
VTV – A Voting Strategy for Real-Time Systems ∗

Hüseyin Aysan, Sasikumar Punnekkat, and Radu Dobrin
Mälardalen Real-Time Research Centre, Mälardalen University, Västerås, Sweden

{huseyin.aysan, sasikumar.punnekkat, radu.dobrin}@mdh.se

Abstract

Real-time applications typically have to satisfy high de-
pendability requirements and require fault tolerance in both
value and time domains. A widely used approach to en-
sure fault tolerance in dependable systems is the N-modular
redundancy (NMR) which typically uses a majority voting
mechanism. However, NMR primarily focuses on produc-
ing the correct value, without taking into account the time
dimension. In this paper, we propose a new approach, Vot-
ing on Time and Value (VTV), applicable to real-time sys-
tems, which extends the modular redundancy approach by
explicitly considering both value and timing failures, such
that correct value is produced at a correct time, under spec-
ified assumptions. We illustrate our voting approach by in-
stantiating it in the context of the well-known triple modular
redundancy (TMR) approach. Further, we present a gener-
alized version targeting NMR that enables a high degree of
customization from the user perspective.

Keywords: Fault tolerance, Redundancy, Majority vot-
ing, Plurality voting, Real-time systems.

1 Introduction

Most real-time applications typically have to satisfy high
dependability requirements due to the interactions and pos-
sible impacts on the environment. Ensuring dependable per-
formance of such systems typically involves both fault pre-
vention and fault tolerance approaches in their design. Us-
age of redundancy is the key for achieving fault tolerance
and it has been employed successfully in the physical, tem-
poral, information and analytical domains of a large num-
ber of critical applications [10, 26]. Static techniques such
as N-modular redundancy (NMR) have been used in safety
and mission critical applications, most often in the well-
known form of triple-modular redundancy (TMR), where
three nodes are used for replication [19]. The key attraction

∗This work was partially supported by the Swedish Foundation for
Strategic Research via the strategic research centre PROGRESS.

of this approach lies in its low overhead and fault mask-
ing abilities, without the need for backward recovery [15].
The disadvantages include the cost of redundancy and sin-
gle point failure mode of the voter. Traditionally, voters
are constructed as simple electronic circuits so that a very
high reliability can be achieved. Usage of distributed vot-
ers has also been employed to take care of the single-point
failure mode in case of highly critical systems [7, 18]. With
the additional cost of increased computation time, more en-
hanced voting strategies, such as plurality, median and av-
erage voters, can be performed in software. Plurality voters
(or m-out-of-n voters) require m corresponding outputs out
of n, where m is less than the majority, to reach a consen-
sus [17, 9]. Median voters output the middle and average
voters output the average value of the replica output values.
Surveys and taxonomies on several voting strategies have
been presented [2, 8, 16].

Replicated nodes’ output values can vary slightly, result-
ing in a range (or a set) of values which should be consid-
ered as correct to avoid problems indicated in [4, 5]. In or-
der to accomplish this, inexact voting strategies have been
proposed [13, 21, 24]. This phenomenon is also observed
in time domain due to several factors, such as clock drifts,
node failures, processing and scheduling variations at node
level, as well as communication delays. Most of the existing
voting strategies, however, focus solely on tolerating varia-
tions in value domain by assuming that they are running on
tightly synchronized systems, as presented in [11]. On the
other hand, using loosely synchronized systems may be an
attractive alternative due to low overheads, requiring, how-
ever, specifically designed asynchronous voting algorithms
to compensate for the timing variations [12].

