
Uniform treatment of hardware- and software components
Luka Lednicki, Jan Carlson

Mälardalen Research and Technology Centre

PO Box 883, SE-721 23 Västerås, Sweden
+46 21 {10 15 45, 15 17 22}

{luka.lednicki, jan.carlson}@mdh.se

Mario Žagar

University of Zagreb
Faculty of Electrical Engineering and Computing

Unska 3, HR-10000 Zagreb, Croatia

mario.zagar@fer.hr

ABSTRACT
One of the challenges in development of embedded systems is to
cope both with hardware and software components. Often is their
integration cumbersome due to their incompatibilities, different
specifications and different approaches in their development. In
this paper we present a component-based technology we have
developed for building distributed systems consisting of both
embedded hardware devices and software written in high-level
programming languages. To obtain a uniform view on hardware
and software we use Universal Plug and Play (UPnP) technology
for the communication between these parts of the system. Our
technology consists of a component model that allows us to treat
UPnP devices as components, and a run-time framework that
supports this component model when the system is deployed. To
evaluate the principles we have developed a prototype tool that
implements the technology and demonstrated a feasibility of the
approach.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Techniques

General Terms
Design, Languages

Keywords
Embedded systems, UPnP, Component-based development

1. INTRODUCTION
With the continuous advancement of embedded computers their
usage grows rapidly. Examples of that can be seen in
environmental and industrial monitoring and control,
telecommunication, smart houses, and many other domains.
Standard development models have difficulties keeping up with
such complex systems, and as a result the development becomes
too costly and time consuming, or the produced systems suffer
from poor reliability and predictability. In search for a better
development process, component-based development (CBD)

emerges as a possible solution. It encourages reuse of once
developed software or hardware components, and allows some
properties of the system to be predicted in the early stages of
development, based on the properties of the components it
consists of. The use of such approach could greatly reduce
development time and make the final product more robust,
reliable and efficient.
On the other hand, the increase of available resources makes it
possible for embedded devices to implement advanced
middleware to communicate with other elements of the system.
Although the usage of such middleware may take up more
resources than the actual core functionality, in many cases the
benefits it provides to the development process outweigh the cost
of more powerful hardware. One technology that can be used as
middleware is Universal Plug and Play (UPnP).
In this paper we propose a solution for building distributed
systems consisting of both hardware and software in a
component-based manner using UPnP technology. For this
purpose a new component model called UComp has been
developed, along with tools for developing and deploying systems
built on that model.
The rest of the paper is organised as follows: In Section 2 we
introduce UPnP protocol and CBD approach. Section 3 describes
our solution for combining hardware- and software components.
In Section 4 we present the UComp component model, and
Section 5 describes the UComp run-time framework. In Section 6
we describe the tool for visual development UComp systems. In
Section 7 we discuss some of the characteristics of our component
technology and provide an overview of related work. Section 8
concludes the paper and states the possibilities for future work.

2. BACKGROUND
Before presenting the proposed component model, we give an
overview of the UPnP protocol and a short introduction to CBD.

2.1 Universal Plug and Play
UPnP is open standard that provides means for discovery,
description and cooperation of different devices using standard
TCP/IP network protocols [15]. Its name is derived from Plug-
and-Play (PnP), a technology that allows seamless connecting of
peripheral devices to a personal computer. UPnP takes that
concept and applies it to any device connected to a computer
network. To do this, it leverages well established protocols and
technologies like IP, TCP, UDP, XML and SOAP.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SERPS'08, November 4-5, 2008, Karlskrona, Sweden.

