
Realizing a domain specific component model
with JavaBeans

Juraj Feljan, Jan Carlson
Mälardalen Research and Technology Centre

Mälardalen University
PO Box 883, SE-721 23 Västerås, Sweden

{juraj.feljan, jan.carlson}@mdh.se

Mario Žagar
Faculty of Electrical Engineering and Computing

University of Zagreb
Unska 3, HR-10000 Zagreb, Croatia

mario.zagar@fer.hr

ABSTRACT
SaveCCM is a domain specific component model developed
specifically for safety-critical hard real-time embedded systems.
The goal of this paper is to extend the scope of SaveCCM to make
it usable also outside this narrow domain, as the general concepts
behind SaveCCM are applicable as well for embedded systems
that have soft or no real-time constraints. We describe the
modifications made to SaveCCM in order to adjust it to the wider
scope, focusing on defining a new realization mechanism. In its
original form, a SaveCCM system is realized by component
allocation to real-time tasks, which means that individual
components are not observable in the run-time system. We
propose realizing SaveCCM by a transformation to JavaBeans,
making the advantages of component-based development present
also at run-time. This way we also make the executable system
more general and portable.

Categories and Subject Descriptors
D.2 Software Engineering: D.2.2 Design Tools and Techniques

General Terms
Design, Languages

Keywords
SaveCCM, JavaBeans, CBSE, component model, transformation
between component models

1. INTRODUCTION
Component-based software engineering (CBSE) is a discipline
that promotes development of software systems from preexisting
software components. A component is a reusable part of software
that has a clearly specified interface, and can be combined with
other components to build larger units1. The usage of components

1 A combination of definitions by D’Souza and Willis [5] and

Szyperski [19].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
SERPS'08, November 4-5, 2008, Karlskrona, Sweden.

facilitates comprehension of complex systems and simplifies
maintenance by allowing individual components to be updated
with newer versions without modifying the rest of the system.
Components can be developed separately from the system they
are used in, which shortens time to market and enables reusability
of the same component across different systems.
In order for components of a particular system to communicate,
they must conform to a component model. A component model is
a means for providing component interoperability, i.e. it defines
standards which component developers and users must follow.
Currently the most widely adopted component models are
JavaBeans [18], .NET [10], Enterprise JavaBeans [16] and
CORBA Component Model [11]. These are general purpose
component models, used mainly in application and enterprise
domains, where CBSE has proven quite successful. On the other
hand, we have the embedded systems domain, where CBSE is
utilized to a lesser degree [7]. General purpose component models
usually focus on enabling design phase simplicity, relying on
powerful hardware to handle the model overhead. However, most
embedded systems have very limited memory and processing
power at their disposal, and they are often subject to real-time
constraints or even have a safety-critical role. These features are
not considered in general purpose component models, thus
emphasizing the necessity to develop domain specific component
models, such as Koala [12], PECOS [21], Rubus [4] or SaveCCM
[1].
SaveCCM (SaveComp component model) is a domain specific
component model targeting safety-critical hard real-time
embedded systems, developed at Mälardalen University. In the
design phase, SaveCCM systems are built by connecting
components, according to the CBSE approach. However, in the
realization phase these components are realized by transformation
to real-time tasks, to meet the requirements on efficiency and
reliability in the targeted domain.
In this paper we describe how SaveCCM can be extended for a
wider domain, for instance embedded systems with soft or no
real-time requirements, and even desktop applications. With this
broader scope in mind, we investigate an alternative realization of
SaveCCM to preserve the design-time component structure in the
run-time system, thus taking advantage of the CBSE benefits also
at run-time.
The remainder of this paper is organized as follows. In Section 2
we describe the background of our work by presenting key
aspects of SaveCCM and JavaBeans. Then, we present how we
extended the scope of SaveCCM in Section 3. In Section 4 we
discuss the new realization of SaveCCM. Section 5 shows a

particular example of the realization. Section 6 presents related
work and Section 7 concludes the paper.

2. BACKGROUND
In this section, we give brief overviews of the two component
models SaveCCM and JavaBeans, focusing on aspects that are
most relevant to our work. A complete overview of SaveCCM is
presented in [2], and more information about JavaBeans can be
found in [18].