A simple approach towards tolerating both value and
timing failures in replicas using the NMR approach could
be adding time stamps to the replica outputs. Then, voting
on time stamp values could detect possible timing anoma-
lies of the replicas, under the unrealistic assumptions that
the communication is ideal and replicas never halt. More-
over, this approach is unable to mask late timing failures
since the voter has to wait for all the values to be delivered
from the replicas. Real-time adaptations of majority voting



techniques are proposed by Ravindran et. al., [22, 23], and
Shin et. al., [25], to overcome the latter problem, where vot-
ing is performed among a quorum or a majority of responses
received, rather than waiting for all the responses. In Shin
et. al.’s work, two voting techniques, relaxing the tight syn-
chronization requirements, are presented, viz., Quorum Ma-
jority Voting (QMV) and Compare Majority Voting (CMV).
QMV performs majority voting among the received values
as soon as 2n+1 out of 3n+1 replicas deliver their outputs to
the voter, thus, guaranteeing detection of majority of non-
faulty values even in the case n replicas fail. CMV masks
failures of n out of 2n+1 replicas as in basic majority vot-
ing. The main difference is that in CMV, the voter output is
delivered as soon as a majority consisting of identical val-
ues has been received, without waiting for the rest of the
replicas. Both QMV and CMV provide outputs within a
bounded time interval, as long as the assumptions regarding
the maximum number of failures hold. However, QMV and
CMV are unable to detect any assumption violations in the
time domain.

In this paper, we propose a novel approach, Voting on
Time and Value (VTV), which performs voting in both time
and value domains. Our approach enhances the fault toler-
ance abilities of NMR by ensuring the output from the voter
to be both correct in value, and delivered within a specified
admissible time interval, under specified assumptions. Fur-
thermore, our proposed approach is able to detect assump-
tion violations regarding the maximum number of failures
in time and value domains, thus enabling a fail-safe or fail-
stop behavior of the system. However, we do not address
Byzantine failure modes [14] and associated solutions due
to their tight synchronization requirements and high over-
heads.

In our approach we identify a correct time at which the
voter has to deliver the output, and perform voting in the
value domain to ensure timely delivery of correct value. The
correct time is considered to be identified when: 1) a certain
number of replica outputs are delivered within a predefined
time interval, and 2) a value agreement is established among
valid values. Our approach enables the selection of valid
value outputs, depending on the application type, as either
all available replica outputs, or timely only.

Table 1 presents an overview of various voting strategies,
including VTV, applicable to real-time systems. Clearly,
VTV approach covers both time and value failures as well
as provides clear indication of assumption violations re-
garding the maximum number of failures at the cost of
slightly more complicated algorithms.

The rest of the paper is organized as follows: In Section
2 we present the system model and the basic assumptions
used in this paper. Section 3 describes our approach, il-
lustrates it by an instantiation to a system using triplicated
nodes and presents a generalized algorithm for arbitrary

number of nodes in replication. We conclude the paper in
Section 4 outlining the on-going and future work.

2 System Model

In this paper, we assume a distributed real-time system,
where each critical node is replicated for fault tolerance, and
replica outputs are voted to ensure correctness in both value
and time. Upon receiving identical requests or inputs, repli-
cas of a node start their executions on dedicated processors
whose clocks are allowed to drift from each other at most
by a maximum deviation. This bound can be achieved by
relatively inexpensive clock synchronization algorithms im-
plemented in software (compared to expensive tight clock
synchronization implementations). After the replicas com-
plete execution, the outputs are sent to a stand-alone vot-
ing mechanism. Deviation in message transfer times from
the replicas to the voter is also bounded by using reliable
communication techniques. Upon receiving deliveries from
replicas, the voter starts executing the voting algorithm and
outputs a correct value at an admissible time or signals the
non-existence of a correct output to the subsequent compo-
nent in the system in a timely manner.

In our approach we use the following notations for the
system properties:

∆ maximum admissible time deviation of the voter out-
put, as per the real-time system specifications

δ maximum admissible deviation in time domain be-
tween any two replica outputs, as perceived by the
voter, which includes the maximum skew between any
two non-faulty replica clocks δclock and the maximum
skew between any two message transmissions from
replicas to the voter δcomm

σ maximum admissible deviation in value domain be-
tween any two replica outputs

ε worst case computation time of the voting algorithm

The reader should note that the admissible time interval
for the voter output is determined according to the system
specifications, i.e., what the rest of the system can tolerate
as per the real-time specification, i.e., ∆. On the other hand,
time correctness of a replica output delivered to the voter is
judged according to its behavior with respect to the timing
bound δ.

