A Component Model for Control-Intensive
Distributed Embedded Systems!

Séverine Sentilles, Aneta Vulgarakis, Tomas Bures,
Jan Carlson, and Ivica Crnkovié¢

Malardalen University, Vasteras, Sweden.
{severine .sentilles, aneta.vulgarakis, tomas.bures,
jan.carlson, ivica.crnkovic}@mdh.se

Abstract. In this paper we focus on design of a class of distributed em-
bedded systems that primarily perform real-time controlling tasks. We
propose a two-layer component model for design and development of such
embedded systems with the aim of using component-based development
for decreasing the complexity in design and providing a ground for ana-
lyzing them and predict their properties, such as resource consumption
and timing behavior. The two-layer model is used to efficiently cope with
different design paradigms on different abstraction levels. The model is
illustrated by an example from the vehicular domain.

1 Introduction

A special class of embedded systems are control-intensive distributed systems
which can be found in many products, such as vehicles, automation systems, or
distributed wireless networks. In this category of systems as in most embedded
systems, resources limitations in terms of memory, bandwidth and energy com-
bined with the existence of dependability and real-time concerns are obviously
issues to take into consideration.

Another problem when developing such systems is to deal with the rapidly
increasing complexity. For example in the automotive industry, the complexity
of the electronic architecture is growing exponentially, directed by the demands
on the driver’s safety, assistance and comfort [3]. In this class of systems, distri-
bution is also an important aspect. The architecture of the electronic systems is
distributed all over the corresponding product (car, production cell, etc.), follow-
ing its physical architecture, to bring the embedded system closer to the sensed
or controlled elements.

In this paper, we propose a new component model called ProCom with the
following main objectives: (i) to have an ability of handling the different needs
which exist at different granularity levels (provide suitable semantics at different

! This work was partially supported by the Swedish Foundation for Strategic Research
via the strategic research centre PROGRESS.

levels of the system design); (ii) to provide coverage of the whole development
process; (iii) to provide support to facilitate analysis, verification, validation and
testing; and (iv) to support the deployment of components and the generation
of an optimized and schedulable image of the systems. The focus of this paper is
on the component model itself, described as means for designing and modelling
system functionality and as a framework that enables integration of different
types of models for resource and timing analysis.

The component model is a part of the PROGRESs approach [7] that distin-
guishes three key activities in the development: design, analysis and deployment.
The design activity provides the architectural description of the system compli-
ant with the semantic rules of the component model presented in this paper and
enables the integration analysis and deployment capabilities. Analysis is car-
ried out to ensure that the developed embedded system meets its dependability
requirements and constraints in terms of resource limitations. The proposed
component model provides means to handle and reuse the different information
generated during the analysis activity. The deployment activity is specific for
control-intensive embedded systems; due to timing requirements and resource
constraints, the execution models can be very different from the design models.
Typically, execution units are processes and threads of tasks.

The main focus of this paper is oriented towards system design. The two
supplementary activities (analysis and deployment) are outside the scope of the
paper. A component model that enables a reusable design, takes into consider-
ation the requirements’ characteristics for control-intensive embedded systems,
and is used as an integration frame for analysis and deployment, is elaborated
in the subsequent sections.

The ideas underlying ProCom emanate partly from the previous work on
the SaveComp Component Model (SaveCCM) [1] within the SAVE project,
such as the emphasis on reusability, a possibility to analyse components for
timing behavior and safety properties. Several other concepts and component
models have inspired the ProCom Design. Some of them are the Rubus compo-
nent model [2], Prediction-Enabled Component Technology (PECT) [10], AU-
TOSAR [3], Koala [9], the Robocop project [8], and BIP [4].

2 The ProCom two layer component model

In designing our component model, we have aimed at addressing the key con-
cerns which exist in the development of control-intensive distributed embedded
systems. We have analyzed these concerns in our previous work [6], with the
conclusion that in order to cover the whole development process of the systems,
i.e. both the design of a complete system and of the low-level control-based
functionalities, two distinct levels of granularity are necessary.

