the integration and delivery

process efficient, the initial architectural decision was

to keep the deployment artifact monolithic. The

complete set of functionality and services is present in

every product even though not everything is required in

the specific product. As the system grew, it became

more difficult to ensure that the modifications of

specific application software do not affect the quality

of other parts of the software system. As a result, it

became difficult and time-consuming to modify

software artifacts, integrate and test products. To

continue exploiting the substantial software investment

made and to continuously improve the system for

longer productive lifetime, it has become essential to

explicitly address evolvability, since software

evolvability is a fundamental element for increasing

strategic and economic value of the software [28]. The

inability to effectively and reliably evolve software

systems means loss of business opportunities [2].

2.2 Evolvability Subcharacteristics from Case

Perspective

In our previous work [21], we have identified

subcharacteristics that are of primary importance for an

evolvable software system. Definitions and detailed

explanations of evolvability subcharacteristics are

provided in [21]. The derivation of evolvability

subcharacteristics are based on survey and analysis of

literatures (see related work section), problems we have

observed and experiences from several earlier case

studies. We do not exclude the possibilities that other

domains or cases might have slightly extended set of

subcharacteristics. Each subcharacteristic is explained

below in conjunction with the case.

Analyzability The release frequency of the controller

software is twice a year, with around 40 various new

major requirements that need to be implemented in

each release. These requirements have impact on

different attributes of the system, and the possible

impact must be analyzed before the implementation of

the requirements. This requires that the software system

must have the capability to be analyzed and explored in

terms of the impact to the software by introducing a

change.

Architectural Integrity A strategy for communicating

architectural decisions that we found out from various

case studies was to appoint members of the core

architecture team as technical leaders in the

development projects. However, this strategy although

helpful to certain extent, did not completely prevent

developers from insufficient understanding and/or

misunderstanding of the initial architectural decisions,

resulting in unconscious violation of architectural

conformance. This may lead to evolvability

degradation in the long run. Therefore, it is important

to record rationale for each design decision, strategy

and architectural solution.

Changeability Due to the monolithic characteristic of

the controller software, modifications in certain parts of

the software package lead to some ripple effects, and

requires recompiling, reintegrating and retesting of the

whole system. This results in inflexibility of patching

and customers have to wait for a new release even in

case of corrective maintenance and configuration

changes. Therefore, it is strongly required that the

software system must have the ease and capability to be

changed without negative implications or with

controlled implications to the other parts of the

software system.

Portability The current controller software supports

VxWorks and Microsoft Windows NT. There is a need

of openness for choosing among different operating

system (OS) vendors, e.g. Linux and Windows CE, and

possibly new OS in the future.

Extensibility The current controller software supports

around 20 different applications that are developed by

several distributed development centers around the

world. To adapt to the increased customer focus on

specific applications and to enable establishment of

new market segments, the controller, like any other

software systems, must constantly raise the service

level through supporting more functionality and

providing more features [4], while keeping some

important extra-functional properties, such as

performance, or reliability.

Testability The controller software exposed huge

number of public interfaces which resulted in

tremendous time merely on interface tests. One task

was therefore to reduce the public interfaces to around

10% of the original public interfaces. Besides, due to

the monolithic characteristic, error corrections in one

part of the software requires retesting of the whole

system. One issue was therefore to investigate the

feasibility of testing only modified parts.

Domain- specific attributes The controller software

has critical real-time calculation demands. It is also

expected to reduce the base software code size and

runtime footprint.

3. Overview of the ARchitecture

Evolvability Analysis (AREA) Method

The steps that we performed in the case are divided

into three main phases as shown in Figure 1.

Phase 1: Analyze the implications of change stimuli on

software architecture.

This phase analyzes the architecture for evolution and

understands the impact of change stimuli on the current

architecture. Software evolvability concerns both

business and technical issues [29], since the stimuli of

changes come from both perspectives, e.g.

environment, organization, process, technology and

stakeholders’ needs. These change stimuli have impact

on the software system in terms of software structures

and/or functionality.

Step 1.1: Identify potential requirements in the

software architecture.

Any change stimulus results in a collection of potential

requirements that the software architecture needs to

adapt to. The aim of this step is to extract these

requirements that are essential for software architecture

enhancement so as to cost-effectively accommodate to

change stimuli. Architecture workshops can be

conducted, where the stakeholders discuss and identify

the potential architecture requirements. Each

requirement is concretized with a collection of

identified refined activities. Afterwards, each identified

requirement must be checked against the evolvability

subcharacteristics so as to ensure the consistency and

completeness.