Our approach builds upon the failure concepts originally
introduced in [1, 3, 20]. For the sake of readability, we de-
note the ith replica of a given node by Ri. The output de-
livered by Ri, is specified by two domain parameters, viz.,
value and time, together with their admissible deviations:

Specified output for Ri = < v∗i , t
∗
i , σ, δ >



Voting Strategy Description Voting domain(s)
1. Wait for a quorum (2n+1 out of 3n+1 replica outputs) value

QMV 2. Perform majority voting among the quorum
CMV Wait for a majority (n+1 out of 2n+1 replica outputs) with identical values value

1. Wait for a plurality (m-out-of-n replica outputs)
delivered within a predefined time window

VTV 2. Perform plurality voting in value domain among available replica value and time
outputs
3. In case there is no agreement in value domain, return to step one
(or signal disagreement in case it was the last possible plurality in time)
1. Wait for a plurality (m-out-of-n replica outputs)
delivered within a predefined time window

VTV 2. Perform plurality voting in value domain among available timely value and time
(timely) replica outputs

3. In case there is no agreement in value domain, return to step one
(or signal disagreement in case it was the last possible plurality in time)

Table 1. Overview of voting strategies suitable for real-time systems

where v∗i is the correct value, t∗i is the correct time point
(seen by a perfect observer) when the output should be de-
livered, [v∗i − σ

2 , v
∗
i + σ

2 ] is the admissible value range and
[t∗i − δ

2 , t
∗
i + δ

2 ] is the admissible time interval for output
delivery as per system specifications.

An output delivered by Ri is denoted as:

Delivered output from Ri = < vi, ti >

where vi is the value and ti is the time point at which the
value was delivered.

We define the output generated by replicaRi as incorrect
in value domain if:

vi < v∗i −
σ

2
or vi > v∗i +

σ

2

and incorrect in time domain if:

ti < t∗i −
δ

2
(early timing failure)

or if
ti > t∗i +

δ

2
(late timing failure).

The notations used for the failure behavior of the replicas
(seen by a perfect observer) are:

F total number of failed replicas, consisting of three main
components (F = Ft + Fv + Fvt):

Fv the number of replicas that have failed only in
value domain

Ft the number of replicas that have failed only in
time domain, consisting of two subcategories:

F et the number of replicas that produce early
outputs with correct values

F lt the number of replicas that produce late out-
puts with correct values

Fvt the number of replicas that have failed in both
domains, consisting of two subcategories:

F evt the number of replicas that produce early
outputs with incorrect values

F lvt the number of replicas that produce late out-
puts with incorrect values

Finally, the algorithm specific notations used in the paper
are:

N number of replicas

Mt minimum number of replicas required to form a con-
sensus in time domain, as per system specification

Mv minimum number of replicas required to form a con-
sensus in value domain, as per system specification

valid is a binary variable indicating the validity of early out-
puts for the purpose of voting, e.g., valid = 1 indicates
that early values are taken into account in the voting
procedure

Basic assumptions: Our approach relies on the follow-
ing set of basic assumptions (to a large extent based on [6]):

A1 non-faulty nodes produce values within a specified ad-
missible range after each computation block



A2 non-faulty nodes produce values within a specified ad-
missible time interval after each computation block

A3 replica outputs with incorrect values do not form (or
contribute in forming) a consensus in value domain

A4 incorrectly timed replica outputs do not form (or con-
tribute in forming) a consensus in time domain

A5 there exist adequate mechanisms, e.g., infrequent syn-
chronization, which are significantly less costly than
tight synchronization, to ensure a maximum permissi-
ble replica deviation from the global time

A6 the voting mechanism does not fail, as being designed
and implemented as a highly reliable unit

3 Voting on Time and Value (VTV)

In this section we present our voting strategy that explic-
itly considers failures in both value and time domains. Ob-
viously, the correctness of our method relies on a number
of conditions regarding the permissable number of replica
failures:

C1 The number of replicas failures can not exceed the dif-
ference between the total number of replicas and the
minimum number of failure free replicas required to
achieve consensus in value domain.