Taking into consideration the difference between those levels, we propose a
two-layer component model, called ProCom. It distinguishes a component model
used for modelling independent distributed components with complex function-
ality (called ProSys) and a component model used for modelling small parts of

s ~>| Subsystem B D
=] subsystem A >—»

a Subsystem C
2]

Fig. 1. Three subsystems communicating via a message channel.

control functionality (called ProSave). ProCom further establishes how a ProSys
component may be modelled out of ProSave components. The following subsec-
tions describe both of the layers and their relation. The complete specification
of ProCom is available in [5].

2.1 ProSys — the upper layer

In ProSys, a system is modeled as a collection of concurrent, communicating
subsystems, possibly developed independently. Some of those subsystems, called
composite subsystems, can in turn be built out of other subsystems, thus making
ProSys a hierarchical component model. This hierarchy ends with the so-called
primitive subsystems, which are either subsystems coming from the ProSave
layer or non-decomposable units of implementation (such as COTS or legacy
subsystems) with wrappers to enable compositions with other subsystems. From
a CBSE perspective, subsystems are the “components” of the ProSys layer, i.e.,
design or implementation units that can be developed independently, stored in
a repository and reused in multiple applications.

The communication between subsystems is based on the asynchronous mes-
sage passing paradigm which allows transparent communication (both locally or
distributed over a bus). A subsystem is specified by typed input and output mes-
sage ports, expressing what type of messages the subsystem receives and sends.
The specification also includes attributes and models related to functionality,
reliability, timing and resource usage, to be used in analysis and verification
throughout the development process. The list of models and attributes used is
not fixed and can be extended.

Message ports are connected via message channels — explicit design entities
representing a piece of information that is of interest to several subsystems — as
exemplified in Fig. 1. The message channels make it possible to express that a
particular piece of shared data will be required in the system, before any producer
or receiver of this data has been defined. Also, information about shared data
such as precision, format, etc. can be associated with the message channel instead
of with the message port where it is produced or consumed. That way, it can
remain in the design even if, for example, the producer is replaced by another
subsystem.

Fig. 2. A ProSave component with two services; S; has two output groups and Sz has
a single output group. Triangles and boxes denote trigger- and data ports, respectively.

2.2 ProSave — the lower layer

The ProSave layer serves for the design of single subsystems typically interacting
with the system environment by reading sensor data and controlling actuators
accordingly. On this level, components provide an abstraction of tasks and con-
trol loops found in control systems.

A subsystem is constructed by hierarchically structured and interconnected
ProSave components. These components are encapsulated and reusable design-
time units of functionality, with clearly defined interfaces to the environment.
As they are designed mainly to model simple control loops and are usually not
distributed, this component model is based on the pipes-and-filters architectural
style with an explicit separation between data and control flow. The former is
captured by data ports where data of a given type can be written or read, and
the latter by trigger ports that control the activation of components.

A ProSave component is of a collection of services, each providing a particular
functionality. A service consists of an input port group containing the activation
trigger and the data required to perform the service, and a set of output port
groups where the data produced by the service will be available. Fig. 2 illustrates
these concepts. The data of an output group are produced at the same time, at
which the trigger port of that group is also activated. Having multiple output
groups allows the service to produce time critical parts of the output early.

ProSave components are passive, i.e. they do not contain their own execution
threads and cannot initiate activities on their own. So each service remains in a
passive state until its input trigger port has been activated. Once activated, the
data input ports are read in one atomic operation and the service switches into
an active state where it performs internal computations and produces data on
its output ports. Before the service returns to the inactive state again, each of
its output groups should be written exactly once.

Input data ports can receive data while the service is active, but it would
only be available the next time the service is activated. This simplifies analysis
by ensuring that once a service has been activated it is functionally (although
not temporally) independent from other components executing concurrently.

A component also includes a collection of structured attributes which define
simple or complex types of component properties such as behavioural models,

typedef struct {
int *speed;
float *dist;

: ‘E } in_S1;
speed [] S'] typedef struct {
dist 1 [] 'gcontrol int xcontrol;
} out_S1;

void init();
void entry_S1(in_S1 *in, out_S1 *out);

Fig. 3. A primitive component and the corresponding header file.

resource models, certain dependability measures, and documentation. These at-
tributes can be explicitly associated with a specific port, group or service (e.g.
the worst case execution time of a service, or the value range of a data port),
or related to the component as a whole, for example a specification of the total
memory footprint. New attribute types can also be added to the model.