Step 1.2: Prioritize potential requirements in the

software architecture.

In order to establish a basis for common understanding

of the architecture requirements among stakeholders

within the organization, all the potential requirements

identified from the first step need to be prioritized. We

do not propose any general criteria for requirement

prioritization that apply to all the software systems

evolution, since the criteria might be different from

case to case depending on factors such as development

and organizational constraints, the probability of

potential requirements becoming mandatory

requirements that the architecture must adapt to, etc.

Phase 2: Analyze and prepare the software

architecture to accommodate change stimuli and

potential future changes.

This phase focuses on the identification and

improvement of the components that need to be

refactored.

Step 2.1: Extract architectural constructs related to the

respective identified requirement.

We mainly focus on architectural constructs that are

related to each identified requirement. In order for the

architecture to allow changes in the software without

compromising software integrity and to evolve in a

controlled way, documentation of architectural

decisions and their rationale play a key role.

Step 2.2: Identify refactoring components for each

identified requirement.

In this step, we identify the components that need

refactoring in order to fulfill the prioritized

requirements.

Step 2.3: Identify and assess potential refactoring

solutions from technical and business perspectives.

Refactoring solutions are identified and design

decisions are taken in order to fulfill the requirements

derived from the first phase. The change propagation of

the effect of refactoring need to be considered and

provided as an input to the business assessment,

estimating the cost and effort on applying refactorings.

In some cases, the refactoring of a certain component is

straightforward if we know how to refactor with only

local impact. When the implementation is uncertain

and might affect several subsystems or modules,

prototypes need to be made to investigate the feasibility

of potential solutions as well as the estimation of

implementation workload. As part of this step, an

assessment regarding the compatibility of the

refactoring solutions and rationale with earlier made

design decisions is made to ensure architectural

integrity.

Step 2.4: Define test cases.

New test cases that cover the affected component,

modules or subsystems need to be identified.

Phase 3: Finalize the evaluation.

In this phase, the previous results are incorporated,

analyzed and structured into a collection of documents.

Step 3.1: Analyze and present evaluation results.

The evaluation results include (i) the identified and

prioritized requirements on the software architecture;

(ii) the identified components/modules that need to be

refactored for enhancement or adaptation; (iii)

refactoring investigation documentation which

describes the current situation, rationale and solutions

to each identified candidate that need to be refactored,

including estimated workload; (iv) test scenarios; and

(v) impact analysis on evolvability.

Figure 1. The steps of the ARchitecture Evolvability Analysis (AREA) method

4. Applying the AREA Method

The main focus of the analysis in our case was to

assess how well the architecture would support

potential forthcoming requirements and understand

their impact. Through the analysis process, we

identified potential flaws and defined an evolution path

of the software system. The identification and analysis

of the architectural requirements was performed by the

architecture core team which consists of 6-7 persons. It

was a continuous maturation process from the first

vision to concrete activities that took approximately

one calendar year including analysis, identification of

architecture evolution path and partial refactoring. 2-3

persons from the architecture core team identified the

refactoring solution proposals for the components in

the Basic Services subsystem. These proposals were

discussed with the main technical responsible persons

and architects, documented as evolution path for the

architecture and transferred further to the

implementation teams.

4.1 Phase 1 - Step 1.1: Identify potential

requirements on the software architecture

The change stimuli to the controller software came

from the following emerging critical issues related to

software evolution: (a) time-to-market requirements,

such as building new products for dedicated market

within short time; (b) improvement of software system

evolvability; and (c) increased ease and flexibility of

distributed development of products in combination

with the diversity of application variants. We list below

the main potential architecture requirements that were

identified from the change stimuli. The refined

activities for each requirement are presented as well.

R1. Improved modularization of architecture.

a) Enable the separation of layers within the

controller software: (i) a kernel which comprises

of components that must be included by all

application variants; (ii) common extensions which

are available to and can be selected by all

application variants; and (iii) application

extensions which are only available to specific

application variants.

b) Investigate dependencies between the existing

extensions.

R2. Reduced architecture complexity.

a) Define interfaces and reduce public interface calls.

b) Add support for task isolation and task

management.

R3. Enable distributed development of extensions with

minimum dependency.

a) Build the application-specific extensions on top of

the base software (kernel and common extensions)

without the need of modification to the internal

base source code.

b) Package the base software into SDK (Software

Development Kit), which provides necessary

interfaces, tools and documentation to support

distributed application development and separate

release cycles of the SDK and application-specific

extensions.