Fv + Ft + Fvt ≤ N −Mv

C2 The number of replica failing in time domain is
bounded by the difference between the total number
of replicas and the minimum number of failure free
replicas required to achieve consensus in time domain.

Ft + Fvt ≤ N −Mt

Our goal is twofold:

1. always deliver the correct value within [t∗−∆
2 , t

∗+ ∆
2 ],

if the conditions C1 and C2 hold

2. provide information about violation of the conditions,
otherwise.

3.1 Approach

As stated in the system model, the admissible time in-
terval for output delivery, tolerated by the system, is de-
noted by ∆. Additionally, the worst case computation time
of the algorithm ε needs to be taken into account in the vot-
ing procedure in order to ensure the delivery of the voter’s
output within ∆. Consequently, the first step is to find the

maximum permissible deviation δ between any two replicas
(Figure 1) such that:

δ + 2ε ≤ ∆

The reader should note that, in a loosely synchronized sys-
tem, maximum deviation in replica output delivery times
from t∗ is the same value in both directions due to the work-
ing principles of clock synchronization mechanisms. There-
fore δ is symmetrically distributed with respect to t∗. If ∆ is
also symmetrically distributed with respect to t∗ in the sys-
tem specification, derivation of δ is performed with a pes-
simism to the extent of the time interval equal to ε, shown
at the beginning of the time interval ∆ in Figure 1.

t*

Δ

δ 

t*
ε ε

Figure 1. Relation between ∆, δ, and ε

The second step is to ensure that VTV detects and out-
puts consensus (if reached) within the derived [t∗ − δ

2 , t
∗ +

δ
2 ]. In VTV, agreement in the time domain is reached when
Mt out of N replicas deliver their outputs within the de-
rived time interval of [t∗− δ

2 , t
∗+ δ

2 ] (referred to as feasible
window henceforth).

The maximum number of sets, consisting of Mt con-
secutive replica outputs each (out of the N replicas), is
N − Mt + 1. Since the consensus in time domain can
be reached in any of these sets, a separate feasible win-
dow needs to be initiated upon receiving each of the first
N − Mt + 1 replica outputs. We keep track of the fea-
sible windows by using simple countdown timers. Once
an agreement in time domain is obtained, then values are
voted. If an agreement in value domain is not obtained
within a particular feasible window, the process continues
with subsequent feasible windows, until agreement in both
time and value domains can be achieved, or violations of C1
or C2 are detected.

Depending on the real-time application characteristics, a
value produced by a node may be considered valid or in-
valid for the purpose of voting, in case it is produced early.
An illustration of replica output flow is given in Figure 2.

An issue is the choice of the set of valid values to be used
in the voting mechanism, i.e., all received values vs. all
timely received values. We illustrate this voting dilemma by
using the scenario described in Figure 3. Let us assume, for



Output from Ri

invalid valid validity

time domaintimely

correct/incorrect value domain

early

correct/incorrect

late

correct/incorrect

or

voting

Voting result

Figure 2. Replica output flow

example, an airbag control system where a collision sensor
is replicated in five different nodes that produce one out of
two values periodically, e.g., value a in case of a collision
detection or value b otherwise. If a collision is detected at a
time t ≤ t1 let us assume that the airbag has to inflate within
a time interval [tstart, tend], where t2 < tstart ≤ t3 and
t5 ≤ tend. In our example, the first two values are detected
as early and the last three are identified as timely. However,
in this case, even an early value has to be taken into con-
sideration in the voting since an early collision detection is
still a valid output with respect to the value domain. Thus,
the output has to be voted upon receiving the last value at
time t5, among all values, i.e., a, a, a, b, and b, resulting
in an output a at time (t5 + ε) (where ε is the time required
for the voting and is assumed to be negligible in this paper
for simplifying the presentation). In this case, the condition
C1 becomes:

C1 The number of replicas failures, excepting early timing
ones, can not exceed the difference between the total
number of replicas and the number of failure free repli-
cas required to achieve consensus in value domain.