2.1 SaveCCM
SaveCCM is a domain specific component model intended to
provide support for designing and implementing embedded
control applications for vehicular systems, mainly considering the
safety-critical subsystems responsible for controlling vehicle
dynamics (such as power-train, steering, braking, etc.).
The main architectural elements of SaveCCM are components,
switches and assemblies. The interface of an architectural element
is defined by a set of input and output ports. SaveCCM systems
are built from architectural elements by connecting ports.
SaveCCM is based on the control flow (pipes and filters)
paradigm, but data transfer and control flow are separated. Thus,
SaveCCM distinguishes between trigger ports that capture control
flow and data ports that capture data transfer. Data ports are
typed and have overwrite semantics, and only data ports of
matching types can be connected. There are also combined ports
that have both triggering and data functionality, but semantically
these ports are equivalent to one trigger port and one data port.
Components represent basic units of encapsulated behavior. The
functionality of a component is typically defined by an entry
function, which is written in the C programming language. These
are plain components. However, there are also composite
components, in which the functionality is defined by an internal
composition of subcomponents.
There are two additional types of components – a clock
component and a delay component – which are in charge of
manipulating trigger timing. A clock component is a trigger
generator, and a delay component detains a trigger signal for a
certain amount of time.
A component is initially idle and remains in that state until all its
input trigger ports are activated. At that point it switches to active
state, i.e., it has been triggered. This initiates the read phase, in
which all data input port values are stored internally, to ensure
consistent computation. Next is the execute phase, in which the
computations are performed. After execution comes the write

Figure 1: SaveCCM component semantics

phase, in which data is written to the output ports of the
component. Finally, the input triggers are reset and the output
triggers are activated, before the component returns to the idle
state. This mechanism is depicted in Figure 1. The strict “read-
execute-write” semantics ensures that once a component is
triggered, the execution is functionally independent of any
concurrent activity.
Switches enable dynamic modification of the structure of
connections between components by providing means for
conditional transfer of data and/or triggering between
components. Assemblies are encapsulated subsystems. As an
assembly can break the “read-execute-write” semantics, it should
only be viewed as a mechanism for naming a collection of
components and hiding the internal structure, rather than a
mechanism for component composition.
According to the SaveCCM graphical notation, components are
represented by rectangles with the Component stereotype. Other
architectural elements (switch, assembly, clock, delay) are
presented by rectangles with matching stereotypes. Trigger ports
are denoted by triangles and data ports by small rectangles.
Output ports are recognized by semicircles, while circles mark
input ports. The notation is depicted in Figure 3 in Section 5,
where we give an example of a SaveCCM system.
SaveCCM is mainly targeted at design-time, and makes no
explicit assumptions about realization in its specification. Having
the safety-critical hard real-time embedded systems domain in
mind, the envisioned approach is realization by allocating
components to tasks [3]. This enables high runtime efficiency and
detailed timing analysis using standard real-time analysis
techniques.
SaveCCM systems are developed using a custom development
environment called SaveIDE [15], which is implemented in the
form of a plugin for the Eclipse IDE [6].

2.2 JavaBeans
The JavaBeans technology is a portable, platform-independent
software component model for the Java SE platform. The
technology consists of a Java package (java.beans) and the
JavaBeans specification [18] which describes how classes and
interfaces from the package should be used to implement the Java
bean2 concept. A Java bean is a Java class that complies with
conditions stated in the specification.
Each Java bean has to be able to run in two different
environments. First, a bean needs to be capable of running inside
a builder tool, as builder tools are used for configuring beans.
This is referred to as the design environment or design-time. In
addition, a bean must be able to be used during run-time within a
generated application.
Java beans are defined as reusable software components that can
be manipulated visually in a builder tool. However, their use is
not dependent on tools. Many beans have a visual aspect both at
design- and run-time (visual beans), but this is not required. Non-
visual beans are invisible at run-time, but are visible during
design-time.

2 The term “JavaBeans” stands for the technology, while the term

“Java bean” or simply “bean” signifies a particular software
component that conforms to the JavaBeans component model.