The two main types of entities that the UPnP architecture defines
are devices and control points. Devices are entities of a UPnP

network that provide services. Each service can define an
arbitrary number of actions that are used to control the device,
and one or more state variables which model the state of the
device. Control points are clients to the services that the devices
define in that they invoke actions defined by the services and/or
monitor the values of their state variables.
UPnP networking is divided in six steps: addressing, discovery,
description, control, eventing and presentation.
Through addressing, a UPnP device acquires a valid network
address. Both managed and unmanaged networks are supported
by the standard. If a DHCP server is present on the network it
assigns an IP address to the device, otherwise the device uses the
Auto-IP protocol to obtain a unique and valid address.
A device that has acquired a network address proceeds with the
next step: discovery. In this step the device advertises its presence
to control points that are connected to the network, using
multicast UDP messages in which it states its name, type and
location on the network. To acknowledge its presence on the
network, a UPnP device repeats this step periodically. Apart from
passively collecting advertisement messages from the devices,
control points can search the network for available devices, a
certain type of devices or services, or a specific device using its
unique ID.
Once the control point discovers a device of interest on the
network it can initiate the description step to gain information
about it. It does this by requesting the XML description contained
within the device. The description contains detailed information
about the device and a list of the services it implements, together
with the location of the service description XML for each service.
A service description lists all state variables and actions, and
defines input and output arguments for each action.
With the information about devices, the control point can start
invoking those actions in the control step. Actions are invoked by
sending SOAP messages containing action name and input
arguments to the device. The device then responds with either a
message containing output arguments or an error message that
contains the code and description of the error.
Parallel to the control, eventing step can take place. Eventing
enables the devices to notify control points when a state variable
of one of its service changes value. To receive such notifications
the control point has to subscribe to the events of the service.
The last step that the UPnP device architecture defines is
presentation. It enables devices to present their functionality
through a web page, but this step is not relevant to this paper and
will not be described further.

2.2 Component-based development (CBD)
In CBD, systems are built from well-defined components. At run-
time they are deployed to a component framework which supports
them and manages their resources. To assure that the components
can be deployed they need to conform to a specific component
model. Component models define how a component interacts with
the component framework and with other components in the
system.
Components are self-sufficient functional units that communicate
with their environment only through well-defined interfaces,
which makes them very suitable for reuse. Explicit connections,
the result of limiting components to interact only through their

interfaces, make system built using CBD easier to analyze and
maintain.
Reuse of existing components can further be facilitated by
creating component repositories. Once a new component is
developed it should be put in such a repository. The repository
would then provide means for system developers to browse
available components and use them in the development of a
system.
General purpose component models like COM [11], JavaBeans
[14], .NET [6], EJB [7] and CORBA [3] are already widely used
in development of desktop-, web- and distributed applications.
The success of such models motivated research in applying the
component-based approach in development of embedded systems.
However, the resource restrictions faced by most embedded
devices make general purpose component models unsuitable for
such systems. On the other hand, those restrictions also make the
analyzability and predictability that CBD provides even more
beneficial. Because of that, new component models are being
developed to satisfy both the needs and the constraints of
embedded systems. Examples of such models are SaveCCM [1],
Koala [16] and Rubus [2].

3. COMBINING HARDWARE- AND
SOFTWARE COMPONENTS
While the general purpose component-based technologies provide
solutions for high level applications (for example desktop or web
applications), component technologies for embedded systems are
mostly limited to the resource-constrained systems. A problem
arises when trying to connect the two in complex systems
consisting of both high level software components and low level
embedded components that are closely connected to the hardware.
In such systems there is a need for a uniform way of handling
both high (software) and low level (hardware) components.
As an example we will take a simple greenhouse temperature
monitoring system. It consists of a sensor that monitors the
temperature inside a greenhouse, a display showing the current
temperature, an alarm that should sound if the temperature
exceeds 35°C, and a button that is used to acknowledge an alarm
and reset it. The display and reset button is realised as a Java
application running on a personal computer.

Figure 1: Example system, monitoring the temperature of a

greenhouse.

