Introducing Component Based Software Engineering at an Embedded
Systems Sub-Contractor

Mikael Akerholm, Kristian Sandstrém and Ivica Crnkovic
Malardalen Real-Time Research Centre (MRTC)
Mailardalen University, Vésteras, Sweden
{mikael.akerholm, kristian.sandstrom and ivica.crnkovic}@mdh.se

Abstract

Attractive benefits with successful implementation of
component-based principles include managing complex-
ity, reduction of time-to-market, increased quality, and
reusability. Deployment of component-based develop-
ment is however not simple - it depends on many strate-
gic, technical, and business decisions. In this paper we
report experiences from our attempts with finding a cor-
rect implementation of component-based principles for
the business situation of sub-contractors of embedded
systems.

Findings related to suitable component models, com-
ponent technologies, and component management are
presented. Quverall the results confirm the suitability
of component-based principles for the domain, but also
show the need (and potential) in further development
of CBSE theory and technology for embedded systems.

1 Introduction

In this paper we report our experiences from
introducing Component-Based Software Engineering
(CBSE) |11, 14] at the company, CC Systems!, act-
ing as sub-contractor and Commercial Off The Shelf
(COTS) components supplier for embedded systems.

CBSE can be seen as analogous to engineering ap-
proaches in other engineering domains. For examples,
mechanical engineers build systems using well-specified
components such as nuts and bolts, and the building
industry uses components as large as walls and roofs (in
turn assembled from smaller components). CBSE has
proven to be effective for desktop and web-applications,
however, not yet for development of software for em-
bedded systems. Implementation and deployment of

LCross Country Systems, http://www.cc-systems.com

CBSE for development of embedded systems is not
trivial. As its success depends on many factors where
some of them are selection (or development) of a com-
ponent technology that can be efficiently used in the
development and maintenance process, and satisfy the
run-time requirements of the particular domain.

We present experiences from four cases in this pa-
per. One case, SaveCCT, is a study where a group of
researches demonstrates a prototype component tech-
nology in a real industrial environment. The second
case, CrossTalk, utilises CBSE principles for realizing
a software platform supporting "any" system consisting
of the company’s hardware. The third case, CC Com-
ponents, make use of a component repository when
possibilities to create or reuse components arise in the
development projects. Finally, the fourth study is an
evaluation of a method supporting the sometimes nec-
essary work with adaptation of components to fit usage
in different development projects.

Our findings indicate that CBSE principles are suit-
able for embedded systems sub-contractors, but it
might be harder to practice CBSE as sub-contractor
than product owning company. The necessary tech-
nical needs of, e.g., expressiveness in the component
models, resource efficiency of component based applica-
tions, and analysis possibilities can be considered met.

The following section (section 2) presents the mo-
tivation and goals with the research presented in this
paper. Section 3 presents data for the different cases
we have studied. The findings from our experiences
when working with the different cases are reported in
section 4. A discussion of the results is provided in
section 5. Finally, section 6 concludes the paper.

2 Goals and Motivation

The primary goal of this experience paper is to con-
tribute to the overall understanding of the needs of

component technologies and processes for practicing
CBSE in the domain of embedded control systems for
vehicles and machines.

The studies have all been performed at CC Systems
engineering sites in Finland and Sweden. CC Systems
develops electronics targeting vehicles and machines in
rough environments. From software and hardware con-
trolling safety critical by-wire functions, to software
and hardware for powerful on-board display based in-
formation systems with back-office connections.