Individual Java beans vary in functionality, but have the
following typical common features:

• properties,

• events,

• methods,

• customization,

• introspection, and

• persistence.
A bean property is a named attribute of a bean that can affect its
behavior or appearance. Examples of bean properties include
color, label, font etc. Properties can have arbitrary types,
including both primitive types and class or interfaces types.
Properties are accessed via method calls on the owning bean.
Beans use the Java Event Model for communication. Events
provide a convenient mechanism for allowing beans to be plugged
together in a builder tool. For a bean to be the source of an event,
it must implement methods that add and remove listeners for a
particular type of event. For a bean to receive an event, it must
implement an event listener interface.
The methods of a bean are normal Java methods which can be
called from other objects. A bean's methods represent its
interface, through which the bean can be accessed and
manipulated.
When a user is composing an application in a builder tool, he
needs to be able to customize the beans he is using. Customization
is the process of modifying the appearance and behavior of a bean
within a builder tool, so that the bean meets the user's specific
needs. Customization is done at design-time.
Introspection is the automatic process of analyzing a bean to
reveal its properties, events and methods. Introspection is used by
builder tools to provide easy and straightforward visual
manipulation of beans.
Persistence refers to the characteristic of data to outlive the
execution of the program that created it. The mechanism that
makes persistence possible is called serialization. Object
serialization means converting an object into a data stream and
writing it to storage. A serialized object can then be reconstructed
by deserialization. All beans are required to support serialization.

3. BROADENING THE SCOPE OF
SAVECCM
SaveCCM is mainly intended for safety-critical hard real-time
embedded systems, which has impact on a number of its
characteristics. For instance, the communication between
components is restricted to follow the pipes-and-filter style, and a
component can not freely access its ports at any time during its
execution. However, although developed with this very specific
domain in mind, many aspects of SaveCCM have a potential to be
useful in a somewhat broader scope,
Inspired by model-driven development (MDD), a methodology in
which software is developed not by writing code, but by
constructing high level models that can be transformed into code
by automated transformation engines [14], we separate platform
specific aspects of SaveCCM from those that are platform
independent. This separation can also be viewed as separating

domain specific from domain independent features, as most of the
platform specific characteristics are conditioned by the specific
domain.
In SaveCCM, platform specific aspects are found in:

• the behavior implementation of plain components,

• component realization, and

• particular analysis techniques.
After identifying these areas, we can set about modifying them in
order to expand the domain in which SaveCCM can be used.
The behavior of plain components is currently implemented using
C, which is the standard and expected solution in the original
SaveCCM domain. To cover more application types, we propose
to allow Java to be used as the implementation language as well.
Java is platform independent and ubiquitous, as it is widely
accepted and used in a wide range from embedded systems to
desktop computers.
Regarding realization, we propose JavaBeans as the target
technology. The motivation for using JavaBeans comes from
three directions. First, it is a platform independent technology and
follows the “write-once, run-everywhere” philosophy, thus
blending in well with extending SaveCCM’s scope. Second, it is
compatible with the proposed component behavior
implementation in Java. The third reason comes from the
drawback of the current realization. Although realization by
transformation to tasks is suitable for hard real-time embedded
systems, it fails to keep the design-time component structure of a
system at run-time. This way the CBSE approach is lost during
the synthesis and CBSE benefits, such as the possibility to
dynamically replace or update components, cannot be exploited at
run-time. We address this by proposing a new realization of
SaveCCM by transformation to a different component model,
namely JavaBeans.
The original SaveCCM approach relies heavily on different
analysis techniques to determine or estimate properties of the
system beforehand, in order to ensure predictability. Some of
these techniques require detailed information about the underlying
platform to be accurate, and would thus be categorized as
platform specific, while others can be performed on a higher,
platform independent, level of abstraction. Investigating these
methods further, however, is not within the scope of this paper.

4. REALIZATION OF SAVECCM BY
TRANSFORMATION TO JAVABEANS
In this section we present the proposed realization of SaveCCM
by transformation to JavaBeans. In order to achieve the
transformation, we define a mapping from SaveCCM to
JavaBeans, or in other words, an object-oriented representation of
SaveCCM elements in terms of JavaBeans. We name this
mapping SaveJava and describe it in the following subsection. We
also describe the component execution mechanism and the tool
for automatic transformation.

4.1 The SaveJava classes
The terms “class” and “bean” are used equivalently throughout
this subsection. What makes classes beans involves making them
implement some special interfaces, and naming their methods in a
certain way.