Fv + (Ft − F et ) + Fvt ≤ N −Mv

The benefit of this observation is that the number of nodes
required to mask a given number of failures (in time and
value domain) can be significantly reduced, compared to
traditional NMR approaches, as replica outputs failed in one
domain may still be used to reach consensus in the other
domain.

On the other hand, let us assume that the same Figure
3 illustrates an altitude sensor in an airplane, replicated by
five nodes to read and output the altitude periodically to the
voter, where data freshness may be a more desirable aspect.

As the correct window of time for the output is the same as
described in the previous example, the only relevant values
to be taken into consideration by the voter are a, b, and b
corresponding to the time points t3, t4, and t5 respectively.
Hence, a desirable output to be produced in this application
at time (t5 + ε) is b.

R1

R2

R3 Voter

a

a

a a/b?

R4

R5

TIME

δ δ δ

b

b

t1 t2 t3 t4 t5

Figure 3. Voting dilemma

Upon finding a feasible window, the decision on whether
the early generated replica outputs are involved in value vot-
ing or not results in two cases:

Case 1 Early and timely outputs are considered valid. If a
plurality of corresponding values exist among all the
received values, the plurality value is delivered as the
correct output.

Case 2 Only timely outputs are considered valid. If a plu-
rality of corresponding values exist among the timely
received values, the plurality value is delivered as the
correct output.

If there is not an agreement in value domain within the
current feasible window, the process continues with the
subsequent window. If the end of last feasible window is
reached, or all replica outputs are received without reaching
an agreement on the values, disagreement is signalled to the
rest of the system indicating a violation of C1 or C2.

3.2 VTV in TMR

In this section, we present an instantiation of our ap-
proach to triple modular redundancy which can tolerate sin-
gle node failures in value domain, time domain or both (Al-
gorithm 1). In this example, we assume early timing failures
as invalid for the purpose of voting. However, the validity of
such values can be easily tuned in the algorithm. Agreement



in time domain is achieved if at least two values are deliv-
ered to the voter within a time interval less than or equal to
δ, since this is the maximum deviation in time among all
the values as long as no failure occurs. Agreement in value
domain is achieved if at least two of the timely outputs have
the same value.

The algorithm signals disagreement in case agreement
condition is not satisfied in any of the domains, thus en-
abling a fail-safe or fail-stop behavior of the system.

Algorithm 1: VTV
input : v1, v2, v3 = NULL
output: vout or indication of disagreement
/* Inputs are indexed with respect to

the order of reception */
/* Voting in value domain is performed

among the available timely replica
output values */

C1, C2 ← δ ; // countdown timers1
while v1 = NULL do wait;2
start C1;3
while v2 = NULL do wait;4
start C2;5
if C1 > 0 then6

if v1 = v2 then7
output v1;8

else9
while C1 > 0 and v3 = NULL do wait;10
if C1 > 0 and (v3 = v1 or v3 = v2) then11

output v3;12
else if v3 <> NULL then13

signal disagreement;14
else15

while C2 > 0 and v3 = NULL do wait ;16
if v3 = v2 then17

output v3;18
else19

signal disagreement;20
end21

end22

end23

else if C2 > 0 then24
while C2 > 0 and v3 = NULL do wait;25
if v3 = v2 then26

output v3;27
else28

signal disagreement;29
end30

else31
signal disagreement;32

end33

The replicated nodes’ output values are stored in local
variables v1, v2 and v3. Values are assigned to these vari-
ables in the order of receiving the replica outputs (i.e., the
first received value is stored in v1, the second value is stored

in v2 and the last value is stored in v3). Two countdown
timers, C1 and C2, initially set to δ, are used to keep track
of the feasible windows in order to identify agreement in
time domain.