R4. Improved portability.

a) Investigate portability across target operating

system platforms and across hardware platforms.

R5. Impact on product development process.

a) Investigate the implications of software

restructuring on product integration and testing.

R6. Minimized software code size and runtime

footprint.

a) Investigate enabling mechanisms, e.g. properly

partitioning functionality.

The above architecture requirements should be

checked against the evolvability subcharacteristics to

justify whether the realization of each requirement

would lead to an improvement of the subcharacteristics

(or possibly a decrease, which would then require a

tradeoff decision), as summarized in Table 1. Besides,

the choice of component refactoring and

implementation solution proposals for fulfilling each

requirement might cause tradeoffs against some other

subcharacteristics, as detailed in section 4.7.
Table 1. Mapping between evolvability subcharacteristics

and architecture requirements

Subcharacteristics Requirements

Analyzability R1. Improved modularization of architecture.

R2. Reduced architecture complexity.

Architectural

Integrity

not related to any particular architectural

requirement, but rather to whether the

architectural choices and rationale for

handling these requirements are documented

Changeability R1. Improved modularization of architecture.

R2. Reduced architecture complexity.

Extensibility R3. Enable distributed development of

extensions with minimum dependency.

Portability R4. Improved portability.

Testability R5. Impact on product development process.

Domain-specific

attributes

R6. Minimized software code size and

runtime footprint.

4.2 Phase 1 - Step 1.2: Prioritize potential

requirements on the software architecture

Due to the monolithic characteristics of the

architecture, the individual products are burdened with

functionalities and components that are not necessary

for the specific individual products. Accordingly, the

main idea was to apply the product line approach,

transform the existing system into reusable components

that can form the core of the product-line

infrastructure, and separate application-specific

extensions from the base software. With the

consideration of not disrupting the ongoing

development projects, the criteria for requirement

prioritization were: (i) enable building of existing types

of extensions after refactoring and architecture

restructuring; (ii) enable new extensions and simplify

interfaces that are difficult to understand and may have

negative effects on implementing new extensions.

Based on these criteria, R1, R2 and R3 were prioritized

potential architectural requirements.

4.3 Phase 2 - Step 2.1: Extract architectural

constructs related to the respective identified

requirement

Over years of development, a lot of functionality has

been added to the system to support new requirements.

It becomes easy to unconsciously violate the original

good design decisions. To prevent this, it is important

to extract design decisions and rationale through

documentation of architectural constructs. In this way,

potential architectural flaws can be discovered. For

instance, in the case study, some implementation

violations were discovered, such as improper use of

conditional compilation in case of environment

changes, direct access to OS native APIs, etc.

Additional efforts have been put to provide training,

guidelines/rules and code examples for software

developers in writing code and using tactics that enable

the achievement of a certain quality characteristic. We

exemplify with R3 and extract architectural constructs

in form of the original coarse-grained architecture as

depicted in Figure 2.

Figure 2. A conceptual view of the original software

architecture

The lower layer provides an interface to the upper

layer and allows the source code of the upper layer to

be used on different hardware platforms and operating

systems. The main problem with this software

architecture was the existence of tight coupling among

some components that reside in different layers. This

led to additional work required at a lower level to

modify some existing functionality and add support for

new functionality in various applications. For instance,

the system is required to perform certain tasks during

start-up and shutdown in the controller. Some routines

for handling such tasks had to be hard-coded, i.e. the

application developers had to edit in the source code of

e.g. Support Services subsystem in the lower layer,

which is developed by another group of developers.

Accordingly, source code updates had to be done not

only on the application level, but through several

layers, several subsystems and components.

Recompilation of the whole code base was required.

This required that application developers need to have

a thorough knowledge of the complete source code. It

also constituted a bottleneck in the effort to enable

distributed application development.

4.4 Phase 2 - Step 2.2: Identify refactoring

components for each identified requirement

To cope with the architectural problems identified in

the previous step, the strategy of separate concerns

need to be applied to isolate the effect of changes to

parts of the system [11], i.e. separate the global

functions from the hardware, and separate application-

specific functions from generic and basic functions as

illustrated in Figure 3.