Figure 2: The SaveJava generic classes
SaveJava consists of three categories of classes:

• generic classes,

• specific classes, and

• a system class.
The generic classes make up the core of SaveJava, as they
represent features common to all SaveCCM systems and are
unmodified across different systems. A UML diagram of the
generic classes is shown in Figure 2. The specific classes are
generated during the transformation and represent aspects of the
particular SaveCCM system, such as individual components and
data ports of a given type. The system class is used for setting up
the run-time architecture of the system realization. Its main
method instantiates objects from generic and specific classes,
according to the structure of the system.
Components are realized with a simple hierarchy. The hierarchy
root is the Component abstract class, which represents
mechanisms common to all SaveCCM components. For each
component type defined in an input system, one additional

specific component class is generated during the transformation,
extending the generic one.
Each port is realized by an individual object, and components
hold references to their ports. The alternative could have been to
represent ports indirectly by methods in the component classes.
However, we find the proposed solution more straightforward.
Two separate hierarchies are used to represent ports – one for data
ports and one for trigger ports. Data ports are realized using Java
Generics, allowing a single hierarchy between ports of different
types. In addition to the ones existing prior to the transformation,
additional data port classes are generated during the
transformation. For instance, a data input port holding a value of
string type would be represented by the StringDataInPort
specific class which would extend the generic class
DataInPort<String>.

The third type of SaveCCM port, combined port, becomes one
data port and one trigger port in SaveJava. This is done in order
not to complicate the mapping with a third type of port and is

possible because semantically, a SaveCCM combined port is
equivalent to a data and a trigger port.
SaveCCM connections have no class representation in SaveJava,
instead they are realized using the Java Event Model, as this is the
standard way to achieve communication between beans.
Connecting one port to another one is done by registering the
destination port as the listener of the source port. An event type is
realized by an event class and an event listener interface. In
SaveJava there are two types of events, one for data port
connections and one for trigger port connections. Data
connections use the DataEvent class and the corresponding
DataEventListener interface. Trigger connections use the
TriggerEvent class and the TriggerEventListener
interface.
Clock components and delay components are realized by the
Clock and Delay classes, respectively. Although clocks and
delays in SaveCCM are special types of components, in SaveJava
their classes are in no relation to the component hierarchy.
However, this has no effect on the realized systems.

4.2 The component execution mechanism
The proposed component execution mechanism is a variant of the
one used by Lednicki [8]. Every SaveCCM system transformed to
JavaBeans will have one executor, an object which holds a queue
of triggered components and executes them one by one, in the
same order as they got triggered.
When one input trigger of a component is activated, the
component inspects the state of its other input triggers. If they are
all active, the component is triggered, meaning that it adds itself
to the executor’s queue for execution and saves the state of input
data ports internally, i.e. it performs the read phase. Since the
executor’s queue is a FIFO structure, the component waits for its
turn to be executed. When this time comes, the execute phase is
performed, followed by the write phase. The component then
returns to idle state by resetting its triggers. Each of these phases
(read, write, execute, reset triggers) is realized by calling the
corresponding component method.
All components are executed in the same thread, managed by the
executor. Alternatively, each component could have been given
its own thread, but this would introduce the need for elaborate
thread synchronization to ensure that the specifics of the
SaveCCM semantics are satisfied. Clocks, on the other hand, have
their own threads, as this allows them to correctly generate
triggering at the specified rate. A delay component runs in the
same thread as the clock component it is connected to.

Figure 3: Example of a SaveCCM system

Component

+read()
+execute()
+write()

A

+read()
+execute()
+write()

B

DataPort

T

DataInPort

T

DataOutPort

T

DataEventListener

IntegerDataInPort IntegerDataOutPort

TriggerEventListener

Figure 4: Realization classes

4.3 The transformation tool
Based on the SaveJava mapping, we have developed a tool that
automatically performs the transformation from SaveCCM to
JavaBeans. The tool takes as input a description of a particular
SaveCCM system (represented by the .save file produced by the
SaveIDE), and generates realization code (generic classes,
specific classes and a system class) as output.
The tool is implemented in Java. For parsing the input file, we use
Java Architecture for XML Binding [17], a technology which
maps between XML elements and Java objects, thus providing an
easy and intuitive way for XML parsing.
It is possible to define a partial system in SaveCCM, transform it
to JavaBeans and then continue developing the system in terms of
JavaBeans. However, this process can be tedious, as it requires
full understanding of SaveJava.