An overview of the system is given in Figure 1. Embedded
hardware devices are shown as gray rectangles, while the
software applications are shown as white rectangles. In addition,
the UComp application that will support the system is shown.
Dashed lines separate different physical nodes.
Although this simple system would be easy to implement without
using CBD principles, the effort needed for development and
maintenance would rise drastically with the increase of system
complexity. UComp, the component-based technology that we
propose in this paper, addresses that need. Using UPnP to connect
and describe the components, we created a component model in
which there is no distinction between software and hardware
components. At the same time the footprint of the middleware
layer is kept at a level which is acceptable for resource-limited
embedded devices. UComp also allows for a simple way of
creating component repositories.
To support the development we have created a tool for visual
development of UComp systems (UComp Developer) and a tool
for deploying them (UComp Deployer) to any Java-enabled
platform.
Our solution consists of an application that uses a UPnP control
point to communicate with UPnP devices connected to the
network. For each of the devices it generates a set of one or more
components that are bound to the device and represent its actions
and state variables. These components are then presented to the
developer who can use them for building a system. We also
enable use of components that are not bound to any UPnP device.
Instead, the functionality of those components is completely
defined by software. The temperature sensor, alarm, display and
the alarm acknowledgement button shown in Figure 1 are realised
as UPnP devices. The UComp application shown in the figure
treats those devices as components and provides the desired
functionality of the system.
By having the components available at run-time, systems built in
this way can be extremely flexible because any modification of
the system can be done while the system is running and the
embedded devices are deployed.

3.1 Benefits of using UPnP
Defining architecture and protocols, but not their implementation,
makes UPnP platform, language and media independent. To a
control point there is no difference between a Java or .NET
application acting as a UPnP device and a micro-controller using
UPnP device stack.
The use of standard protocols allows UPnP to be used in existing
computer networks with little or no modifications. Also, the
possibility to use the Internet to connect devices and control
points allows the developer to build systems containing devices
distributed over large geographical distances in an inexpensive
way.
Another benefit of using standards as HTTP and XML is that
UPnP is easily extendable. A device vendor can add new
information to the device description or control and eventing
messages without breaking the UPnP standard.

4. THE UCOMP COMPONENT MODEL
To enable smooth deployment and interaction of distributed
components in a system, a new component model was defined. In

it, two different component types were defined: UPnP
components and software components. UPnP components wrap
around UPnP devices and present their functionalities in a
component-based manner. Software components are not
associated with any UPnP device. Instead, their functionality is
fully implemented in Java code.
Component interfaces consist of input and output ports. Ports can
be viewed as access points to the component, through which
components exchange data and control (triggering) signals.
System execution follows the pipes and filter pattern. Data and
triggering signals from an output port of one component can be
directed to input ports of one or more components.
The UComp component model is loosely based on SaveCCM.
Although there are some differences that arise from the different
domains and purposes of the two models, while developing the
UComp model we wanted to allow for UComp systems to be
easily transformed into SaveCCM, and vice versa. Such
transformation would give users the ability to use tools developed
for SaveCCM to verify and analyze UComp systems, and UComp
could provide a way to implement and deploy systems designed
in SaveCCM.

4.1 UPnP components
UPnP components represent actions and events of UPnP devices.
In respect to that, there are two types of UPnP components: UPnP
action components (or just action components) and UPnP event
components (event components from now on). A single UPnP
device corresponds to a set of UPnP components: one event
component for each service that the device provides, and one
action component for each action defined by a service.
The input- and output ports of UPnP components are generated
according to the arguments of the device's actions (for action
components) or the state variables of its services (for event
components). In addition to these ports, every UPnP component
has a Boolean output port named connected. This port is set to
true if the device is connected to the network (accessible by the
control point) and event subscriptions are accepted in case of
event components. This information can be very useful in
distributed systems where a connection between the distributed
components is not reliable. In the case that one or more
components are temporarily unavailable, a warning can be
signalled, and their functionality can be rerouted to a backup
system.

4.1.1 Action components
Action components represent actions of UPnP devices. Every
action component is bound to a specific device by its Unique
Device Name (UDN), a specific service of that device by the
service ID, and in the end to a specific action of that service by
the action name.
The ports of action components are generated according to the
arguments of the action. For every input argument of the action an
input port is added to the component and for every output
argument of the action an output port is added, taking into
account the data types of each argument. The names of the ports
are equal to the names of the arguments. Action components also
have an additional input port named trigger that accepts any data
type. This port can be used for additional triggering, as well as
triggering of components whose actions don't have any input
arguments.