Figure 3. A revised conceptual view of the software

architecture

Accordingly, some components need to be adapted

and reorganized to enable the architecture

restructuring, e.g. some components within the low-

level Basic Services subsystem for resource allocations,

including semaphore ID management component,

memory allocation management component to separate

functionality from resource management and to achieve

the build- and development-independency between the

kernel and extensions.

4.5 Phase 2 - Step 2.3: Identify and assess

potential refactoring solutions from technical

and business perspectives

Due to space limitations and company

confidentiality, we exemplify with one component

example (inter-process communication component) that

needed to be refactored to represent and illustrate for

the many various discussions and solutions that

occurred during the analysis. We discuss in terms of

the following views: (i) problem description: the

problem and disadvantages of the original design of the

component; (ii) requirements: the new requirements

that the component needs to fulfill; (iii) improvement

solution: the architectural solution to design problems;

(iv) rationale and architectural consequences: the

rationale of the solution proposal and architectural

implications of the deployment of the component on

quality attributes; and (v) estimated workload: the

estimated workload for implementation and

verification.

4.5.1 Inter-Process Communication. This component

belongs to Basic Services subsystem and it includes

mechanisms that allow communication between

processes, such as remote procedure calls, message

passing and shared data.

Problem Description. All the slot names and slot IDs

that are used by the kernel and extensions are defined

in a C header file in the system. The developers have to

edit this file to register their slot name and slot ID, and

recompile. Afterwards, both the slot name and slot ID

have to be specified in the startup command file for

thread creation. There is no dynamic allocation of

connection slot.

Requirements. The refactoring of this component is

related to R3. It should be possible to define and use

IPC slots in common extensions and application

extensions without the need to edit the source code of

the base software and recompile. The mechanism for

using IPC from extensions must be available also in the

kernel, to facilitate move of components from kernel to

extensions in the future.

Improvement Solution. The slot ID for extension

clients should not be booked in the header file.

Extensions should not hook a static slot ID in the

startup command file. The command attribute dynamic

slot ID should be used instead. The IPC connection for

extension clients will be established dynamically

through the ipc_connect function as shown in

Figure 4. It will return a connection slot ID when no

predefined slot ID is given. An internal error will be

logged at startup if a duplicate slot name is used.

Figure 4. The inter-communication component after

refactoring

Rationale and Architectural Consequences. The

revised IPC component provides efficient resource

booking for inter-process communication and enables

encapsulation of IPC facilities. Accordingly,

distributed development of extensions utilizing IPC

functionality is facilitated. The use of dynamic inter-

process communication connections addressed resource

limitations for IPC connection. In this way, limited IPC

resources are used only when the processes are

communicating. However, the use of IPC mechanisms

requires resources, which are limited on a real-time

operating system. Therefore, the overheads due to

resource description processing may be the offset

against efficiency [22], since the overall real-time

performance may be degraded if the cost of creating

and destroying IPC connections is too high.

Estimated Workload. It was estimated around 2 man

weeks which includes the IPC component refactoring

and moving IPC client from kernel to extension.

4.6 Phase 2 - Step 2.4: Define test cases

The corresponding test cases were derived based on

the selected improvement solution proposal to each

component that needed refactoring. For instance, the

architectural test cases for the IPC component are given

by the ThreadCreation class creating dynamic slot ID,

as shown in Figure 5.

Figure 5. Test cases for IPC management component

4.7 Phase 3 - Step 3.1: Present evaluation

results

In this step, the implications of the potential

improvement strategies and evolution path of the

software architecture are analyzed with respect to the

evolvability subcharacteristics as illustrated in Table 2.
Table 2. Impacts of the IPC component on evolvability

subcharacteristics (+ positive impact, - negative impact)

 Consequences of changing IPC component

Analyzability – due to less possibility of static analysis since

definitions are defined dynamically

Architectural

Integrity

+ due to documentation of specific requirements,

architectural solutions and consequences

Changeability + due to the dynamism which makes it easier to

introduce and deploy new slots

Portability + due to improved abstraction of Application

Programming Interfaces (APIs) for IPC

Extensibility + due to encapsulation of IPC facilities and

dynamic deployment

Testability No impact

Domain-

specific

attributes

+ resource limitation issue is handled through

dynamic IPC connection

– due to introduced dynamism, the system

performance could be slightly reduced

5. Reflections
This section summarizes our observations and

experiences of applying AREA.

5.1 Experiences

By applying AREA method, we have improved the

capability in being able to on forehand understand and

analyze systematically the impact of a change stimulus.