The functionality of a component can either be realized by code (primitive
component), or by interconnected sub-components (composite component). For
primitive components, in addition to a function called at system startup to ini-
tialise the internal state, each service is implemented as a single non-suspending
C function. Fig. 3 shows an example of the header file of a primitive component.

Composite components internally consist of sub-components, connections and
connectors. A connection is a directed edge which connects two ports (output
data port to input data port of compatible types and output trigger port to input
trigger port) whereas connectors are constructs that provide detailed control over
the data- and control-flow. The existence of different types of connectors and the
simple structure of components makes it possible to explicitly specify and then
analyse the control flow, timing properties and system performance.

The set of connectors in ProSave, selected to support typical collaboration
patterns, is extensible and will grow over time as additional data- and control-
flow constructs prove to be needed. The initial set includes connectors for forking
and joining data or trigger connections, or selecting dynamically a path of the
control flow depending on a condition. Fig. 4 shows a typical usage of the selec-
tion connector together with or connectors.

ProSave follows the push-model for data transfers and the triggered service
always uses the latest value written to each input data port. Since communica-
tion may eventually be realised over a physical connection, the transfer of data
and triggering is not an atomic operation. For triggering and data appearing
together at an output group, however, the semantics specify that all data should
be delivered to their destinations before the triggering is transferred, to avoid
components being triggered before the data arrives.

2.3 Integration of layers — combining ProSave and ProSys

ProCom provides a mechanism for integrating the low-level design of a subsystem
described by ProSave into the high-level design described by ProSys. A ProSys

Fig. 4. A typical usage of selection and or connectors. When component A is finished,
either B or C is executed, depending on the value at the selection data port. In either
case, component D is executed afterwards, with the data produced by B or C as input.

primitive subsystem can be further specified using ProSave (as exemplified in
Fig. 6). Concretely, in addition to ProSave components, connections and ProSave
connectors, additional connector types are introduced to (a) map the architec-
tural style (message passing used in ProSys to pipes-and-filters used in ProSave,
and vice versa), and (b) specify periodic activation of ProSave components.

Periodic activation is provided by the clock connector, with a single output
trigger port which is repeatedly activated at a given rate. To achieve the mapping
from message passing to trigger and data, and vice versa, the message ports of
the enclosing primitive subsystem are treated as connectors with one trigger port
and one data port when appearing on the ProSave level. An input message port
corresponds to a connector with output ports. Whenever a message is received
by the message port, it writes the message data to the output data port and
activates the output trigger. Oppositely, output message ports correspond to
a connector with an input trigger and input data ports. When triggered, the
current value of the data port is sent as a message.

These composition mechanisms do not only allow a consistent design of the
entire system by integrated pre-existing subsystems but also provide mechanisms
for analysis of particular attributes such as timing properties or performance of
the entire system using specifications or analysis results of the subsystems.

3 Example

To illustrate the ProCom component model we use as an example an electronic
stability control (ESC) system from the vehicular domain. In addition to anti-
lock braking (ABS) and traction control (TCS), which aim at preventing the
wheels from locking or spinning when braking or accelerating, respectively, the
ESC also handles sliding caused by under- or oversteering.

The ESC can be modeled as a ProSys subsystem, as shown in Fig. 5. Inside,
we find subsystems for the sensors and actuators that are local to the ESC.
There are also subsystems corresponding to specific parts of the ESC function-
ality (SCS, TCS and ABS). In the envisioned scenario, the TCS and ABS sub-
systems are reused from previous versions of the car, while SCS corresponds
to the added functionality for handling under- and oversteering. Finally, the

Brake
valves

Throttle adjust.

W

L.

Throttle adjust. > |
> Throttle adjust. » > |

D5 Vawange >————3]
Yaw
sensor > Tateral acedl >
—— Steerg ange >————3] Stability
Control
Lateral 2] System
acceleration
sensor
Steering —
wheel angle ——>RF wheel speed 2] Traction
sensor § Control
' S System
Wheels
>— ;
speed Antl—lgck
sensor S| Braking
s] System

[>————>Brakes pressure > |

Combiner

Fig. 5. The ESC is a composite subsystem, internally modelled in ProSys.