The studies focus on the control related part of the
systems. The focus is chosen because CBSE as ap-
proach have had a limited success for development of
such systems, in comparison to the domain of PC ap-
plications where the approach has emerged. The major
reason to this is a number of important qualities that
leaven all through the software life-cycle, e.g., safety,
reliability, timing, and resource efficiency. It known
that these qualities are not addressed by most existing
commercial component technologies, and consequently
these systems cannot be developed with such compo-
nent technologies. However, many component tech-
nologies that might be suitable exists within academia
and some are to a limited extent used within indus-
try, e.g., Koala [24] used internally at Philips?, Rubus
[18] used by some Swedish vehicle manufacturers, and
different implementations of the IEC61131-3 standard
[16]. However, as pointed out in [9], there is currently
no de-facto standard component technology within the
domain of vehicular systems; although CBSE seams to
get a lot of attention from industry, e.g., East® and
Autosar®. This leads us to the goal of assessing if the
limited success of CBSE in the domain is depending
on an inability of existing commercial technologies to
support the requirements of embedded vehicular appli-
cations.

Another very interesting question is how an ideal
component model for the domain should take the trade-
off between supporting predictability, and ease to ex-
press common functionality in vehicular control sys-
tems? The core part of a component model is related
to defining what a component is, and possibilities for
component interaction. There are several important
design decisions that have to be made when defining
a component model and one is the trade-off between
flexibility and predictability. It is the trade-off with re-
spect to ease of implementing vehicular control systems
(high degree of flexibility), and support for prediction
of quality attributes considered important in the do-
main (high degree of predictability). A design choice

2Philips, http://www.philips.com/
3East, http: //www.east-eea.net/
4 Autosar, http://www.autosar.org

of our suggested component model, SaveCCM [12], is
in contrast to many of the current component mod-
els to sacrifice some flexibility to facilitate analysis and
predictability.

Finally resource-efficiency (the consumption of a
minimum of resources in achieving an objective) is
important in the domain since products are typically
produced in high volumes. Poor resource efficiency in
component frameworks might be an important reason
for not choosing CBSE [9]. At the same time the ba-
sic ideas of CBSE has been driven from the needs of
PC/Internet applications where resource efficiency typ-
ically is not an issue. A reusable component should
according to CBSE theory be general. An obvious
method to create a general component is to implement
support for many methods that might suit different
purposes. Using this approach imply that you might
end up with using only a small part of the component,
and the rest is "dead code" in the application. This
might be a problem for resource constrained embedded
systems, and highly recommended to avoid for systems
with high Safety Integrity Level (SIL), i.e., SIL 2 and
above in IEC61508 [15].

3 CBSE Activities

Four CBSE activities are summarized in the fol-
lowing sub-sections, denoted Case I1-4. Case 1 is a
study by a group of researchers in a real industrial
environment; the study evaluates technical properties
of a component technology. In Case 2, the company
utilises CBSE principles for realizing a Product-Line
Architecture (PLA) [7] for platform software, here the
suitability of CBSE and the component technology are
evaluated. In Cased component-based reuse is prac-
ticed when opportunities arise, here the CBSE princi-
ples in this context are evaluated. Finally, Case 4 is an
evaluation by researchers in an industrial environment
of a method related to component adaptation, here the
method itself is evaluated. The experiences and lessons
learned of the cases are summarised in section 4.

3.1 Casel, SaveCCT

Case 1 is a demonstration of the component tech-
nology SaveCCT [1], by usage on a fictive but repre-
sentative application in a real industrial environment
at CC Systems. The main purpose with this case is
evaluation of the technical properties of the component
technology.

The research prototype of the SaveComp Compo-
nent Technology (SaveCCT) used during this study is
visualized in Figure 1. SaveCCT is described at the

Analysis Tools

Start

Design Tool

Manual
Design
5 i
4 1 il o it
| i i : Synthesis |
| i ! ; H
I e G| ;
[! Timed-Automata SaveCCM Core | i ! I:l Task Allocation E
i {__..Model __ Transformation: ||: ! Il |
i i ____________ I:i_v—e_r;t;s_s““““““i i E I:l Attribute 3 Automated
: : ' i ! Assignment | Activities
A s | <— | | N/: by :
i 11| Finite State Top-Level | P : {1l 3
! ' ! | Process Model Conversation | B ! :l Glue Code !
' Tl L i i i o i i Vo i N i
| poemermmmmccmmmme e a L ! Generation '
[' :‘//' S — ' Lcaa /B SONC .casmmmmwaas 4
| | OtherModels A — et § O _—
[' | System N
| : ' System }
APPLICATION
API Simulation APPLICATION Execution

PC - Win32

Target - RTOS

Figure 1. An overview of our research prototype SaveCCT

top level, by distinguishing manual design, automated
activities, and execution.