When a UPnP action component is triggered, values of its input
ports (with exception of the "trigger" port) are stored and
transformed into input arguments for the UPnP action. Then, a
control message is sent to the device to invoke the action. In the
end, output arguments are parsed from the result message and
their values used to set the values of the output ports.
The action components in our greenhouse temperature monitoring
systems are the temperature display and the alarm. To display the
temperature we will use the SetLine action of the display UPnP
device. The action has one input argument named text and no
output arguments. Thus, the corresponding action component
(shown in Figure 2) will have two input ports, text and trigger,
and the connected output port.

Figure 2: Action component generated for the SetLine action

of the display UPnP device.
Event components handle the event notifications generated by
UPnP devices. Every event component is bound to a specific
device by its UDN and the service ID. When the system is started
event component instructs the UPnP control point to subscribe to
events of the service they are bound to. Components confirm that
subscription in regular intervals, and in the case of loss of
subscription, send re-subscription requests.
Ports of event components are generated using the state variable
tables defined by the UPnP services. For each evented state
variable of the service, an output port is created with the same
name as the state variable.
When the control point receives event notification from the
service, the new values of state variables are used to set the values
of output ports of the component.
In the temperature monitoring example we use event components
to obtain the temperature from the temperature sensor and to
monitor the state of the alarm acknowledgment button. The event
component that would correspond to the tempSensor service
provided by the sensor UPnP device is shown in Figure 3. It has
no input ports, and two output ports: temperature, matching the
temperature state variable of the service, and the connected port
that signals if the device is available on the network.

Figure 3: Event component representing state variables of the
tempSensor service of the temperature sensor UPnP device.

4.2 Software components
Software components are not associated with any UPnP device;
instead their functionality is fully implemented in Java. Some of
the roles of software components are to process the data received
from, or sent to, UPnP components, manipulate the execution of

components (e.g., generation of periodical triggers), data flow
control (using switches) and definition of constants. Their
function can vary from very simple (for example addition of two
numbers, logical operations, extraction of a substring from string)
to complex data processing. Having simple functions available as
components (together with use of simple data types in component
interfaces) makes it unnecessary to write any glue-code when
connecting the components and thus enabling easier development.
In our example this types of components are used to compare the
temperature read by the sensor components to the temperature
limit, and to control the alarm state.
Software components are stored as Java class files. This makes
the creation of a component repository fairly simple. For a new
component to be available for development and deployment, it
only needs to be copied to adequate directory of the file system.

4.3 Ports
Ports are the access points of a component, through which it sends
and receives data and triggering signals. They are defined by their
names and data types. The names of all input ports and names of
all output ports of a component must be unique (although an input
port can have the same name as an output port).

4.3.1 Connections between ports
One output port can be connected to multiple input ports, but an
input port can be connected to only one output port. Whenever a
component sets new data to one of its output ports, the port
automatically sends the data and triggering signals to all input
ports connected to it. Data is also transferred from an output port
to an input port when a connection between the two is made, thus
providing better behaviour of the system during run-time
modification. The data is always transferred by value, and not by
reference. Both input and output ports buffer the last data that was
set to them. Ports can also be reset, making the port signal that
there is no data available.

4.3.2 Data types
Every port defines a data type for the data it handles. In addition,
input ports can define other data types they can accept and cast
into their base data type. Although ports could use any Java class
for their data type, only five types are currently implemented:
Boolean, Integer, Double and String. These types are chosen to
cover data types defined for UPnP arguments and state variables.
A port can also be configured to handle no data, in which case it
is used for triggering purposes only.