“Combiner”

subsystem is responsible for combining the output of the three.

The internal structure of a SCS primitive subsystem is modeled in ProSave (see
Fig. 6). The SCS contains a single periodic activity performed at a frequency of
50 Hz, expressed by a clock connector. The clock first activates the two compo-
nents responsible for computing the actual and desired direction, respectively.
When both components have finished their respective tasks, the “Slide detec-
tion” component compares the results (i.e., the actual and desired directions)
and decides whether or not stability control is required. The fourth component
computes the actual response, i.e., the adjustment of brakeage and acceleration.

Lateral acceleration
Yaw angle

LF wheel speed
RF wheel speed
LR wheel speed
RR wheel speed

Steering angle >]

actual

Stability Control System

direction

Slide
detection

1 Computing
braking
pressure
1 and throttle L

L

Computing |
desired i
direction

Fig. 6. The SCS subsystem, modelled in ProSave.

Throttle adjust.

Brakes pressure

4 Conclusions

We have presented ProCom, a component model for control-intensive distributed
embedded systems. The model takes into account the most important character-
istics of these systems and consistently uses the concept of reusable components
throughout the development process, from early design to deployment. A char-
acteristic feature of the domain we consider is that the model of a system must
be able to provide both a high-level view of loosely coupled subsystems and a
low-level view of control loops controlling a particular piece of hardware. To
address this, ProCom is structured in two layers (ProSys and ProSave). At the
upper layer, ProSys, components correspond to complex active subsystems com-
municating via asynchronous message passing. The lower layer, ProSave, serves
for modelling of primitive ProSys components. It is based on primitive compo-
nents implemented by C functions, and explicitly captures the data transfer and
control flow between components using a rich set of connectors.

The future work on ProCom includes elaborating on advanced features of the
component model (e.g. static configuration, mode shifting, error-handling, etc.),
building an integrated development environment and evaluating the proposed
approach in real industrial case-studies.

References

1. Mikael Akerholm, Jan Carlson, Johan Fredriksson, Hans Hansson, John Hakansson,
Anders Moller, Paul Pettersson, and Massimo Tivoli. The SAVE approach to
component-based development of vehicular systems. Journal of Systems and Soft-
ware, 80(5):655-667, May 2007.

2. Arcticus Systems. Rubus Software Components. www.arcticus-systems.com.

3. AUTOSAR Development Partnership. Technical Overview V2.2.1, February 2008.
Available from www.autosar.org.

4. Ananda Basu, Marius Bozga, and Joseph Sifakis. Modeling heterogeneous real-
time components in BIP. In Proc. of the 4th IEEE International Conference on
Software Engineering and Formal Methods, pages 3—12. IEEE, 2006.

5. Tomas Bures, Jan Carlson, Ivica Crnkovié, Séverine Sentilles, and Aneta Vulgar-
akis. ProCom — the Progress Component Model Reference Manual, version 1.0.
Technical Report MDH-MRTC-230,/2008-1-SE, Malardalen University, June 2008.

6. Tom&s Bures, Jan Carlson, Séverine Sentilles, and Aneta Vulgarakis. A compo-
nent model family for vehicular embedded systems. In The Third International
Conference on Software Engineering Advances. IEEE, October 2008.

7. Hans Hansson, Mikael Nolin, and Thomas Nolte. Beating the automotive code com-

plexity challenge. In National Workshop on High-Confidence Automotive Cyber-

Physical Systems, Troy, Michigan, USA, April 2008.

Robocop project page. www.extra.research.philips.com/euprojects/robocop.

9. Rob van Ommering, Frank van der Linden, Jeff Kramer, and Jeff Magee. The Koala

component model for consumer electronics software. Computer, 33(3):78-85, 2000.

10. Kurt C. Wallnau. Volume III: A Technology for Predictable Assembly from Certi-

fiable Components (PACC). Technical Report CMU/SEI-2003-TR-009, Carnegie
Mellon, 2003.

®