The algorithm waits for the first replica output to be de-
livered and then starts C1. It continues by waiting for the
second replica output and starts C2 upon its arrival. If both
replica outputs have arrived before C1 expires, and have
matching values, the voter will output the matching value
as the correct value as a majority is formed in both time and
value domains. Otherwise we have two cases:

Case 1 C1 has not reached zero, and the values v1 and v2

do not match. In this case, the algorithm waits for v3

until C1 reaches zero. If the third value arrives before
C1 reaches zero and matches either v1 or v2, the algo-
rithm outputs the matching value since all values are
timely and there is a majority in value domain. In case
there exists no replica output pair matching in value
domain, the algorithm signals disagreement. If the
third value does not arrive before C1 reaches zero, the
algorithm waits for v3 until C2 reaches zero. If v3 is
received and matches v2 before C2 reaches zero, the
algorithm outputs the matching value. Otherwise the
algorithm signals disagreement.

Case 2 C1 has reached zero. In this case, v1 is considered
invalid, and the algorithm waits for v3 until C2 reaches
zero, as only a match between v2 and v3 may result in
an agreement. If the values do not match, or if v3 has
not been received at all, the algorithm signals disagree-
ment. If v2 and v3 matches, the algorithm outputs the
matching value.

3.3 VTV in NMR

In this section we present a generalized algorithm for
value and time based voting for arbitrary nodes in replica-
tion (Algorithm 2).

The generalized VTV algorithm uses four system param-
eters: the total number of replicas N , the number of repli-
cas needed for agreement in time domain Mt, the number
of replicas needed for agreement in value domain Mv and
the boolean parameter timely which indicates whether only
timely or all received replica outputs will be used for value
voting.

Inputs to Algorithm 2 are the replica outputs which are
indexed in the order of reception. The output of the algo-
rithm is either a value considered correct that is generated
at a correct time or an indication of disagreement. Count-
down timers, C1, C2, . . . , CN−Mt+1, initially set to δ, are
used to keep track of feasible windows. These timers are
started upon the reception of the first N −Mt + 1 replica
outputs. Set R keeps the values of replica outputs which



Algorithm 2: VTV(N ,Mt,Mv ,timely)
input : v1, . . . , vn = NULL
output: vout or indication of disagreement
/* Inputs to the algorithm are indexed

in the order of replica outputs’
reception */

/* N: the total number of replicas */
/* Mt: the number of replica outputs

needed for an agreement in time
domain */

/* Mv: the number of replica outputs
needed for an agreement in value
domain */

/* Voting in value domain is performed
among the available timely replica
output values if the parameter timely
is true, or all the available replica
output values if it is false */

/* Countdown timers */
C1, . . . , CN−Mt+1 ← δ1
/* Set of all received values */
R← ∅2
/* The earliest timely element of set

R’s arrival index */
earliestT imely ← 13
for i = 1 to N do4

while vi = NULL and CN−Mt+1 > 0 do wait;5
if CN−Mt+1 = 0 then6

signal disagreement;7
break;8

end9
R = R ∪ {vi};10
if i ≤ N −Mt + 1 then11

start Ci;12
end13
if i ≥ max(Mt,Mv) then14

for j = earliestTimely to N −Mt + 1 do15
if Cj > 0 then16

if i− j + 1 ≥Mt then17
if ValueAgreement(R,Mv) then18

return vout;19
end20

else21
break;22

end23

else24
earliestTimely++;25
if timely then26

R = R \ {vj};27
end28

end29

end30

end31
i++;32

end33

are considered valid. If parameter timely is true, the values
of replica outputs are removed from this set whenever their
corresponding countdown timers reach zero. Variable ear-
liestTimely holds the arrival index of set R’s earliest timely
element.