Manual design is the entry point for the develop-
ment; here a component-based strategy is used, sup-
ported by a set of tools for design and analysis. The
SaveCCT design tool provides support for graphical as-
sembly of applications from existing components. The
tool allows designers to specify the component inter-
connection logics, and express high level constraints
on the resulting application. Assembling components
is done with respect to the rules of the SaveComp
Component Model (SaveCCM) [12]. The component
model defines different component types that are sup-
ported by SaveCCT, possible interaction schemes be-
tween components, and clarifies how different resources
are bound to components. As shown in the figure,
SaveCCT incorporates a number of analysis tools,
which can be used for verifying specific attributes of
the application, e.g., related to timeliness and safety.
To efficiently incorporate an analysis tool, as much as
possible of the translation from the model created with
the design tool to the model required by the desired
analysis tool should be automated. In this study we
incorporated LTSA [19], and Times [3].

Automated activities produce necessary code for the
run-time system (i.e., glue-code), and different spe-
cialized models of the application for analysis tools.

The synthesis activity generates all low level code (i.e.,
hardware and operating system interaction), meaning
that components are free from dependencies to the
underlying platform. Furthermore, the code genera-
tion step statically resolves resource usage and timing,
with the strategy to resolve as much as possible during
compile-time instead of depending on costly run-time
algorithms.

To achieve efficient and predictable run-time be-
haviour, and reliable support for pre-runtime anal-
ysis, SaveCCT assumes a real-time operating sys-
tem (RTOS) as underlying platform. The prototype
used the Quadros® RTXC operating system, which
is a standard fixed-priority pre-emptive multitasking
RTOS used in some applications by CC Systems. The
supported target hardware in the current version is
CrossFire MX1 from CC Systems, which is an elec-
tronic control unit intended for control systems run-
ning in rough environments. To facilitate testing and
debugging we incorporate CCSimTech [20], which is a
simulation framework that offers generic hardware em-
ulation components for common hardware in embed-
ded systems, e.g., I/O (digital and analogue), network
technologies, and memories. This environment repre-
sents a typical platform used in development projects

5Quadros, http://www.quadros.com/

by CC Systems, and thus serves as an example of an
industrial environment for the SaveCCT prototype.

3.2 Case 2, CrossTalk

Case 2, CrossTalk [6], is an initiative driven by
CC Systems, which have taken influences from the re-
search demonstrated in Case 1. The main goal with
this initiative is to take advantage of the support for
product-line architectures that component-based ap-
proaches give. The goal is rapid and cost effective
assembly of platform software, through enabling ad-
dition and/or replacement of components to a baseline
platform depending on the needs from a certain ap-
plication. The CrossTalk platform has been used in
numerous real development projects by CC Systems.

A CrossTalk based system is built on an open-ended
component-based CrossTalk platform, the concept is
to have one platform to build any system consisting of
the company’s own hardware. Figure 2 illustrates the
concept, which we describe here with the following list:

1. System architecture, in terms of computer nodes
and their responsibility is established. The hard-
ware for a CrossTalk system are selected among
more than ten different nodes, e.g., control mod-
ules, communication gateways, and display units.
The communication between the different nodes
on the machine is based on CANopen® this means
that it is also possible to integrate any third-party
node in the system that uses the CANopen pro-
tocol, but treatment of such nodes is beyond the
scope of this paper.