4.3.3 Triggering of components
When an input port receives a signal from the output port it is
connected to, it becomes active.
Every input port has an attribute called trigger type. This attribute
defines how the state of the port affects the triggering of
component execution. Although all components define default
trigger types for their input ports, the developer of the system can
change that type at any time to achieve the desired system
behaviour. There are three types of triggers for input ports:

• Trigger. A component is triggered if all trigger input
ports are active.

• Priority trigger. A component is triggered if any of its
priority trigger input port is active.

• Data. If port's trigger type is set to data, it is only used
to receive data, and does not affect the triggering of the
component.

By combining these three trigger types, complex triggering
patterns or feedback-loops can be achieved.
The graphical representation of output ports and all input port
types can be seen in Figure 4. The figure shows an instance of
Component A having input ports a (data port), b (trigger port) and
c (priority trigger port), and an output port out.

Figure 4: Graphical representation of a component and its

ports.

4.4 Component execution
Initially, all components in the system are in an idle state waiting
to be activated for execution. Activation can be caused either by
the triggering signals received at the input ports of the component,
or by its internal events. Once activated the component starts its
read-execute-write sequence: First, the component reads all
values from its input ports and stores them internally, and then it
executes its functionality. Finally, the component updates the
values of its output ports.
By looking at the way they are executed, two types of
components can be distinguished: passive and active components.
Action components and most software components are passive,
meaning that they execute only when they are triggered by signals
received from other components, while event components and
some software components are active and thus may start their

execution by an internal event.
Execution of passive components is done by a part of the
framework called the Executor. The Executor manages a queue of
components that need to be executed and runs a thread that does
the actual execution of these components. When a component is
triggered, it adds itself to the queue of the Executor object. The
execution thread waits until there is at least one component
waiting to be executed. Then, it takes a component from the
queue and calls its execute method. At the end of a component’s
execute method all input triggers are reset.
The execution of active components starts by an internal event. In
the case of event components, it starts when a UPnP event
notification is received by the component. Although the source of
this event is in fact external to the system, it is viewed as internal
to the component because it was not generated by any interaction
with other components. Active components are executed in a
separate thread than the passive components, defined by either the
UPnP control point (in case of event components) or the
components themselves (in case of active software components).

4.5 Example
Figure 5 shows the graphical representation of the greenhouse
temperature monitoring system developed using UComp. The
system consists of tempSensor (temperature sensor UPnP device)
and ButtonPanel (acknowledgment button UPnP device) event
components, SetLine (display UPnP device) and SetAlarmState
(alarm UPnP device) action components and constant 35,
Comparator and SR software components. The temperature value
from the tempSensor is outputted directly to the display and to the
Comparator, where it is compared with the constant 35.0. If the
temperature is greater than 35.0, the comparator activates the s
(set) port of SR (set/reset flip-flop) that stores the alarm state. The
acknowledgment button is connected to the r (reset) port of SR.
The output of SR is then connected to the input of the
SetAlarmState action component.

Figure 5: Graphical representation of the temperature monitoring system developed using UComp. The image is a
screen-shot of the development panel in the UComp Developer tool.

5. THE UCOMP RUN-TIME
FRAMEWORK
The UComp architecture (shown in Figure 6) is conceived as a
Java application that controls UPnP devices available on the
network, processes their data, and relays data between them. The
application communicates with the devices through a single UPnP
control point implemented by the CyberLink UPnP stack [4]. The
functionality of the system is defined by the components it uses
and the connections between those components. This centralized
architecture has a number of benefits:

• Data received from a device can be processed by the
application before it is forwarded to other devices,
making the systems much more flexible and eliminating
the need to change the code of the devices to adapt them
to the needs of the developed system.

• Embedded devices do not need to implement UPnP
control points. These devices have limited memory
capacity and processing capabilities. Having to
implement the control point stack would significantly
decrease their performance.

• Run-time modification of systems is much easier.
System's behaviour can be modified by simple changes
in the interconnection of components (or by changing
the components themselves) in the central application.
No change in the behaviour of the devices is needed. If
devices were to communicate directly to one another,
means for changing their configuration at run-time
would have to be devised. Such functionality would
mean that standard UPnP devices could not be used.
Also, it would take up a portion of device's resources.