This, in turn, helps us to prolong the evolution stage

[2]. Besides, we list below two observations that

concern visible improvements in the organization. They

were perceived and informally reported by the

stakeholders themselves.

Documentation of architecture is improved,

including the architecture’s evolution path.

Architecture transformation and suggestions for

refactoring solutions were part of the analysis process.

This was performed by the architecture core team. As a

result of the analysis and refactoring activities, the

documentation of design and implementation solution

proposals has been improved. The final refactoring

analysis investigation report was distributed for

inspection and was approved after a few iterations.

This document served as an input and blueprint to the

implementation teams. In this way, the architecture

core team and implementation teams shared the same

view on the evolution path of the software architecture.

High-level business goals lead to architectural

requirements. In the case study, the potential

requirements on the architecture were derived from the

high-level business goals through the first phase, where

the potential requirements on the architecture were

identified based on the change stimuli. Such derivation

provides an understanding on how the intended

software system and its evolving artifacts reflect and

contribute to the strategic goals. Together with the

documentation of architecture evolution path, it would

enrich architectural models and facilitate the

traceability of software architecture evolution back to

the various business constraints and assumptions [15].

5.2 Suggestions

Due to continuously changing requirements and

evolutions of new technologies, the software

architecture needs to be evolvable to cost-effectively

accommodate changes. Thus, we suggest routine

evolvability analysis that should be applied as an

integral part during the whole software lifecycle.

Another remark is that the process of making the

impact analysis of component refactoring in terms of

estimated workload was not an easy task. One principle

that was applied during the component refactoring

process was to preserve the external behavior of the

system despite the number of changes to the code. This

required a comprehensive understanding of the

dependencies among different components within

different subsystems. Good tool support that assists in

impact analysis of ripple effects would be helpful.

6. Related Works

To evaluate evolvability, Ramil and Lehman

proposed metrics based on implementation change logs

[23] and computation of metrics using the number of

modules in a software system [17]. Another set of

metrics is based on software life span and software size

[27]. In [26], a framework of process-oriented metrics

for software evolvability was proposed to intuitively

develop evolvability metrics and to trace the metrics

back to the evolvability requirements based on the NFR

framework [5]. However, they do not explicitly address

the evolvability analysis at architectural level. The best

known quality models e.g. McCall [20], Boehm [3],

FURPS [10], ISO 9126 [12] and Dromey [9], do not

explicitly address evolvability. An approach was

described in [19] to measure software architecture’s

quality characteristics through identified key use cases,

based on the customization of the ISO 9126 standard.

An ontological basis which allows for the formal

definition of a system and its change at the architectural

level is presented in [24].

Kolb et al. [14] presented a case study in refactoring

an existing software component for reuse in a product

line using the PuLSE approach. Experiences of using

various assessment techniques for software architecture

evaluation were presented in [8], where scenario-based

assessment, software performance assessment and

experience-based assessment were addressed. The

scenario-based methods such as ATAM [7] would

require quite a number of evolvability scenarios (to

address and cover each of the seven subcharacteristics);

a more important limitation is that while scenarios are

concrete anticipated events in the system life-time,

evolvability might concern high-level business

requirements at an abstract level which calls for some

more general type of analysis to identify implications

on software architecture and corresponding evolution

path.

7. Concluding Remarks

In this paper, we described an analysis of a complex

industrial control system, driven by the need to

improve its evolvability. A set of evolvability

subcharacteristics were described from the case

perspective: analyzability, architectural integrity,

changeability, portability, extensibility, testability and

domain-specific attributes. In addition, an architectural

evolvability analysis method (designated as AREA

method) was applied to the complex industrial system.

The method made the architecture requirements,

corresponding design decisions, rationale and

architecture evolution path more explicit, better

founded and documented, and the resulting

documentation of refactoring improvement proposals

was widely accepted by the involved stakeholders. The

analysis results served as an input and blueprint to the

implementation teams. We want to point out that the

commitment from the organization to perform such a

total restructuring of a large system signifies the

importance of software evolvability.

The AREA method is presently being applied in

another case within ABB, through which we plan to

further refine and validate the method. Another aspect

that we are considering is to apply the method to

address evolvability explicitly in the early design phase

of a new development effort, since software

architecture that is capable of accommodating change

must be specifically designed for change [13].

References
[1] Bass, L., Clements, P., Kazman, R.: Software

Architecture in Practice. Addison- Wesley. (2003)

[2] Bennett, K., Rajlich, V.: Software Maintenance and

Evolution: a Roadmap. The Future of Software Engineering,

Anthony Finkelstein (Ed.), ACM Press. (2000)

[3] Boehm, B.W. et al. : Characteristics of Software Quality.