2. Based on the functionality designated to each
computer node, platform components from the
CrossTalk repository are selected to constitute
software platform for each node in the system. The
repository is based on a standard version control
system, and the components are IEC61131-3 [16]
components. The components are assembled using
the CoDeSys tool from 3S7.

3. The open-ended platform software is deployed on
each of the nodes in the system; the application is
then built by the customer or by CC Systems in
a separate project, by continuing the work in the
CoDeSys tool.

3.3 Case 3, CCComponents

CC Components is another initiative with influences
from Case 1. Here the intention is to package reusable

6CiA, CANopen, http://www.can-cia.org/
73S CoDeSys, http://www.3s-software.com/

parts of applications into software components, and to
reuse components when suitable. Notice here that the
intention is not to build entirely component-based sys-
tems; systems are built through a combination of com-
ponents and non-component-based software.

To efficiently take advantage of CBSE, development
processes for system development, component assess-
ment, and component development are separated, as
proposed in e.g., [10].

As demonstrated in Figure 3, CC Systems has a
system development process based on Rational Unified
Process (RUP)®, thus this process needs no further de-
scription here. In the inception phase all development
projects should initiate a component assessment pro-
cess with the intention to find suitable components to
reuse, and suggestions for specifications of components
to develop. The component assessment process has the
following steps:

Find, component assessment starts with finding com-
ponents that might provide the required function-
ality for some part in the project.

Select, if candidate components for reuse are found,
the selection of which components to reuse in the
project is documented and motivated.

Specify, if no candidate components are found, but
the project finds a certain part of the system very
suitable to be packaged as a reusable component
a specification for such a component is created.

Evaluate, specifications are evaluated by the CC
Components board (a group responsible for the
repository). Generally, the board must be con-
vinced that the suggested component will be tar-
get for reuse in other projects, before a separate
component development project is initiated.

Verify, this step is required to test that the compo-
nent really fits the intended purpose as soon as
possible to avoid that the component is assumed
to be fit and well-tested until the very late stages
in the system development project.

Component development is guided by the same
RUP-based process as system development, but the
target to develop reusable components is made clear
through lifting the development from the process of a
particular project to a separate process ending with de-
livery to the common company-wide CC Components
repository. There is no formal component definition.
The only technical requirement is that the components

8IBM Rational, http://www-306.ibm.com /software/rational

Fleet
Management

CrossTalk
Platform
Components

=% CAN-Open

Control

Figure 2. Workflow when assembling a software platform for a CrossTalk-based system

in the repository must have all their dependencies spec-
ified in the interfaces, combined with requirements on
standardized documentation.

3.4 Case4, Component Metadata for Traceability

Case 4, is an evaluation of a prototype implemen-
tation [22] of a method supporting component assess-
ment, and component development. The theory behind
the method is described in [2], it is based on work by
Orso et.al. [21] suggesting to (re)use component meta-
data to support software engineering tasks. The need
is based on experiences from Case 3, where component
assessments often results in needs for component adap-
tations, this will be further discussed in section 4. This
case is based on a prototype demonstration on a rep-
resentative software component, for a group consisting
of two project managers, four developers, and one sales
manager.

Figure 4, gives an overview of the method. The
method affects the processes of component assessment,
and component development, and there is a metadata
associated with all components which is central in the
method. The purpose of the metadata is to maintain
traceability of requirements through design and testing
during component development.

The metadata is collected during component devel-
opment, and the arrows in the metadata in the figure
illustrates that the metadata contains references be-
tween requirements, design, and test cases associated
with the component. This information is traceability

information of how the requirements fulfilled by the
component are related to the internal realization of the
component, and how the different test cases relate to
different parts of the realization and different require-
ments.

The component assessment process has, in compari-
son to Case 8 Figure 3, a new activity after Find called
Modify:

Modify, here modification requests of existing com-
ponents are created, when modifications are nec-
essary for the system development project. These
requests are then evaluated by the board of CC
Components in the following Evaluation step, as
previosly desribed in Case 3.