UComp application

Component ComponentComponent ...

Executor UPnP control point

Network

UPnP device UPnP deviceUPnP device

Figure 6: The UComp architecture.

6. DEVELOPMENT TOOL
For building UComp systems, we created a visual development
tool named UComp Developer. It enables browsing available
components, visual representation of components on a
development panel, modifying connections between them, setting
their properties and the properties of their ports, and starting and
stopping the execution of the developed system. Systems
developed with this tool can be saved, or restored from, XML
files.

The system is developed in the development panel. In it, all
components that the system consists of are graphically
represented. The graphical representation also shows all input and
output ports of the components, together with connections
between those ports.
Available UPnP and software components are presented in a tree
structure. The tree consists of two main sub-trees: one for the
UPnP components and one for software components. The first one
is populated by UPnP components representing all devices that
are currently available on the network. They are further grouped
by the device and the service they are bound to. To generate the
software component sub-tree, the application scans the file system
(more precisely the Java classpath) for all Java classes that extend
the SoftwareComponent class. Both the UPnP component sub-tree
and the software component sub-tree can be refreshed while the
UComp Developer application is running.

7. DISCUSSION AND RELATED WORK
While testing the systems built with UComp some false
disappearance of devices were detected. They were caused by the
use of unreliable UDP protocol in UPnP advertising. In case too
many UDP messages were lost on the network, the control point
concluded that a device is no longer connected to the network.
This undesired behaviour could be eliminated by modifying
control points to use UPnP control messages to test for the
existence of the devices that are about to expire.
Another problem that arose was long execution time of UPnP
action invocations. In our experiments with the example
temperature monitoring system, using Rabbit RCM2200
microcontrollers with a custom built generic UPnP device stack as
embedded devices, it varied between 100 and 350ms. The SOAP
protocol that is used in the invocations is somewhat complex
when applied on embedded devices. A solution for this would be
to extend UPnP with an additional control protocol for use with
the embedded devices. Such protocol could coexist with the
standard UPnP control protocol and be used when both the device
and control point supports it. A solution for a better control
protocol using representational state transfer (REST) approach is
given in [9].
In the process of development, two different types of component
executors were investigated. The first one started a new Java
thread for the execution of each component, while the second
sequentially executed all components in the same thread. As the
time needed to start a new thread for each execution surpassed the
time spent on the execution of the code in many simple software
components, we have decided to use sequential execution for the
software components.
Use of CBD in developing embedded systems has been explored
in component models such as SaveCCM [1], COMDES-II [8],
Rubus [2] and Koala [16]. However, most of these models do not
specifically aim to solve the problem of connecting hardware with
software. In addition, they focus their component-based approach
on the design-time, loosing the benefits of components at run-
time.
An alternative standard for connecting embedded devices and
software used in industry is OPC [10]. It uses Microsoft’s COM
[11] and DCOM [5] technologies for communication between
OPC servers (embedded devices) and OPC clients. At the time

OPC does not provide means for controlling devices in form of
executing commands.
UPnP was also explored as a middleware for robot development
in [12] and [13]. The work describes benefits of using UPnP over
real-time CORBA (TAO) in such an embedded environment. The
work also introduces extensions to standard UPnP protocols that
allow UPnP to better accommodate the needs of a robot SDK.

8. CONCLUSION AND FUTURE WORK
In this paper we have proposed a simple component-based
technology for developing systems containing both embedded
hardware and high level software applications. This was achieved
by using UPnP architecture as middleware for discovering
components, describing them and managing connections between
them. In our component model we have achieves a uniform way
of looking at hardware and software components. To further
improve the development process, we have created a tool that
enables browsing of available components and visual composition
of systems. We have demonstrated how this technology could be
applied on a simple temperature monitoring system.
As future work, system design could be enhanced by providing a
UPnP component repository in the development tool. This could
easily be achieved by storing UPnP device descriptions to files in
a well-organised directory structure.
The component model could further be improved by including
functional and non-functional properties in UPnP device
description. Attributes specifying the same properties could also
be added to software components. Using those properties we
could do a detailed analysis of the system both at the design and
run time.
To increase the performance of the system, the UPnP protocols
could be extended to better fit the needs of embedded devices and
systems. This would include improving the UPnP discovery and
defining a light-weight control protocol.