Amsterdam. North-Holland. (1978)

[4] Bosch, J.: Design and Use of Software Architectures –

Adopting and Evolving a Product-Line Approach. Addison-

Wesley. (2000)

[5] Chung, L. et al.: Non-Functional Requirements in

Software Engineering. Kluwer Academic Publishers. (2000)

[6] Ciraci, S., Broek, P.: Evolvability as a Quality Attribute

of Software Architectures. ERCIM Workshop on Software

Evolution. (2006)

[7] Clements, P., Kazman, R. and Klein, M. Evaluating

Software Architectures: Methods and Case Studies. Addison-

Wesley. (2002)

[8] Del Rosso, C.: Continuous Evolution Through Software

Architecture Evaluation: a Case Study. Journal of Software

Maintenance and Evolution: Research and Practice. (2006)

[9] Dromey, G.: Cornering the Chimera. IEEE Software

(January): 33-43. (1996)

[10] Grady, R., Caswell, D.: Software Metrics: Establishing a

Company-Wide Program. Englewood Cliffs, NJ,

PrenticeHall. (1987)

[11] Hofmeister, C., Nord, R., Soni, D.: Applied Software

Architecture. Addison-Wesley. (2000)

[12] ISO/IEC 9126-1. International Standard. Software

Engineering: Product Quality, Part 1: Quality Model. (2001)

[13] Isaac, D., McConaughy, G.: The Role of Architecture

and Evolutionary Development in Accommodating Change.

Proc. NCOSE’94. (1994)

[14] Kolb, R., Muthig, D., Patzke, T., Yamauchi, K.:

Refactoring a Legacy Component for Reuse in a Software

Product Line: a Case Study. Journal of Software

Maintenance and Evolution: Research and Practice. (2006)

[15] Lago, P., van Vliet, H.: Explicit Assumptions Enrich

Architectural Models. ICSE. (2005)

[16] Land, R., Crnkovic, I.: Software Systems In-House

Integration: Architecture, Process Practices and Strategy

Selection. Journal of Information and Software Technology,

vol 49, nr 5, p419-444, Elsevier, September. (2006)

[17] Lehman, M.M, Ramil, J.F. et al.: Metrics and Laws of

Software Evolution: The Nineties View. IEEE Computer

Press, pp 20-32. (1997)

[18] Lientz, B., Swanson, E.: Software Maintenance

Management. Addison-Wesley. Reading. MA. (1980)

[19] Losavio, F. et al.: ISO Quality Standards for Measuring

Architectures. The Journal of Systems and Software. (2004)

[20] McCall, J.A., Richards, P.K., Walters, G.F.: Factors in

Software Quality. National Technical Information Service.

(1977)

[21] Pei Breivold, H., Crnkovic, I., Eriksson, P. J.: Analyzing

Software Evolvability. Accepted at 32nd COMPSAC. (2008)

[22] Quecke, G., Ziegler, W.: Mesch - an approach to

resource management in a distributed environment. In Proc.

of the First IEEE/ACM International Workshop on Grid

Computing. Springer-Verlag, pp. 47–54. (2000)

[23] Ramil, J.F., Lehman, M.M.: Metrics of Software

Evolution as Effort Predictors - A Case Study. Proc. ICSM.

(2000)

[24] Rowe, D., Leaney, J.: Evaluating Evolvability of

Computer Based Systems Architectures – an Ontological

Approach. Proc. of International Conference and Workshop

on Engineering of Computer-Based Systems. (1997)

[25] Strauss, A. and Corbin, J. M.: Basics of Qualitative

Research: Techniques and Procedures for Developing

Grounded Theory (2nd edition), ISBN 0803959400, Sage

Publications, 1998.

[26] Subramanian, N., Chung, L.: Process-Oriented Metrics

for Software Architecture Evolvability. Proc. IWPSE. (2002)

[27] Tamai, T., Torimitsu, Y.: Software Lifetime and its

Evolution Process over Generations. Proc. ICSM. (1992)

[28] Weiderman, N.H. et al.: Approaches to Legacy Systems

Evolution. Technical Report CMU/SEI-97-TR-014. (1997)

[29] Yang, H., Ward, M.: Successful Evolution of Software

Systems. Artech House Publishers. London. (2003)