When the algorithm starts to execute, it waits for replica
outputs to be delivered. As soon as a replica output is re-
ceived, the countdown timer with the current index is ac-
tivated and the value of the replica output is added to the
set R. After the reception of max(Mt,Mv) replica out-
puts, the algorithm starts checking for agreement in time
domain within each active feasible window. Once an agree-
ment in time domain is achieved, function ValueAgreement
is called for value voting on the elements of set R. If an
agreement on values is achieved as well, the algorithm out-
puts the value. Otherwise the procedure is continued with
the consecutive feasible windows. If the last feasible win-
dow is ended without any agreement in both value and time
domains, the algorithm signals disagreement to the rest of
the system.

Algorithm 2 is intended as a general structure, imple-
mentation of which will require a set of suitable data struc-
tures and operators for efficient handling of the inputs and
their order of occurrences.

4 Conclusions

In this paper, we have presented a new voting strategy,
Voting on Time and Value (VTV), for redundant real-time
systems, to explicitly consider both value and timing fail-
ures for achieving fault tolerance in real-time applications.
Our method produces the correct output value, as well as
identifies the correct window of time in which the output
has to be delivered, provided the conditions on the maxi-
mum number of permissible failures are not violated. More-
over, our method is capable of providing information about
violation of such conditions, if any.

We have presented an algorithm for the particular case
where the nodes are triplicated, and illustrated the basic idea
on how to perform the voting in both value and time do-
mains. We have further presented a generalized version of
the algorithm that enables a high degree of customization
with respect to the number of replicas, plurality levels, as
well as the validity of early values for the purpose of vot-
ing.

Our ongoing research indicates that VTV, when used
in the general case to mask an arbitrary number of value
and timing failures, is cost-effective in comparison with the
number of nodes required by majority voting in NMR. The
main reason is that, in our approach, a non-faulty node can
be successfully used to mask both a value and a timing fail-
ure in the voting procedure.



References

[1] A. Avizienis, J. Laprie, and B. Randell. Fundamental con-
cepts of dependability. Research Report N01145, LAAS-
CNRS, 2001.

[2] D. Blough and G. Sullivan. A comparison of voting strate-
gies for fault-tolerant distributed systems. Proceedings of
the 9th Symposium on Reliable Distributed Systems, pages
136–145, 1990.

[3] A. Bondavalli and L. Simoncini. Failure classification with
respect to detection. Proceedings of the 2nd IEEE Work-
shop on Future Trends in Distributed Computin, pages 47–
53, 1990.

[4] S. S. Brilliant, J. C. Knight, and N. G. Leveson. The con-
sistent comparison problem in N-version software. IEEE
Transactions on Software Engineering, 15(11):1481–1484,
1989.

[5] L. Chen and A. Avizienis. N-version programming: A
fault-tolerance approach to reliability of software operatlon.
Proceedings of the 25th International Symposium on Fault-
Tolerant Computing, ’ Highlights from Twenty-Five Years’.,
page 113, 1995.

[6] P. Ezhilchelvan, J.-M. Helary, and M. Raynal. Building
responsive TMR-based servers in presence of timing con-
straints. Proceedings of the 8th IEEE International Sympo-
sium on Object-Oriented Real-Time Distributed Computing,
pages 267–274, 2005.

[7] V. D. Florio, G. Deconinck, and R. Lauwereins. The EFTOS
voting farm: A software tool for fault masking in message
passing parallel environments. Proceedings of the 24th Eu-
romicro Conference, 1:379–386, 1998.

[8] F. D. Giandomenico and L. Strigini. Adjudicators for
diverse-redundant components. Proceedings of the 9th Sym-
posium on Reliable Distributed Systems, pages 114–123,
1990.

[9] A. Grnarov, J. Arlat, and A. Avizienis. Modeling of soft-
ware fault-tolerance strategies. Proceedings of the 11th An-
nual Pittsburgh Modeling and Simulation Conference, pages
571–578, 1980.