9. ACKNOWLEDGEMENT
This work was partially supported by the Swedish Foundation for
Strategic Research via the strategic research centre PROGRESS,
and the Unity Through Knowledge Fund supported by the
Croatian Government and the World Bank via the DICES project.

10. REFERENCES
[1] M. Åkerholm, J. Carlson, J. Fredriksson, H. Hansson, J.

Håkansson, A. Möller, P. Pettersson, and M. Tivoli. The

SAVE approach to component-based development of
vehicular systems. Journal of Systems and Software,
80(5):655–667, May 2007

[2] Arcticus Systems, Rubus Software Components, Available
from www.arcticus-systems.com

[3] F. Bolton. Pure CORBA. Sams, 2001
[4] S. Konno, Cyberlink for Java, http://www.cybergarage.org/
[5] Microsoft, .DCOM Technical Overview,

http://msdn.microsoft.com
[6] Microsoft, .NET, http://www.microsoft.com/net/
[7] R. Monson-Haefel. Enterprise JavaBeans. O’Reilly and

Associates, 2001
[8] X. Ke, . Sierszecki, C. Angelov, COMDES-II: A

component-Based Framework for Generative Development
of Distributed Real-Time Control Systems, RTCSA, pages
199-208, 2007

[9] J. Newmarch, A RESTful approach: clean UPnP without
SOAP, Consumer Communications and Networking
Conference, pages 134-138, January 2005

[10] OPC Foundation, .OPC, OLE for Process Control,. Report
v1.0, OPC Standards Collection, 1998,
http://opcfoundation.org.

[11] D. Rogerson. Inside COM. Microsoft Press, 1997
[12] Sang Chul Ahn, Jung-Woo Lee, Ki-Woong Lim, Heedong

Ko, Yong-Moo Kwon, Hyoung-Gon Kim, UPnP Approach
for Robot Middleware, Proceedings of the 2005 IEEE
International Conference on Robotics and Automation,
pages 1959-1963, April 2005

[13] Sang Chul Ahn, Jung-Woo Lee, Ki-Woong Lim, Heedong
Ko, Yong-Moo Kwon, Hyoung-Gon Kim, UPnP SDK for
Robot Development, SICE-ICASE, pages 363-368, October
2006

[14] Sun Microsystems, JavaBeans Specification,
http://java.sun.com/beans/

[15] UPnP Forum, UPnP Device Architecture 1.0,
http://www.upnp.org/resources/documents/

[16] R. van Ommering, F. van der Linden, and J. Kramer, The
Koala component model for consumer electronics software.
In IEEE Computer, pages 78–85, IEEE, March 2000

	1. INTRODUCTION
	2. BACKGROUND
	2.1 Universal Plug and Play
	2.2 Component-based development (CBD)

	3. COMBINING HARDWARE- AND SOFTWARE COMPONENTS
	3.1 Benefits of using UPnP

	4. THE UCOMP COMPONENT MODEL
	4.1 UPnP components
	4.1.1 Action components

	4.2 Software components
	4.3 Ports
	4.3.1 Connections between ports
	4.3.2 Data types
	4.3.3 Triggering of components

	4.4 Component execution
	4.5 Example

	5. THE UCOMP RUN-TIME FRAMEWORK
	6. DEVELOPMENT TOOL
	7. DISCUSSION AND RELATED WORK
	8. CONCLUSION AND FUTURE WORK
	9. ACKNOWLEDGEMENT
	10. REFERENCES