5. REALIZATION EXAMPLE
In this section we present an example of the transformation from
SaveCCM to JavaBeans. We use the simple SaveCCM system in
Figure 3 as input. It consists of one clock component and two
plain components. The clock C triggers the component A, which
triggers component B and sends data of integer type to it.
The transformation results in four specific classes, two for the
plain components A and B, and two for data ports. The clock and
trigger ports are represented by generic classes.
The generated specific classes are shown in Figure 4. The
methods shown in the figure are the ones being overridden in the

public class ExampleSystem {

 public static void main(String[] args) {

 // instantating system elements
 Executor executor = new Executor();
 Component a = new A(executor);
 Component b = new B(executor);
 Clock c = new Clock(
 100, 5, new TriggerOutPort("cTrigOut"));

 // connecting system elements
 c.getTriggerOutPort("cTrigOut").
 addTriggerEventListener(
 a.getTriggerInPort("aTrigIn"));
 a.getDataOutPort("aDataOut").
 addDataEventListener(
 b.getDataInPort("bDataIn"));
 a.getTriggerOutPort("aTrigOut").
 addTriggerEventListener(
 b.getTriggerInPort("bTrigIn"));

 // starting the system
 c.start();
 executor.start();

 }
}

Figure 5: The system class
child classes. The generic classes that are part of the hierarchy are
shown with dashed lines.
As we mentioned, apart from the generic and specific classes, also
the system class is generated (shown in Figure 5). In it, objects
are instantiated, following the structure of the input system and
connected accordingly. Objects representing ports are created in
the constructor of the component to which they belong. When all
objects are created, the threads of the clock and the executor are
started.

6. RELATED WORK
Our work is most closely related to the work by Åkerholm et al.
[3]. They define the aforementioned realization of SaveCCM by
allocating components to operating system tasks. Their run-time
architecture is applicable for any real-time operating system, but a
particular mapping from components to tasks would have to be
developed for each targeted task model. Contrasting this, our
realization is applicable for any Java compliant platform in soft or
no real-time domains. Their and our contributions result in
SaveCCM now having two complementary realizations.
Petričić [13] also addresses the transformation of SaveCCM, by
defining a transformation between SaveCCM and UML.
According to the taxonomy proposed by Visser [20], her
transformation can be classified as a migration, since SaveCCM
and UML are on the same level of abstraction. The transformation
we defined is a synthesis, as it lowers the level of abstraction.
Marvie [9] experiments with transformations from an abstract
model to a technological one, from the perspective of model-
driven development. He defines an experimental meta-model of a
message filtering system and defines transformations to several
technologies, among them JavaBeans. Similarly to our work, he
realizes an abstract model of a system using the JavaBeans
technology.

7. CONCLUSIONS AND FUTURE WORK
We have modified aspects of SaveCCM making it suitable for an
expanded domain, for instance embedded systems with soft or no
real-time constraints, and desktop applications. In particular, we
have defined a realization of SaveCCM using the JavaBeans
technology. This new realization follows the achieved domain
expansion and allows for CBSE benefits to be exploited both at
design-time and run-time. Thus, having in mind the addressed
issues, a systematic evolution of SaveCCM has been achieved.
The current version of SaveJava does not cover all SaveCCM
elements, as composite components and switches are missing.
Including the remaining SaveCCM elements in SaveJava requires
some amount of work, but will not contribute much to the general
concept.
The executor mechanism runs components sequentially, in a non-
interleaving fashion. In the future, we would like to investigate
different approaches to component execution and find ways to
improve scheduling, for instance by identifying beans to be
executed in parallel. Closely tied to scheduling is the issue of
analysis of the new realization, with respect to timing, resource
consumption, etc.
One important feature of JavaBeans is not exploited to its full
potential. JavaBeans are notorious for their visual aspect, but the
beans developed here are invisible. As part of future work it is
worth exploring the possibility of giving these beans a visual
representation, thus making them even more configurable and
pluggable in a JavaBeans compliant tool. This would greatly
improve usability of the new SaveCCM, eliminating the need to
fully understand SaveJava if one wishes to modify the generated
code.
In the paper we have discussed the possibility of using a general
purpose technology to realize (implement) a system modeled in a
component model used for a particular domain, namely using
JavaBeans for realizing SaveCCM. Our solution makes the
realized systems more general and portable, and usable outside of
the original narrow SaveCCM domain.