During the component assessment the metadata
with traceability is utilized for performing impact anal-
ysis of a desired modification of a component. The pur-
pose of the impact analysis is to estimate the amount
of work and consequences of performing the desired
modification. A prototype tool has been developed
that automatically produces analysis of which parts of
a components design and test cases that are affected
by a modification. Where the modifications are de-
fined through giving the desired change of the require-
ments. The output is used as input to the evaluation
step where the board decides whether the component
modification should be performed or dismissed.

During the component development process where
a new variant of a component is developed, the impact

Project start
Prepared
—
Established
Constructed
Deployed
2ePloy!

y y

\ Inception\ Elaboration|Construction Deployment\
Ay Y
-
4

{ CC Components Repository I

‘Inceptlon ‘Elaboratlon ‘Constructlon ‘Deployment “‘—‘

f—j%\

System
Development

Component
Assessment

Component
Development

Figure 3. CC Components development pro-
cesses

analysis gives guidance to the work. It gives informa-
tion of which parts of the component that should be
modified. It also specifies which test case that should
be used for regression testing after the change, i.e.,
points out which test cases that must produce the same
results.

The need to adapt software components have been
known in the CBSE community, e.g., a survey on the
topic in 1999 [13]. Common for many of the proposed
techniques is the support for configuration of compo-
nents, e.g., [8, 4]. However, the flip-side with these
techniques is that future scenarios must be predicted,
and that the configuration code increase complexity
and thereby resource usage. The other main principle
for existing techniques is to apply external adaptation
through wrappers [5], adaptors [25], or connectors [17].
The main limitation here is that optimization of the
component’s internal realization is not possible, e.g., it
is not possible to remove functionality. Thus, none of
these techniques is perfect for the problem we have en-
coutered with resource constrained embedded systems.

4 Experiences

In this section we summarize the findings from the
above reported cases. We do this case by case.

4.1 Casel

The component model is based on data-flow (or
pipes-and-filters) interaction, this has been chosen to
give good support for expressing the key functionality
of control systems. Designing the fictive application
according to component-based principles was relatively

Requirements Design

*—

7.
o-//
@

/_/
@
Requirements, o
q / ‘Aesizx‘ \/eflflcatlon

’ Inceptlon Elaboration |Constructlon| Deployment ‘

Component
Assessment

Verification

. —@
. —@

Metadata

Component
Development

Figure 4. Using metadata in component as-
sessment and component development

straight-forward, and SaveCCM proved sufficiently ex-
pressive for this type of system.

The close integration of analysis tools, exemplified
by LTSA and Times, enabled the researchers to de-
rive a number of non-trivial properties automatically
or with little manual intervention. In particular, the
high predictability imposed by the SaveCCM semantics
allowed analysis of properties crucial to ensure correct
real-time behaviour, such as end-to-end response times.
Likewise, the integration of CCSimTech provided good
support for testing.

The resulting system was sufficiently resource effi-
cient. It utilizes only a small part of the available ca-
pacity in the target hardware, which is approximately
the utilization expected for this application in com-
bination with state-of-practice programming methods
(i.e., C and C++). The explicit triggering allows the
synthesis mechanism to minimize communication over-
head by identifying static triggering patterns.

We should also make clear that the demonstrated
component technology was considered unusable in real
development projects, since the quality and usability
of the included prototype tools was considered below
tolerable levels. Mature tools is a basic need in prac-
tice.

4.2 Case?2

The component model, i.e., IEC61131-3 with its
roots in the automation domain, is based on data-flow
(or pipes-and-filters) interaction. Studying this case
fortify that this is a suitable component interface also
in the vehicular domain for control related systems.
Numerous control systems have successfully been built
for vehicles and machines based on the CrossTalk con-
cept.