[10] A. Hopkins, T. Smith, and J. Lala. FTMP: A highly reliable
fault-tolerant multiprocessor for aircraft. Proceedings of the
IEEE, 66(10):1221–1239, 1978.

[11] H. Kopetz. Fault containment and error detection in the
time-triggered architecture. Proceedings of the 6th Inter-
national Symposium on Autonomous Decentralized Systems,
pages 139–146, 2003.

[12] J. Lala, L. Alger, S. Friend, G. Greeley, S. Sacco, and
S. Adams. An analysis of redundancy management algo-
rithms for asynchronous fault tolerant control systems. Re-
search Report NASA-TM-100007, NASA, 1987.

[13] J. Lala and R. Harper. Architectural principles for safety-
critical real-time applications. Proceedings of the IEEE,
82(1):25–40, 1994.

[14] L. Lamport, R. E. Shostak, and M. C. Pease. The Byzan-
tine generals problem. ACM Transactions on Programming
Languages and Systems, 4(3):382–401, 1982.

[15] J.-C. Laprie. Dependable computing and fault-tolerance:
Concepts and terminology. Proceedings of the 25th Inter-
national Symposium on Fault-Tolerant Computing, ’ High-
lights from Twenty-Five Years’., 1995.

[16] G. Latif-Shabgahi and a. S. B. J.M. Bass. A taxonomy for
software voting algorithms used in safety-critical systems.
IEEE Transactions on Reliability, 53(3):319–328, 2004.

[17] P. Lorczak, A. Caglayan, and D. Eckhardt. A theoreti-
cal investigation of generalized voters for redundant sys-
tems. Proceedings of the 19th International Symposium
on Fault-Tolerant Computing, FTCS-19. Digest of Papers.,
pages 444–451, 1989.

[18] R. E. Lyons and W. Vanderkulk. The use of triple-modular
redundancy to improve computer reliability. Journal of Re-
search and Development, 6:200–209, 1962.

[19] J. V. Neuman. Probabilistic logics and the synthesis of reli-
able organisms from unreliable components. Automata Stud-
ies, pages 43–98, 1956.

[20] D. Powell. Failure mode assumptions and assumption cov-
erage. Proceedings of the 22nd International Symposium on
Fault-Tolerant Computing, pages 386–395, 1992.

[21] D. Powell, J. Arlat, L. Beus-Dukic, A. Bondavalli, P. Cop-
pola, A. Fantechi, E. Jenn, C. Rabejac, and A. Wellings.
GUARDS: a generic upgradable architecture for real-time
dependable systems. IEEE Transactions on Parallel and
Distributed Systems, 10(6):580–599, 1999.

[22] K. Ravindran, K. Kwiat, and A. Sabbir. Adapting dis-
tributed voting algorithms for secure real-time embedded
systems. Proceedings of the 24th International Conference
on Distributed Computing Systems Workshops, pages 347–
353, 2004.

[23] K. Ravindran, K. Kwiat, A. Sabbir, and B. Cao. Replica vot-
ing: a distributed middleware service for real-time depend-
able systems. Proceedings of the 1st International Confer-
ence on Communication System Software and Middleware,
pages 1–7, 2006.

[24] J. Rushby. Formal methods and the certification of critical
systems. Computer Science Laboratory, SRI International,
Tech. Rep CSL-93-7, 1993.

[25] K. Shin and J. Dolter. Alternative majority-voting methods
for real-time computing systems. IEEE Transactions on Re-
liability, 38(1):58–64, 1989.

[26] J. H. Wensley, L. Lamport, J. Goldberg, M. W. Green,
K. N. Levitt, P. M. Milliar-Smith, R. E. Shostak, and C. B.
Weinstock. SIFT: Design and analysis of a fault-tolerant
computer for aircraft control. Proceedings of the IEEE,
66(10):1240–1255, 1978.