8. ACKNOWLEDGEMENT
This work was supported by the Swedish Foundation for Strategic
Research via the strategic research centre PROGRESS, and the
Unity Through Knowledge Fund supported by the Croatian
Government and the World Bank via the DICES project.

9. REFERENCES
[1] M. Åkerholm, J. Carlson, J. Fredriksson, H. Hansson, J.

Håkansson, A. Möller, P. Pettersson, M. Tivoli, The SAVE
approach to component-based development of vehicular
systems, Journal of Systems and Software, 80:655-667, 2007

[2] M. Åkerholm, J. Carlson, J. Håkansson, H. Hansson, M.
Nolin, T. Nolte, P. Pettersson, The SaveCCM Language
Reference Manual, MRTC report, Mälardalen University,
2007

[3] M. Åkerholm, A. Möller, H. Hansson, M. Nolin, Towards a
dependable component technology for embedded system
applications, Tenth IEEE International Workshop on Object-
Oriented Real-Time Dependable Systems, p. 320-328, 2005

[4] Arcticus Systems, Rubus component model,
http://www.arcticus-systems.com

http://www.arcticus-systems.com/

[5] D. D’Souza, A.C. Willis, Objects, Components and
Frameworks with UML: The Catalysis Approach, Addison-
Wesley, 1998

[6] Eclipse, http://www.eclipse.org
[7] H. Hansson, M. Åkerholm, I. Crnkovic, M. Torngren,

SaveCCM - A Component Model for Safety-Critical Real-
Time Systems, Proceedings of the 30th EUROMICRO
Conference, 627-635, 2004

[8] L. Lednicki, Component-based development for software
and hardware components, master thesis, Mälardalen
University, 2008

[9] R. Marvie, MDA, Model Transformations and Platforms:
Advocating Technological Jumps, LIFL research report,
2004

[10] Microsoft, .NET Framework, http://www.microsoft.com/Net
[11] OMG, CORBA Component model,

http://www.omg.org/technology/documents/formal/compone
nts.htm

[12] R. van Ommering, F. Van der Linden, K. Kramer, J. Magee,
The Koala Component Model for Consumer Electronics
Software, IEEE Computer, 33(3):78-85, 2000

[13] A. Petričić, UML profile for SaveComp Component Model,
master thesis, Mälardalen University, 2008

[14] H.N. Pham, Q.H. Mahmoud, A. Ferworn, A. Sadeghian,
Applying Model-Driven Development to Pervasive System
Engineering, Software Engineering for Pervasive Computing
Applications, Systems, and Environments, p. 7, 2007

[15] S. Sentilles, J. Håkansson, P. Pettersson, I. Crnkovic, Save-
IDE – An Integrated development environment for building
predictable component-based embedded systems, 23rd
IEEE/ACM International Conference on Automated
Software Engineering, 2008

[16] Sun Microsystems, Enterprise JavaBeans technology,
http://java.sun.com/products/ejb

[17] Sun Microsystems, Java Architecture for XML Binding,
http://java.sun.com/developer/technicalArticles/WebServices
/jaxb

[18] Sun Microystems, Java SE Desktop Technologies -
JavaBeans,
http://java.sun.com/javase/technologies/desktop/javabeans

[19] C. Szyperski, Component Software: Beyond Object-Oriented
Programming, Addison-Wesley, 2002

[20] E. Visser, A Survey of Strategies in Program Transformation
Systems, Electronic Notes in Theoretical Computer Science,
Elsevier, 2001

[21] M. Winter, C. Zeidler, C. Stich, The PECOS Software
Process, Workshop on Components-based Software
Development Processes, 2002.

	1. INTRODUCTION
	2. BACKGROUND
	2.1 SaveCCM
	2.2 JavaBeans

	3. BROADENING THE SCOPE OF SAVECCM
	4. REALIZATION OF SAVECCM BY TRANSFORMATION TO JAVABEANS
	4.1 The SaveJava classes
	4.2 The component execution mechanism
	4.3 The transformation tool

	5. REALIZATION EXAMPLE
	6. RELATED WORK
	7. CONCLUSIONS AND FUTURE WORK
	8. ACKNOWLEDGEMENT
	9. REFERENCES