Reuse of low-level components (i.e., CrossTalk plat-
form components) through component based princi-
ples is successfully practiced in this case. The expe-
rience is that product-line architectures for platform
software can be efficiently created with component-
based principles. The company also stresses that the
component-based principles in this case results in short
and predictable development projects, and higher soft-
ware quality.

Regarding resource efficiency, it is known that the
CoDeSys run-time framework requires additional pro-
cessing compared to realizing the system with lower
level programming of the hardware. Thus, it is a trade-
off between resource efficiency and development effi-
ciency.

4.3 Case3

Overall the introduction of a company-wide compo-
nent repository is a success, every time a well-tested
component can be reused "as is" without modification
there is a good return of the investments made in the
component development. Reuse was practiced before,
but more unstructured, depending of the knowledge
about reusable software assets inside the project team.
The evaluation step of component specifications is seen
as promising for the future to ensure that only reusable
components are developed.

However, problems with reusing components have
also been identified, which might be similar for other
sub suppliers to customers with high volumes or safety
critical applications. The basic foundation of CBSE, to
build general components that can be (re)used in many
applications, is harder to practice for a sub-supplier,
especially in the domain of embedded control systems.
Components may require functional additions or adap-
tation associated with reuse. The adaptation needs
seems to be higher for the sub-suppliers business case.
At the same time, due to domain requirements, com-
ponents can often not include any extra functional-
ity. Instead of being based on general components,
applications must be dedicated and specialized to its
task for high volume products. Safety critical applica-
tions are even worse since no "dead code" is allowed in
source files or on target for certification according to
the higher SIL levels of, e.g., IEC61508 [15]. Practicing
reuse under these circumstances often require adapta-
tions.

44 Cased

The conclusion from Case 4 is that the method
is promising to support the adaptation needs. The

method causes no overhead in the internal realisation
of software component itself, and the components can
be highly specialized for every scenario. If this can
be efficiently implemented in practice, it supports the
adaptation needs identified at the company.

Another positive side is reuse of the documenta-
tion of the traceability information given through the
graphs in the metadata. This is becoming more and
more important for all companies in the domain, due
to legislation of using system safety standards in de-
velopment. The IEC61508 standard [15], which is the
main standard for functional safety of electronic pro-
grammable systems, requires traceability of require-
ments through the different stages of development.
CMMI [23], a process improvement approach, even re-
quires bidirectional traceability. This is the ability to
trace requirements both forward and backward, i.e., re-
quirements through the development process into the
product and from the product backwards to require-
ments. This becomes possible, reusable, and well-
documented, through the metadata.

On the negative side were the developers’ concerns
about using one tool more, when you ideally would
like as few tools as possible to work efficiently. Another
concern was the effort to create the dependency graphs,
which might be time consuming and complex for big
components.

5 Discussion

Here we discuss the findings related to the goals
stated in section 2.

One of the purposes with the studies was to eval-
uate CBSE as engineering approach for the domain.
To start with, the continuous interest and investments
from the company in these activities indicates that
CBSE is an attractive engineering approach. The suc-
cess with both increased efficiency and quality in Case
2 and Case 3, generally demonstrates the potential of
CBSE and especially when it comes to PLA. It also
shows that component technologies with tool-suites
that are mature enough for industrial needs exist, here
manifested through CoDeSys. Whether the functional
blocks of the IEC61131-3 standard qualify as real soft-
ware components according to some definition remains
unsaid, but it is here proven that it is possible to treat
them as components. The conclusion is that the use
of CBSE in the domain should not be limited by lack
of existing commercial technologies, even if we cannot
dismiss this as a reason.

We could also observe that it can be problematic
to reuse components for sub-contractors, primary from
Case 3. Sub-contractors, as CC Systems in this case,

might take contracts on realizing similar functions with
slightly different requirements for different customers.
If the target systems are safety-critical or produced in
high volumes, general components (with the side-effect
of being bigger) must often be discarded in favour of
solutions tailored for the particular system.

It is interesting that within the same company it
was possible to observe the usage of CBSE as product
owner in Case 2, and as sub-contractor Case 3. The
experiences from this is that it is definitively easier to
take advantage of CBSE being a product-owner, in fact
being a product owner you actually plan for reuse. The
next generation of the system will most likely be an
improvement of the existing system; it becomes natural
to take reuse of existing components into consideration
when planning for the next generation.

Next important concern from section 2 is the trade-
off between flexibility and predictability in component
models. Both in Case I and Case 2, where more
formal component models were used, the component
model was based on data-flow (or pipes-and-filters)
interaction, this has been chosen to give good sup-
port for expressing the key functionality of control
systems. Designing the fictive application according
to component-based principles was relatively straight-
forward, and SaveCCM proved sufficiently expressive
for this type of system. CrossTalk has been used for
numerous real control systems and it has proven to be
suitable in every case. The basic interaction mecha-
nism is thus well proven in practice, but important to
stress is that we cannot dismiss other component in-
teraction approaches from our studies. The analysis
of real-time and reliability properties demonstrated in
Case 1 shows that is possible to create a component
model that is expressive enough for the applications
and at the same restrictive enough to allow this type
of predictions. However this has not been proven in
real projects.

The experiences also justify apprehensions concern-
ing risks of poor resource efficiency of component-based
applications. However, it is also demonstrated in Case
1 that it is possible to resolve resource usage and timing
statically during compile-time without costly run-time
mechanisms, but this is not yet common in commercial
mature technologies. This might actually be one of the
reasons for the limited usage of CBSE in the domain
today. Furthermore, Case 4/ demonstrated a method
supporting the adaptation needs, which got positive
feedback to address the specialization problem, but it
has not been used in real projects.

6 Conclusions and Future Work

In this paper we have reported experiences from four
cases where we have introduced/demonstrated CBSE
principles at CC Systems.

Overall our findings indicate that CBSE principles
are suitable for embedded systems sub-contractors, but
also that it might be harder to practice CBSE as sub-
contractor than product owner. The most technical
needs of expressiveness in the component models, re-
source efficiency of component based applications, and
analysis possibilities can be considered possible to ful-
fil with a combination of the contents in the differ-
ent cases. According to our studies the most impor-
tant need is related to resource efficiency. Resource
efficient component frameworks with mature tools to-
gether with support for adaptation of software compo-
nents themselves are needed.

For future work it would be interesting to explore
more about the impact from the business situation on
CBSE. In the domain of control systems for vehicles
and machines we can identify three major business sit-
uations sub-suppliers on contract basis, COTS suppli-
ers, and product owners. Note that it might be possible
to study all these within a single company, as e.g., CC
Systems, hopefully with increased possibilities to limit
influences from other differences. Different goals with
practicing CBSE would also be interesting to explore
in combination with the different business models.

7 Acknowledgements

This work was partially supported by the
Swedish Foundation for Strategic Research (SSF)
via PROGRESS and Save, and the KK-Foundation
(KKS) via Save-IT.

References

[1] M. Akerholm, J. Carlson, J. Fredriksson, H. Hansson,
J. Hakansson, A. Moller, P. Pettersson, and M. Tivoli.
The save approach to component-based development
of vehicular systems. Journal of Systems and Software,
80(5):655-667, May 2007.

[2] M. Akerholm, J. Fréberg, K. Sandstrém, and
I. Crnkovic. A model for reuse and optimization of
embedded software components. In 29th International
Conference on Information technology Interfaces, (ITI
2007). IEEE, June 2007.

[3] T. Amnell, E. Fersman, L. Mokrushin, P. Pettersson,
and W. Yi. Times: a tool for schedulability anal-
ysis and code generation of real-time systems. In

4]

[5]

7]

18]

[10]

[11]

[12]

[13]

[14]

15]

[16]

[17]

18]

(19]

In Proceedings of 1st International Workshop on For-
mal Modeling and Analysis of Timed Systems. LNCS
Springer, 2003.

J. Bosch. Superimposition: A component adapta-
tion technique. Information and Software Technology,
5(41), 1999.

J. Brant, B. Foote, R. e. Johnson, and D. Roberts.
Wrappers to the rescue. In Proceedings of 12th Fu-
ropean Confernece on Object-Oriented Programming
(ECOOPYS8), July 1998.

CC Systems. Crosstalk generic control system plat-
form. Technical report, CC Systems, 2007.

P. Clements and L. Northrop. Software Product Lines:
Practices and Patterns. ISBN 0-201-70332-7. Addison-
Wesley, 2001.

K. Cooper, J. Zhou, H. Ma, I. L. Yen, and F. Bastani.
Code parameterization for satisfaction of qos require-
ments in embedded software. In Proceedings of the
International Conference on Engineering of Reconfig-
urable Systems and Algorithms, 2003.

I. Crnkovic. Component-based approach for em-
bedded systems. In 9th International Workshop on
Component-Oriented Programming, Oslo, June 2004.
I. Crnkovic, M. Chaudron, and S. Larsson.
Component-based development process and compo-
nent lifecycle. In Proceedings of the International
Conference on Software FEngineering Advances,
ICSEA’06. IEEE, October 2006.
I. Crnkovic and M. Larsson.
Component-Based Software Systems.
publisher, 2002. ISBN 1-58053-327-2.
H. Hansson, M. Akerholm7 I. Crnkovic, and M. T6rn-
gren. SaveCCM — a component model for safety-
critical real-time systems. In Proc. 30th Euromicro
Conference, pages 627-635, 2004.

G. T. Heineman. An evaluation of component
adaptation techniques. In 2nd ICSE Workshop on
Component-Based Software Engineering, 1999.

G. T. Heineman and W. T. Councill. Component-
based Software Engineering, Putting the Pieces To-
gether. Prentice-Hall, 2001. ISBN: 0-201-70485-4.
International Electrotechnical Commission IEC. Stan-
dard: IEC61508, Functional Safety of Electri-
cal/Electronic Programmable Safety Related Systems.
Technical report.

International Electrotechnical Commission IEC. In-
ternational Standard IEC 61131, Programmable con-
trollers, 1992.

K.-K. Lau, L. Ling, and Z. Wang. Composing com-
ponents in design phase using exogenous connectors.
In Proceedings of the 32nd Euromicro Conference
on Software Engineering and Advanced Applications.
IEEE, 2006.

K.-L. Lundbéck, J. Lundbéck, and M. Lindberg. De-
velopment of dependable real-time applications. Arcti-
cus Systems, Dec. 2004.

J. Magee and J. Kramer. Concurrency: State Models
& Java Programs. John Wiley & Sons, Inc., New York,
NY, USA, 1999.

Building Reliable
Artech House

[20]

21]

22]

(23]

24]

[25]

A. Méller and P. Aberg. A Simulation Technology for
CAN-based Systems. CAN Newsletter, 4, December
2004.

A. Orso, M. J. Harrold, D. Rosenblum, G. Rothermel,
M. L. Soffa, and H. Do. Using component metacon-
tents to support the regression testing of component-
based software. In Proceedings of the International
Conference on Software Maintenance, November 2001.
Q. Tien Le. Component design tool for embedded sys-
tem components. Technical report, Masters Thesis,
MRTC, Mailardalen Univ., 2008.

SEI. CMMI for development, version 1.2. Technical re-
port, Technical Report CMU /SEI-2006-TR~008, 2006,
2006.

R. van Ommering, F. van der Linden, K. Kramer, and
J. Magee. The Koala component model for consumer
electronics software. IEEE Computer, 33(3):78-85,
march 2000.

D. M. Yellin and R. E. Strom. Protocol specification
and component adaptors. ACM Trans. on Program-
ming Languages and Systems, 2(19):292-333, March
1997.

